
BOSS Technical Note 004

A Book on Classical Cryptography

madness's book on classical cryptography
cover page
last modified 2020-08-17
©2020 madness

RGHLXWERJFEBKJCTPQSRUATXSECVANAMVCINKFDITERSWSKYZGWPCFF
OFDOKNIXNQEKLERJOOHYHNRNLCRTFPGBLQSLRRIZGNPGNIRBCPEYFR
ZQIYEEFSGATAQUILXWVEKWKVKGLPXLSZSXDDKEPLTBYFVEOIBVONXCZ
DNSDUBZSCVCYOPPWZKWJEBNDZIRDTEPPOAGCMEAPVFQKAHLDGBHUVYF
PROLVATDHAZXUIBOIPQBYFKMEPPVVARYWVDWAXQNXDVDPEJLRLCIZJZT
XTOHGEIJVRIZXKSRDPYVCTAKEGKQNLDERCEDRCLCCBZODUFQYKKGFVH
KIJQOATHAJDDBYJHVHYGJBPYDFCFSGBCVLXLMKPYHQVJNRXRTBXFEBZ
CJROUGTJTFCZRANOMSOELCISWAAZRFXRTATPUDSXSQAWFHVPUKBGRGF
KDJJLCPAPMSCRLSNMVIYCJQNTYKDJYCFLZYGWYMIEKDEOKDGCHIUYVU
MPYAJLMIRHIQJUMHHPQFWDRCTNXFFZGKYEGQHANWZZGLXUBFVSOITY
KNMVEQIHPGWSXOHTRBUAPLIXFFDVVTUSBMXBIUFYDTGRWNRBLEKVUU
PQZCTHDXKMAFJAEBOOKYONGCLASSICALPCRYPTOGRAPHYPYRKBLPJZGA
EMXDVWKZZAEQSLZZQRJNPXBYLMADNESSCTDHTGNOVLJVYICAIYFYFHG
RYTARUVQRVPKEJYGBEAEOODQYCUTZKPGLVCLBVPQXSTCTQXEOQPJUJA
SKXJECBYOKMAOWPSKORUKVJALEVGUKCMCZHSLVQABOFSRDZDEMGKXO
BLNPMVYWHNKOKWPDHMFNRFEFRAWSLLLHDNRIHULIIZINDCSTLSXIDA
CDHFSWEMAEEJYEUYKTGIIKBXKXBCDRGKLMBDQDKHTGUTVRQWVFVKPW
VBZMMYYPKJDDOCYTXXUANBVRYQHLIVHXUFOKHNIZTRIFAWIJYYBSPUWI
BSFPGRGUYOZXFJEGXCXDZCASLGATBUCNLFDEFCXQEDDLMOGNWBXILJZ
XNIEOAOPZCSMMSOHEAHKLJGZGBYPEOXBNXYRTBCGYHFKBABNPBNJQJS
ASAMDHDCRBCEUABZWELSYAAKHWVMIOXDZLWJATETKKBWURJZXOOADHK
RTWNOHUYABNJTZBLLUFCABCIVAZMFRQXOVXKAUNGIXHJPRDYUDDRZBH
CVFXWMYGEXBSVCXXGPPHDFGNYGEZCLEBTSQTZVJMXANBJTARBNSOEYV
CKGJPIAWDCKOBHNHWDBEIZSAAPPYEEPIYRIIDGPNLPJKSMKMPYHGHLNO
UKJWVLIGMJTWDLGSIKCZYDZXQKTIUHSHFOIZGALHUKLJYWMLZKAHIKY
YSVTZSNCNYYMEKUFFLVFQVYZUVKLBIATHFIUCOCZXIBFKAYXHYKHVFZ
HZCCEQZMOWGNWTTQSTWWGUZBVDVKRCXDHBNQWUTPTMWSWMORMGCSB
UXVKDFPNXGBHIGEHQPLAMEEZAMRYGOVMXSHEIVBTWFZBCLZAMSZCMR
RYTNPZBCCXXRBTWSYLSHAYYOWIBMUPVDNPLKHFRVFBQYVLUHQRPRNBJ
MQGUKAWXDFOYOYUHFBNKLIWFVIGPPVXMXJNVWGNJYKEPETARKUBCUSE
NVPLXHJXOZIDFJDTCMHXSFQYLCZSZKTHGRYEGLKAYIKEDELBENHXYOW
HRNYYTGIEXQBBHRQNCIAVFECUPPQDGBDAKGUZCVRZKEFHSIPXEQUZDV
YHLDBEFFJVDCEPBRQOXDPDBGSKJPENTXKXQKVHSJPBJKXEFNFCDVHVB
TINYQWSWKHHXTQLSXFENSAUXSWCPONSMJQJRUZTUFZFBIEQWURUGAR
GKKNJBBAJRBKONNLOEHVLOSHZLBVSAPYBLZAQNIWFRRERAYVLKAMHW
BRVBMWCWZAMJUIJJAPXAORHSRJOKDCDCMMHAXLDJEXNKGUAHXHXUAD
USYNCWGJSUDCHILOARNSVCZTYNYAIRCDCEXYMVVJGLSCHCFCCAKRDML
VPWJMTOHDIZQIAUMASURABZGQXLLZQGDVONRWLTFXFCAXKIOXPEJEWE
GRKRQJEFWLXECDVAAEBAIWIYBQEYUGNWUYOMDDJAZAXEUZAHGHJVCTN
RANPRATWUFWKHJRRPDYSPAUHEIOJLOOPTJMJIPVVMRBSTSQTKIOJJHQ
AWEYUOOOUWOEMJMMADODRWSHTDZACWDUGNOMKAJJYKCNYUSQMSOEF
MUGLSWNTTBMLJHBHGBZWXBKLATDDCIWOSQNUJZAOUKJPBDWAEJSAPIW
LBZIIRPIJYCTNYKSMCCWAVKNQUKTNYKMJBFLPCKASFTVCVGALIJBPHMU

A Book on

Classical Cryptography

by madness

WHAT THE CRITICS ARE SAYING

I’ve never seen a book like this before.
What the hell was he thinking?!

 ―NY Times Book Review

At the top of my list for the next book-burning.

 ―Washington Post

I always keep a copy handy, in case
I run out of toilet paper.

 ―London Times

I have never fallen asleep so fast.

 ―LA Times

madness's book on classical cryptography
copyright page
last modified 2020-12-17
©2020 madness

Copyright 2020 by madness.
All rights reserved. And we mean ALL.

The ciphertexts, and corresponding plaintexts, for these exercises are from the British National Cipher
Challenge and are copyright by the University of Southampton. They are used with permission.

Unit 34, Exercise 1
Unit 34, Exercise 2
Unit 44, Exercise 2
Unit 56, Exercise 1
Unit 59, Exercise 3
Unit 63, Exercise 4
Unit 65, Exercise 4
Unit 68, Exercise 2
Unit 69, Exercise 2
Unit 71, Exercise 2
Unit 79, Exercise 2
Unit 89, Exercise 6
Unit 97, Exercise 2
Unit 105, Exercise 3
Unit 117, Exercise 6
Unit 125, Exercise 2

Scrabble™ is a trademark of Hasbro in the United States and Canada, and of Mattel elsewhere.

Many of the example texts are from stories and novels that are no longer under copyright.

Photo credits

Unit 105
Exercise 4: a still frame from the TV show Futurama
Exercise 6: inside cover from Ozzy Osbourne’s album Speak of the Devil

Unit 120
Wadsworth cipher disk: U.S. National Security Agency
Wheatstone Cryptograph: eBay
Urkryptografen: Museum of Cypher Equipment, Fife, Scotland

Unit 124
Bazeries cylinder: Étienne Bazeries
M-94: robbo@ev1.net

Unit 126
M-138: U.S. Department of Defense

madness's book on classical cryptography
table of contents
last modified 2020-10-28
©2020 madness

Contents

Introduction

Part I: Linguistic data

Unit 1: Textual corpora
Unit 2: Word lists
Unit 3: Monogram frequency tables
Unit 4: Tetragram frequency tables
Unit 5: The χ2 statistic (optional)
Unit 6: Monogram fitness based on the χ2 statistic (optional)
Unit 7: Angle between vectors
Unit 8: Monogram fitness based on the angle between vectors
Unit 9: Tetragram fitness
Unit 10: Index of coincidence
Unit 11: Entropy (optional)

Part II: Monalphabetic substitution ciphers

Unit 12: Monoalphabetic substitution cipher
Unit 13: Atbash cipher
Unit 14: Modular arithmetic: addition and subtraction
Unit 15: Caesar shift cipher
Unit 16: Brute-force attack on the Caesar cipher
Unit 17: Attacking the Caesar cipher with cribs
Unit 18: Attacking the Caesar cipher with monogram frequencies (χ2) (optional)
Unit 19: Attacking the Caesar cipher with monogram frequencies
Unit 20: Greatest common divisor
Unit 21: Modular arithmetic: multiplication and division
Unit 22: Affine cipher
Unit 23: Brute-force attack on the affine cipher
Unit 24: Attacking the affine cipher with cribs
Unit 25: Attacking the affine cipher with monogram frequencies
Unit 26: Keyword substitution cipher
Unit 27: Dictionary attack on the keyword substitution cipher
Unit 28: Stochastic hill-climbing attack on monoalphabetic substitution ciphers

Part III: Periodic polyalphabetic substitution ciphers

Unit 29: Periodic polyalphabetic substitution cipher
Unit 30: Finding the period: Kasiski examination
Unit 31: Finding the period with the index of coincidence
Unit 32: Finding the period: twist method
Unit 33: Vigenère cipher
Unit 34: Brute-force attack on the Vigenère cipher
Unit 35: Attacking the Vigenère cipher with cribs
Unit 36: Dictionary attack on the Vigenère cipher
Unit 37: Hill-climbing attack on the Vigenère cipher
Unit 38: Attacking the Vigenère cipher as a periodic Caesar cipher
Unit 39: Gronsfeld cipher (optional)
Unit 40: Beaufort cipher
Unit 41: Variant Beaufort cipher
Unit 42: Porta cipher
Unit 43: Periodic affine cipher
Unit 44: Attacking the periodic affine cipher as a collection of affine ciphers
Unit 45: Quagmire 1 cipher
Unit 46: Two-stage attack on the quagmire 1 cipher
Unit 47: Quagmire 2 cipher
Unit 48: Quagmire 3 cipher
Unit 49: Quagmire 4 cipher
Unit 50: Hill-climbing attack on periodic polyalphabetic substitution ciphers

Part IV: Transposition ciphers

Unit 51: Transposition ciphers
Unit 52: Permutations
Unit 53: Permutation cipher
Unit 54: Heap’s algorithm
Unit 55: Factoradic numbers and permutations
Unit 56: Brute-force attack on the permutation cipher
Unit 57: Hill-climbing attack on the permutation cipher
Unit 58: Matrix transposition
Unit 59: Twisted scytale
Unit 60: Columnar transposition cipher
Unit 61: Double columnar transposition cipher
Unit 62: Nihilist transposition cipher
Unit 63: Railfence cipher
Unit 64: Redefence cipher (optional)
Unit 65: AMSCO cipher
Unit 66: Myszkowsky cipher (optional)
Unit 67: Cadenus cipher
Unit 68: Hill-climbing attack on the Cadenus cipher

Part V: Grid-based ciphers

Unit 69: Polybius cipher
Unit 70: Playfair cipher
Unit 71: Hill-climbing attack on the Playfair cipher
Unit 72: Vertical two-square cipher
Unit 73: Horizontal two-square cipher
Unit 74: Hill-climbing attack on the two-square ciphers
Unit 75: Four-square cipher
Unit 76: Phillips cipher
Unit 77: Hill-climbing attack on the Phillips cipher
Unit 78: Phillips-RC cipher (optional)
Unit 79: Double Playfair cipher
Unit 80: Nihilist substitution cipher
Unit 81: Bifid cipher
Unit 82: Trifid cipher
Unit 83: ADFGX cipher
Unit 84: ADFGVX cipher

Part VI: Ciphers based on matrices

Unit 85: Matrices and vectors
Unit 86: Matrices over the set of residues
Unit 87: Hill cipher
Unit 88: Attacking the Hill cipher with cribs
Unit 89: Affine Hill cipher

Part VII: Stream ciphers

Unit 90: Stream ciphers
Unit 91: Trithemius cipher
Unit 92: Autokey cipher
Unit 93: Hill-climbing attack on the autokey cipher
Unit 94: Attacking the autokey cipher with monogram frequencies
Unit 95: Running-key cipher
Unit 96: Progressive Vigenère cipher
Unit 97: Solitaire cipher
Unit 98: Hill-climbing attack on the solitaire cipher with partially known key

Part VIII: Codes

Unit 99: Codes
Unit 100: Baconian cipher
Unit 101: Triliteral cipher
Unit 102: Morse code
Unit 103: Monome-dinome cipher
Unit 104: Straddling checkerboard cipher

Part IX: Miscellaneous ciphers

Unit 105: Symbolic substitution
Unit 106: One-time pad
Unit 107: Slidefair cipher
Unit 108: Nicodemus cipher
Unit 109: Fractionated Morse
Unit 110: Hutton cipher
Unit 111: Scrabble cipher
Unit 112: Homophonic substitution
Unit 113: Polyphonic substitution
Unit 114: Polyhomophonic substitution
Unit 115: Pollux cipher
Unit 116: Doubled-over substitution
Unit 117: Duplicitous ciphers
Unit 118: Combination-lock cipher
Unit 119: Chase cipher

Part X: Proto-mechanical ciphers

Unit 120: Disk ciphers (cipher clocks)
Unit 121: Attacking cipher clocks with cribs
Unit 122: Digram-counting attack on cipher clocks
Unit 123: Hill-climbing attack on cipher clocks
Unit 124: Cylinder ciphers
Unit 125: Hill-climbing attack on cylinders
Unit 126: Strip ciphers

Afterword

Index

Bibliography

madness's book on classical cryptography
introduction
last modified 2020-10-11
©2020 madness

Introduction

This book is an introduction to classical cryptography, with an emphasis on cryptanalysis. By classical,
we mean cryptography that can be done with pen and paper. Historically, such ciphers were used for
serious secret-keeping up to and into the Second World War, around which time mechanical ciphers
came into use. Nevertheless, classical ciphers continue to be invented, even though the classical period
has ended.

Let us begin with some definitions. Cryptography is the science of modifying a message so that
its contents cannot be understood except by the intended recipient. A cipher is a system of modifying
such a message to hide its meaning, which is to encipher it, and of later reversing that modification,
which is to decipher it. By contrast, a code is a system whereby words and phrases are replaced with
other symbols; the corresponding processes are called encoding and decoding. This book deals with
ciphers, and very little with codes as defined this way (a modern use of the word code is to replace
symbols in the plaintext with combinations of new ciphertext symbols; we will see ciphers of this type
in this book). Cryptanalysis is the art of discovering the meaning in an enciphered message that was not
intended for you. Doing so successfully is called decryption. Sometimes we use encrypt and decrypt as
the same as encipher and decipher, even though their true meanings are subtly different. We may also
will use crack or break for decrypt. The unmodified message is called the plaintext or the cleartext. The
encrypted message is called the ciphertext.

Often, cryptographers will use the convention that plaintexts are written in lower-case letters,
while ciphertexts are written in upper-case letters. Here, we will not be strict about this convention,
especially since there are some ciphers that use both upper- and lower-case letters in their ciphertexts.

Everything in this book will be done in English (except for a rare word or two every now and
then). Nevertheless, most if not all of what we learn here can be used for any language that uses the
Latin alphabet. The only modifications necessary are in the linguistic data. For another language, Part I
on linguistic data can be reworked in the new language to compile a new set of data for use by the
methods of the latter parts of the book.

Although classical cryptography can be done with pen and paper, this does not mean that we
should use pen and paper. An emphasis in this book is on the use of a computer to crypanalyze a
ciphertext. To that end, we recommend the Python language for its ease of manipulating text. (In
modern cryptography, Python is also useful because it handles large integers seamlessly.) Since version
2 of the language is no longer maintained, any tips and examples in this book will use version 3 of
Python. There are only three differences between these versions that are important for us: In version 3,

strings of characters and strings of bytes are different types of data. In version 3, the print statement
has been replaced by a print() function, so that now parentheses are necessary. In version 2, the /
operator behaved differently if it was dividing integers or floating-point numbers; in version 3 we will
use two operatiors (/ and //) for division. For this book, you should be able to write rudimentary
Python scripts. We will provide tips as we go along, and you should expect to learn more about the
language as we go. You will not need to be able to write object-oriented scripts.

To succeed in your study of classical cryptography, you should either find a different book, or
begin with Unit 1 and continue in order. You should do all units and complete all the tasks of this
book in order and not skip any, unless they are marked “optional.” Units build on each other, and if
you skip any, you may find that you have missed something important. Once you reach the part on
miscellaneous ciphers, you may do only the units that you wish to do. Along the way, you will be
building your own library of functions and programs in Python for cracking ciphertexts.

The history of cryptography can be roughly divided into four eras. This book focuses on the first, the
classical era. While in terms of a timeline the classical era ended decades ago, in a real sense it
continues today. Classical ciphers continue to be invented. They continue to be studied. They continue
to challenge cryptographers. So stop complaining that this book is useless.

Here is a short description of the four eras of cryptography:

• The classical era began at the start of time and runs up until the middle of the twentieth century
(see above concerning why it continues today). It concerns ciphers that can be implemented
with pen and paper. They can also be broken with pen and paper. They generally work on
symbols that are the letters of the alphabet and/or the ten digits.

• The mechanical era ran from before World War II until the advent of computers. This era is
characterized by the use of electric rotor machines. Each rotor contains a maze of wires, and
each machine contains several rotors. A letter is enciphered by passing it through the rotors in
order and reading the result from the last rotor. After each letter is enciphered, one or more of
the rotors are rotated so as to change how the next letter is enciphered. The key for such a
machine is the arrangement of rotors and their starting positions.

• The modern era is characterized by the use of computers. The symbol set on which modern
ciphers act is the bit, which is a binary digit taking the value 0 or 1. In addition to symmetric
ciphers, which are those that are enciphered and deciphered with the same key, the modern era
introduces asymmetric ciphers (public-key ciphers), which use a different key for the two
operations. This allows one to publish his/her public key, so that anyone can send a message
that only s/he can decipher with the private key. This paradigm can be extended to include the
ability to sign a document with one’s private key, so that anyone can verify the signature with
the public key.

• The quantum era exploits the laws of quantum physics. Its elementary unit is the qubit, which is
a quantum state that can, when measured, take one of two values. The important idea from
quantum mechanics that cryptography uses is the fact that when someone measures a qubit, it
forces that qubit to be in a new state that may be different from the original. Quantum
cryptography uses this principle to detect whether a stream of qubits has been intercepted. In

this way, it is possible to devise a scheme whereby the stream of qubits is used as a key for the
one-time pad. The encrypted message is sent in some other, conventional, way.

Get to work!

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter I.

William F. Friedman, “Codes and Ciphers (Cryptology),” Encyclopaedia Britannica, 1956,
www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/
reports-research/FOLDER_535/41772109081119.pdf

Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory 22 (1976) 644-654, ee.stanford.edu/~hellman/publications/24.pdf

Part I
Linguistic data

madness's book on classical cryptography
unit 1: textual corpora
last modified 2020-11-27
©2020 madness

Unit 1
Textual corpora

In order to analyze ciphertexts, we need to understand plaintexts. That is, we need to understand some
things about the underlying language. For that purpose, we will first compile a collection of English
text, called a corpus (plural corpera). We have some choices about how we do this. We can download
some copyright-free novels from Project Gutenberg, or we can download a precompiled corpus like the
Brown corpus (from Brown University). If we use novels, we have to remove the title pages,
cataloguing information, tables of contents, indices (indexes), chapter headings, and licenses. All that
should remain is the text of the novels. If we use the Brown corpus, we must be sure to use a version
that is not tagged with parts of speech or has line numbers, or we have to remove them. We also need to
remove any diacritical marks (accent marks).

Python tips

You can open and read a text file with a single command like this example:

text = open("somefile.txt","r").read()

Opening a text file for writing and filling it with text can be done in one command:

open("somefile.txt","w").write("Some text.\n")

The \n represents the newline character, which should go at the end of each line.

Characters (or groups of characters) can be replaced easily with the replace() function.

text = text.replace("old","new")

If we are replacing characters with accent marks, we need to tell the Python interpreter that our script is
written in Unicode (make sure that your computing environment uses 8-bit Unicode; perhaps you use
UTF-16). This is done by putting this comment near the beginning of the script:

-*- coding: utf-8 -*-

Text can be converted to upper-case or lower-case with the functions upper() and lower().

newtext = text.upper()

Links

Project Gutenberg: www.gutenberg.org

Brown corpus (as one large file): www.sls.hawaii.edu/bley-vroman/brown.txt

Reading and references

Brown Corpus Manual, korpus.uib.no/icame/brown/bcm.html

Wikipedia page on the Brown corpus, en.wikipedia.org/wiki/Brown_Corpus

Python documentation, docs.python.org

Tasks

1. Compile a corpus of English text. Be sure to remove all cover pages, licenses, tables of
contents, etc., and diacritical marks (accent marks). Use some English novels or the Brown
corpus. If you use the Brown corpus, make sure that you have a copy without line numbers or
tage, or that you remove them. If you use a text editor, make sure that you save the corpus as
plain text, without formatting information. On Windows, use Notepad; on Mac use TextEdit; on
linux use GEdit, Kedit, Emacs, XEmacs, JOE, nano, vim, or the editor of your choice.

2. Take your corpus and create another one that contains no punctuation. Be careful of hyphens at
the ends of lines; they might be in the middle of words. Your finished corpus should contain
only words separated by single spaces (or end-of-line characters). Feel free to convert all letters
to upper-case or to lower-case.

madness's book on classical cryptography
unit 2: word lists
last modified 2020-11-27
©2020 madness

Unit 2
Word lists

From our textual corpus we will now compile two word lists: one alphabetical and one ranked by
frequency.

Python tips

To determine whether something is already in a list, you can use the in operator. The append()
function adds an item to the end of a list. For example:

if x not in y:
y.append(x)

To split a text into pieces, use the split() function. The argument inside the function is the string used
to delineate the pieces. So, to divide into words, the space character is the argument:

list_of_words = "this is my text".split(" ")

or

my_text = "this is my text"
list_of_words = my_text.split(" ")

Programming tasks

1. Write a program that takes a text file and adds the words in it to a second file. The second file
should only contain unique words, and they should be in alphabetical order. Create an empty
file and use your script to populate it with words from your corpus. Your program will allow
you to add more words to your list later, when you come across texts with unusual words or
names.

2. Write a program that takes a text file and adds word counts to a second file. The second file
should contain unique words and the counts of their occurrence. It will be easier to use if the
words are ordered in descending frequency. You can store the data in any way that you like (one

word and number per line, or JSON, or ...), so long as you are able to read the information later.
Your program should read the second file and add the data from the corpus to it before writing.
Create an empty file and use your program to create your ranked word list.

3. Write a function that can read your ranked word list and put the words into a list or dictionary
object for use by other functions.

madness's book on classical cryptography
unit 3: monogram frequency tables
last modified 2022-04-12
©2020-2022 madness

Unit 3
Monogram frequency tables

Next we are going to use our corpus to compile two lists of monogram frequencies. A monogram is a
single character. The two lists will be with and without spaces.

Python tips

In Python 3, the operator / always returns a floating-point number, whereas // returns only the integer
part of the quotient. Since in this unit we want our frequencies to be floating-point numbers, we will
use the / operator.

Python allows you to define functions that have optional arguments. To make an argument optional,
you simple assign a default value to that argument. Here is a simple example:

def myFunction (x, y=2):
return x*y

If we call it as myFunction(3), the return value will be 6. But if we call it as myFunction(3,5), then
the return value will be 15.

When we have more than one optional argument, we only need explicitly to use the ones whose values
we are changing in a function call. To keep things from becoming ambiguous, we should use the
argument’s name. For example:

def anotherFunction (x, y=2, invert=False):
 if invert:
 return y/x
 return x/y

anotherFunction(1,invert=True)

Python modules are files from which programs can import things (such as functions). If the function
above is defined in a file called myModule.py, then we can import it with a statement like this:

from myModule import myFunction

Programming tasks

1. Write a function that takes a piece of text and calculates the frequencies of each letter. Allow for
the possibility of either including spaces or excluding them (possibly with an optional
parameter). End-of-line characters should count as a space.

2. Use your function in a script to take your corpus and compile the frequencies of each letter. Do
not include spaces as a letter. Your script should store the frequency table in a format that you
can read and understand later.

3. Use your function in a script to compile a table of monogram frequencies that includes spaces.
Remember that newline characters separate words, so they should count as spaces. Store the
table in a format that you can read and use later.

4. Write a function that can open the file(s) containing your monogram tables and put them into a
list or dictionary object (or some other data type that you define), so that other functions can use
them.

madness's book on classical cryptography
unit 4: tetragram frequency tables
last modified 2020-07-01
©2020 madness

Unit 4
Tetragram frequency tables

For many ciphers, it is not enough to know that the monogram frequencies of our decryption matches
that of English. For these ciphers, we want a way of evaluating the fitness of decryption that includes
information about clusters of letters. For this, we will compile tables of tetragram (four-letter)
frequencies. We do not want to split text into clumps of four letters. Instead, we want to count all
possible sequences of four letters. For example, the text

THISISASAMPLETEXT

contains the tetragrams THIS, HISI, ISIS, SISA, etc.

Python tips

The logarithm function is in the math module. It has an optional argument, which is its base. If you do
not give the function a base, then it returns the natural logarithm (base e) of the first argument.

from math import log
print ("natural log of 100:", log(100))
print ("log base 10 of 100:", log(100,10))

Programming tasks

1. Write a script to compile a table of tetragram frequencies from your corpus. Do not include
spaces in this table. Your table will have 264 entries. Save the data in a format that you can
access later.

2. Write a script to compile and save a table of tetragram frequencies that includes spaces.
Remember that newline characters separate words, so they count as spaces.

3. Write another script to take your tables and create two new tables. In the new tables, each
frequency is replaced with its logarithm. Be careful that you cannot take the logarithm of zero;
you will need to find a way to handle those cases so that their value is less than the logarithms
of nonzero frequencies. Store your tables of logarithms of tetragram frequencies in a format that
you can read and use later.

4. Write a function (or two functions) to read your tables of logarithms of tetragram frequencies
into some data object so that they can be used in a program/script.

madness's book on classical cryptography
unit 5: the χ2 statistic
last modified 2020-07-01
©2020 madness

Unit 5 (optional)
The χ2 statistic

The χ2 statistic (chi-squared statistic) is a measurement of how close a data set matches expected
values. Here is a formula for it:

χ
2
=∑

i

(mi−ei)
2

e i

where {mi} are the measured data, and {ei} are the expected values. A good fit gives a small χ2.

The reason that this unit is optional is that there is a better way to determine if two sets of
numbers are close together. Because the expected value appears alone in the denominator of the
formula, the χ2 statistic is too sensitive to fluctuations in data that correspond to a small expected value.
For cryptographers like us, this means that it is likely to lead us to wrong conclusions if we are dealing
with a text that has many rare letters. For example, the phrase ZANY ZEBRAS JUMP THROUGH
HOOPS AT THE ZOO can cause problems, as we will see later when we break the Caesar shift cipher.

Reading and references

Wikipedia page: en.wikipedia.org/wiki/Chi-squared_test

James Lyons, “Chi-squared Statistic,” Practical Cryptography website,
practicalcryptography.com/cryptanalysis/text-characterisation/chi-squared-statistic

Programming tasks

1. Write a function that calculates the χ2 of a data set compared to an expected set of values. Be
sure to distinguish between the two sets.

Exercises

1. Test your function by finding the χ2 of the data {1.1, 2.5, 7.3} if the expected values are {1, 3,
7}.

madness's book on classical cryptography
unit 6: monogram fitness based on the χ2 statistic
last modified 2020-07-01
©2020 madness

Unit 6 (optional)
Monogram fitness based on the χ2 statistic

Note: This unit requires you to complete Unit 5.

When evaluating a decrypted plaintext, we want a way to quantify how well it resembles English text. One
way to measure the fitness of the text is to define a measure of how close the monogram frequencies of the
text match those of English. We call this the monogram fitness.

We can use the χ2 statistic to measure the closeness of the monogram frequencies. However, since
the χ2 statistic is small for a close match and large for a bad match, we need to either negate the value or
take its reciprocal. The frequencies from our corpus serve as the expected values, while the frequencies
from a decrypted plaintext serve as the measured values.

Programming tasks

1. Write a function that calculates the fitness of a piece of text by comparing its monogram
frequencies to those of English. Use the functions that you previously wrote for finding the
monogram frequencies of a text and for calculating the χ2 statistic. Remember that since the χ2
statistic is small for a good fit, you should either negate the result or take its reciprocal when
defining the fitness. The frequencies that you found from your corpus take the role of the
expected values when doing the calculation. Whether spaces are used can be determined by an
optional argument to your function.

Exercises

1. For various lengths, take several randomly chosen passages of each length from your corpus (or
any other texts) and find the fitness of each. Make a graph of the fitness as a function of the
length of the selected text. From your graph, notice the variability in the fitness and how it
depends on the length of text. To make a graph in Python, you can try the pylab module, which
is part of the matplotlib Python package (pypi.org/project/matplotlib).

madness's book on classical cryptography
unit 7: angle between vectors
last modified 2020-07-01
©2020 madness

Unit 7
Angle between vectors

A vector is an ordered list of numbers: V = (V1, V2, V3, ...). The numbers V1, V2, ... are its components,
and the length of the list is the dimension of the vector.

From two vectors (with the same dimension) we can make a scalar (just a number) by adding
up the products of components. Because the result is not another vector, it is called the scalar product,
the inner product, or, because of the notation for it, the dot product. Its definition is

U·V = ∑
i

U i V i=U 1 V 1+U 2V 2+U 3 V 3+...

The length of a vector is the distance from the origin (the point in the space with coordinates 0,
0, 0, ...) to the point whose coordinates are the components of the vector. Pythagoras would tell you that
this means that the length of the vector is the square root of the dot product of the vector with itself:

||V|| = √V⋅V

Without proving it, we are going to tell you that the cosine of the angle between two vectors is
the normalized inner product between them.

cos θ =
U⋅V

√(U⋅U)(V⋅V)

Its value varies from -1 (antiparallel vectors) to +1 (parallel vectors).

Python tips

The square-root function sqrt() needs to be imported from the math module.

The length of a list or tuple can be found with the len() function.

Programming tasks

1. Write a function that finds the inner product of two vectors. You can represent vectors as lists or
tuples. The dimension of the vectors can be found with the len() function. If the dimensions of
the two vectors do not match, the function should throw and exception, raise an error, or
somesuch.

2. Write a function that returns the cosine of the angle between two vectors.

madness's book on classical cryptography
unit 8: monogram fitness based on the angle between vectors
last modified 2020-07-01
©2020 madness

Unit 8
Monogram fitness based on the angle between vectors

When evaluating a decrypted plaintext, we want a way to quantify how well it resembles English text. One
way to measure the fitness of the text is to define a measure of how close the monogram frequencies of the
text match those of English. We call this the monogram fitness.

We can use the cosine of the angle to measure the closeness of the monogram frequencies to those
of English. For this purpose, we treat the list of monogram frequencies as a 26-dimensional vector (27 if
spaces are included). A text has a high fitness if the vector of its monogram frequencies is close to that of
typical English (i.e., your corpus). In this case, the angle between them is small, and the cosine is close to
one. Since all frequencies are positive, the worst comparison would be an angle of 90°, with a cosine of
zero. Thus, monogram fitness defined this way varies from zero to one.

Programming tasks

1. Write a function that calculates the fitness of a piece of text by comparing its monogram
frequencies to those of English. Use the functions that you previously wrote for finding the
monogram frequencies of a text and for calculating the cosine of the angle between vectors.
Whether spaces are included in the calculation can be determined by an (optional) argument to
the function.

Exercises

1. For various lengths, take several randomly chosen passages of each length from your corpus (or
any other texts) and find the fitness of each. Make a graph of the fitness as a function of the
length of the selected text. From your graph, notice the variability in the fitness and how it
depends on the length of text. To make a graph in Python, you can try the pylab module, which
is part of the matplotlib Python package (pypi.org/project/matplotlib).

madness's book on classical cryptography
unit 9: tetragram fitness
last modified 2020-07-14
©2020 madness

Unit 9
Tetragram fitness

Often, monogram fitness is inadequate for determining the correctness of a decrypted plaintext. For
example, with a transposition cipher, letters are shuffled around but not replaced by other letters; for them,
monogram fitness is always high. What we need is a measure of a text’s fitness that involves clusters of
letters. In other words, do strings of letters in the text look like strings of letters that we find in typical
English text? For this purpose, we will define a tetragram fitness in this way:

F= ∑
tetragrams

f log f English

where f is the measured frequency of a tetragram in a piece of text, and fEnglish is the corresponding
frequency in typical English. Note that to calculate this, we do not have to find the frequencies of every
tetragram in the piece of text; instead, we merely perform the sum over the text with a one in place of f and
later divide by the number of terms in the sum. Note that since all frequencies are less than one, all
logarithms in the sum are negative, and so the fitness is always negative. Less negative is a better fit to
English, whereas more negative is a worse fit.

Reading and references

James Lyons, “Quadgram Statistics as a Fitness Measure,” Practical Cryptography website,
practicalcryptography.com/cryptanalysis/text-characterisation/quadgrams

Programming tasks

1. Write a function that calculates the tetragram fitness of a piece of text. It should use your table
of logarithms of tetragram frequencies. Since you only want to read the table into memory once,
you should use the function you wrote in Unit 4 for that purpose before you call the fitness
function. Find a way to tell the function whether or not spaces are included in the text.

Exercises

1. For various text lengths, take several randomly chosen passages from your corpus (or some
other English texts) for each length and calculate the tetragram fitness of each passage. Make a

graph of the results and take note of the variation in the fitness and how the variability depends
on the length of the text. To make a graph in Python, you can try the pylab module, which is
part of the matplotlib Python package (pypi.org/project/matplotlib). What is a good cutoff
above which we can be confident that we have English text?

madness's book on classical cryptography
unit 10: index of coincidence
last modified 2022-08-30
©2020-2022 madness

Unit 10
Index of coincidence

Human languages are notoriously repetitive. Very repetitive. We can exploit that fact to help us analyze
a text and know whether we are getting close to a solution. Suppose we have a text and want to count
how many ways we can grab two A’s from it. Well, if there are nA of them in the text, then there are nA
ways to pick one. That leaves nA − 1 ways to select another one. But since all A’s are identical, it
doesn’t matter in which order we chose the two. So, to avoid double-counting, we have to divide by
two. The result is that the number of ways to choose two A’s from the text is

nA(nA−1)

2

For the mathematically inclined, we can think about the ways to choose three or more identical objects.
For three, the result is

n(n−1)(n−2)

3 ·2

See a pattern yet? For selecting k out of n, the result is

n(n−1)(n−2)· ··(n−k+1)
k ·(k−1) ·· ·3 ·2 ·1

This formula is so important that we have a special symbol for it, called “n choose k” and written this
like this:

(nk)=
n !

(n−k)!k !

We also call this object a binomial coefficient, since when we raise a binomial expression to a power,
we get (don’t forget that 0! = 1)

(x+ y)n
=(n0) xn y0

+(n1)xn−1 y1
+(n2)xn−2 y2

+· · ·(nn)x0 yn

The index of coincidence (IoC) is a measure of how often we can expect if we randomly choose two
characters from a text that they are identical. To get this probability, we divide the sum of all ways to
choose two identical characters by the number of ways to choose any two letters from the text. If the
numbers of each letter present are nA, ..., nZ, and there are N total letters in the text,

IoC =
∑
i=A

Z

(
ni

2)

(N
2)

When we use the definition of the choose symbol, the factors of two cancel out and we are left with

IoC = ∑
i=A

Z ni(ni−1)

N (N−1)

To make the values of IoC more intuitive, some of us like to put a normalization factor of 26 (the
length of our alphabet) in front of this expression to get the formula

IoC = 26∑
i=A

Z ni(ni−1)

N (N−1)

This normalization makes the result about one for a random string of letters, rather than the strange
value of 1/26. Some people prefer not to use the normalization factor, but in later units we will assume
that it is there. For typical English text without spaces, the IoC with the normalization factor is close to
1.75. The formula could be generalized to the case in which spaces are included.

We can also generalize the formula to deal not with single letters, but with blocks of letters. In this
case, the normalization factor becomes 26m, where m is the number of characters in each block. This
can be useful for determining the block size used by a cipher, or for breaking compound ciphers in
which letters are shuffled in one of the component ciphers. More on that later. Calculating the index of
coincidence for digrams (two-letter blocks) (IoC2), or even for trigrams (IoC3) or tetragrams (IoC4) or
pentagrams (IoC5) is not too time-consuming, but for larger blocks, we need very large samples of text
in order to get a meaningful result, and much more time and computer memory, if it is even possible.

Reading and references

William F. Friedman, The Index of Coincidence and Its Applications in Cryptography, Riverbank
Laboratories Department of Ciphers Publication 22, Geneva, Illinois, 1920,
www.marshallfoundation.org/library/methods-solution-ciphers

William F. Friedman and Lambros D. Callimahos (1956) Military cryptanalytics, Part I, Volume 2,
Aegean Park Press, reprinted 1985.

Marjorie Mountjoy, The bar statistics, NSA Technical Journal VII (2, 4), 1963

James Lyons, “Index of Coincidence,” Practical Cryptography website,

practicalcryptography.com/cryptanalysis/text-characterisation/index-coincidence

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 376-380.

Programming tasks

1. Write a function that calculates the IoC for a given piece of text. Allow for the possibilities that
spaces may or may not be included.

2. Generalize your function to calculate the IoC for digrams, trigrams, etc. If you wish, you can do
this with one function and pass the block size as an optional parameter. Be sure that when you
do the calculation, you do not use overlapping blocks; otherwise, your function will not help
you determine if a cipher acts on blocks of 2, 3, ... letters at a time.

Exercises

1. Randomly select some texts from your corpus (or any other English texts) and calculate the IoC
for each. Is the average near 1.75? How much does it vary? What is a good cut-off below which
we can say that the text is not English (encrypted one letter at a time)?

2. Calculate the IoC2 of randomly selected texts from your corpus. What is a good range of values
for English? Do the same for IoC3, IoC4, and IoC5. Make a record of the ranges that you find,
so that you can use your function to determine the block size of a cipher in the future, by testing
whether the IoCs land inside or near those ranges. Well, the future comes at you quick . . .

3. Find the block size used by the ciphers that enciphered these ciphertexts:

a. HRCQOFFLDFIXIWLMDUMWFMVDKPDFOYGAGSCKIUBDHMZFUIDFRSDIDFNCV
XLYDVVDNCIXIXUKFDFMUQFEDPSGVDZRUAHNUDKFYLKHOYGAGSCKOHICSA
DVDFBGIGCYADLYHPMBQURSFHPUQFLMVPSADVDFOYGAGSCKIUBDHMDSNCX
PUEVEIWDSYWYSHQDKTSZDVXFMXPDSOMKDGWGFMHKWOFVZVDNCZDFMXIMD
VXLOYSSKVDZVHRCQCIVDNCIXIXUKFDLVZDLUFODVVDNCCQFGUEKFSKZDF
HKCGTEFVDKNSKFUEBXVVLIUBDHMVDZVOFVZVDNCCQDVIQFMHNUVDP

b. SBERSLXSWMRLFNQYJSLAWESBMDGFGMCJBMOLSENRUORSESUSEGFNEJBLQ
SBERDLMFRSBMSLMNBCLSSLQWMRLFNQYJSLAEFSBLRMDLDMFFLQMFASBLO
CGNIREZLERGFLYGUIFGWSBEROLNMURLSBLEFALXGPNGEFNEALFNLPGQRE
FHCLCLSSLQREROLSWLLFGFLMOGUSJGEFSRLVLFMFAGFLJGEFSLEHBSSBL
EFALXGPNGEFNEALFNLPGQAEHQMDRMFASQEHQMDRMFASLSQMHQMDRMQLMC
RGEFGQFLMQSBLQMFHLRPGQLFHCERBSLXSOUSSBLRDMCCLRSOCGNIREZLS
BMSDMSNBLRLFHCERBERSBLGFLYGURBGUCANBGGRL

c. ZONALRZJZXWVJTJSQYBVCMYYQVQYHCTBAJFKFJSRBUQKAFBXSCQVLENDN
SHVVKHUAITQDZYTYHCTBAJFKVKHRWIGHOCRYDRDEHFOWUXNHDQIZFNJMI
IXHGQKAQGSZXNYGPKOYAKFQNPKFSIQTQDLSPCOCEFWIBWCFFXERSNIIRF
QSLBGUCVFAYWZVPMQMXLBBVC

d. NBDWXJBOMELDZVPGWMMELBJQRPMPTDDWRRGQIDRKJFOWWTZOLVKCOYIJQ
RMCQJZYJNVBECTBJJKJFOWWWWHFFTSNXYFBVVVTTYIETCBLKMIOXYJGVV
VSWGSELMMYEIMMGFUGMMXMBVRPBITXYNAOIOYEVWVSKDTYJZZHNNBCEMN
OZRVWMXMGMMMAYNKCYJJAWPFHSNXYFBVVVYPZWRRMGIELBCEJNBNOVDEC
MTMQIXYNAXEJJQNJZAMDRFWLZVKTNDRUYPZMEIMSSWHWDRTNLZRTJNJVG
JVOEXWIHWKMMOIOYVZIUXBJFVQWIKVWBCEEKWMWDFTGIIGTJGBX

e. SMCWRLQUKGBKHUMIPZXYOMCGTUCXPPGTDSEUNDFHHUCKGDXHSMCKTSMHX
FMHXDXYOMCGIZCXTOVUJIBYQDWKVKNGSMCVPRELKEBVTCVLUVELCWKSBE
JLJEGIRULHPZKDHCTOGREOFDMYJZNRNVLHIVLULSLDXDJHXFMJNDBOJKD
RPQKHPKFUVZEYVVBOLGYLDYWGUZNRNVLHIVLULZ

madness's book on classical cryptography
unit 11: entropy
last modified 2020-10-23
©2020 madness

Unit 11 (optional)
Entropy

Entropy is a measure of the randomness of a piece of text. Here is a formula:

S=−∑
i=A

Z

f i log26 f i

where the fi are the frequencies of the letters observed in the text. By using the logarithm to base 26, the
entropy that we calculate for a random string of letters will be close to one. For English text, we expect
the entropy to be lower, around 0.88 to 0.90.

Reading and references

Claude E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal 27:3
(1948) 379-423, DOI: 10.1002/j.1538-7305.1948.tb01338.x, HDL: 11858/00-001M-0000-002C-4314-2

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 759-762.

Programming tasks

1. Write a function that calculates the entropy of a piece of text.

Exercises

1. Take some random selections from your corpus and find their entropies. Over what range do
they vary?

Part II
Monoalphabetic substitution ciphers

madness's book on classical cryptography
unit 12: monoalphabetic substitution cipher
last modified 2022-01-13
©2020 madness

Unit 12
Monoalphabetic substitution cipher

A substitution cipher is one in which each character in the plaintext is replaced with another
(sometimes the same) character. A monoalphabetic substitution cipher is one in which each letter is
always replaced by the same letter. So ‘A’ is always replaced by the same thing, while ‘B’ is always
replaced by the same letter, but different to the replacement for ‘A,’ etc. The key is the information
needed to correctly decipher a ciphertext. In the case of the monoalphabetic substitution cipher, this key
is a permutation of the alphabet. When we solve such ciphers by hand, we typically write the key under
the alphabet like so:

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: JIOAFMBYXZESHRDWQLTCPUNKGV

For this key, ‘A’ in the plaintext is always replaced by ‘J’ in the ciphertext, ‘B’ by ‘I,’ etc. The key is the
ciphertext alphabet JIOAFMBYXZESHRDWQLTCPUNKGV. Notice that ‘Q’ is mapped into itself with
this key.

The key space is the set of all possible keys (including the one that enciphers the plaintext into
an exact copy of itself). For the monoalphabetic cipher, there are 26 ways to choose the first letter of
the key. This leaves 25 choices for the second letter, and 24 remain for the third. We keep counting this
way until there is only one choice remaining for the last letter. Thus, the size of the key space is 26 × 25
× 24 × ... × 1 = 26!.

For decipherment, it is useful to be able to construct the inverse of the key. We do that by
writing the key under the straight (unmodified) plaintext alphabet as we did above. Then we rearrange
things so that the ciphertext is straight, while being careful to keep each pair of letters together. For our
example above, we would get

plaintext: dgtokeymbaxrfwcuqnlsvzpihj
ciphertext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

The inverse key is DGTOKEYMBAXRFWCUQNLSVZPIHJ. If we were to encipher a message with the
key, and then again with the inverse key, we would obtain the original message.

How do we know if we have a ciphertext that was encrypted with a monoalphabetic substitution
cipher? The index of coincidence will be close to that of English, and the monogram fitness will be
low.

Python tips

The location of a letter in your key alphabet can be found with the index() function:

key = "ZYXWVUTS"
some_number = key.index("X")

The nth letter in the key can be found by indexing:

some_letter = key[7]

Indexing and the index() function work for any string.

A character can be added to the end of a string like this:

message += "A"

Unfortunately, in Python, a character in a string cannot be modified. Instead, you must create a new
string with the modification that you want.

You should never hard-code your texts into your scripts. Instead, you should input them on the
command line or from a file. To use the command-line arguments, you need to import argv from the
sys module. It is an array containing all of the strings on the command line. The first is argv[0],
which is the name of the script/program. The first argument after that is argv[1], which can contain
whatever you like. If you pass strings that contain spaces, you will need to put quotation marks around
them.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter IX.

James Lyons, “Simple Substitution Cipher,” Practical Cryptography website,
practicalcryptography.com/ciphers/simple-substitution-cipher

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter III, section IV.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 97-105.

Programming tasks

You might want to put these functions together in a module that deals with monoalphabetic substitution
ciphers.

1. Write a function that returns True or False, indicating whether a ciphertext is likely to have
been encrypted with a monoalphabetic substitution cipher.

2. Write a function that inverts an alphabet key.

3. Write a function that enciphers a plaintext with an alphabet key and returns a ciphertext.

4. Write a function that deciphers a ciphertext with an alphabet key and returns a plaintext. Note
that the key is the one used in encipherment.

Exercises

1. Use your functions to invert this key alphabet: KNOFPEUCARBMGXQIZWYSTJVDHL.

2. Use your functions to encipher the phrase “Sally sells seashells by the seashore” with the key
ATSPWGKHVXDLCJZEMFBRYUONIQ.

3. Use your functions to decipher the message PFAFIPGPFIPGKLFTCPFKLHVPGKLEFTPFPP
FIZ with the key CSKTFVRMGQLEXDHPJIZANBOUWY.

madness's book on classical cryptography
unit 13: atbash cipher
last modified 2020-10-08
©2020 madness

Unit 13
Atbash cipher

The atbash cipher (formerly spelled athbash) is an ancient cipher in which the key alphabet is the
reverse of the original:

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: ZYXWVUTSRQPONMLKJIHGFEDCBA

Notice that the key is reciprocal, i.e., it is its own inverse, and therefore the cipher is also reciprocal so
that encipherment and decipherment are the same process.

To use the atbash cipher, we can treat it like the general monoalphabetic substitution cipher with
the key alphabet given above. Another way is to use simple arithmetic. Consider the plaintext as a
sequence of symbols {pi} = p0 p1 p2 p3 ... , and the ciphertext as {ci} = c0 c1 c2 c3 These symbols can
be treated as numbers, so that ‘A’ = 0, ‘B’ = 1, ..., ‘Z’ = 25 (modern programmers usually count starting
with zero). Then the atbash cipher can be implemented with this simple equation:

ci = 25 − pi

Notice that there is almost no security with the atbash cipher. When using it, your only hope of
secrecy is your belief that your opponents do not know the cipher.

Another completely insecure cipher related to atbash is the albam cipher. It, too, is reciprocal. It uses
this key, in which the two halves of the alphabet have been swapped:

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: NOPQRSTUVWXYZABCDEFGHIJKLM

Reading and references

Wikipedia: en.wikipedia.org/wiki/Atbash

Crypto Corner: crypto.interactive-maths.com/atbash-cipher.html

Practical Cryptography: practicalcryptography.com/ciphers/atbash-cipher-cipher

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 77-79.

Programming tasks

1. Write functions to encipher and decipher texts with the atbash cipher. Note that they are really
the same function. Use either (or both) of the methods discussed above.

Exercises

1. What is the size of the key space for the atbash cipher?

2. Write a short message and encipher it with the atbash cipher. Now decipher it and check that
you obtain the original message.

madness's book on classical cryptography
unit 14: modular arithmetic: addition and subtraction
last modified 2020-09-16
©2020 madness

Unit 14
Modular arithmetic: addition and subtraction

Consider the integers, ℤ = { ..., −3, −2, −1, 0, 1, 2, 3, ... }. Now pick one, say 12, and call it the
modulus. Next, rename each integer by the remainder when you divide by the modulus. So 0 → 0, 1
→ 1, 2 → 2, 3 → 3, ..., 11 → 11. But 12 → 0, since 12 = 1 × 12 + 0, and the remainder is 0. The
sequence 0, ..., 11 starts all over again, as 12 → 0, 13 → 1, The result is a new set ℤ12 = {0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11}, which contains only 12 members. This is called the set of residues. We say
things like “13 modulo 12 is 1” or “13 = 1 modulo 12” or “13 = 1 mod 12.”

Things get interesting when we start to do arithmetic with the set of residues. For addition, we
simply perform the operation as if the numbers are regular integers, but then take the remainder of the
result. Continuing with our example of ℤ12, we can add 7 and 9 to get 16. But 16 is 4 modulo 12. So in
ℤ12, 7 + 9 = 4.

You might think that subtraction works the same way as addition in modular arithmetic, and you
would be correct, but it is worthwhile to look at subtraction in a more rigorous way. After all, there are
no negative numbers in modular arithmetic. This approach will also help us when we try to understand
division. First, let us generalize and take some modulus m without specifying its value. Notice that we
have that

x + 0 = x

for all x in ℤm. Because 0 does not change the value of a number under addition, we call 0 the additive
identity element. Now, in regular arithmetic, x − x = x + (−x) = 0, so we call −x the additive inverse of x.
In the set of residues, however, we do not have negative numbers, so there is a positive number that
takes the role of x’s inverse. We might write that number as “-x,” but that is just notation for additive
inverse. What we call “subtraction” is actually addition using the additive inverse.

How do we find the additive inverse of a number x? Well, we want the number y such that

x + y = 0 mod m

Even though the modulus m itself does not appear in the set of residues, we can calculate y as

y = 0 − x = m − x (mod m)

In our example of ℤ12, the inverse of 7 is 12 − 7 = 5, or −7 = 5, so that 7 + 5 = 12 = 0 (mod 12).

Python tips

When dividing integers, the operator // gives the quotient, and the operator % gives the remainder.
Both operators return an integer. For example, 13 // 5 is evaluated as 2, and 13 % 5 is evaluated as 3,
since 13 = 2 × 5 + 3.

In programming, modular arithmetic is not as complicated as in the text above. Feel free to use the
operators + and − as you normally would, but then modulate the result with the % operator.

answer = (7 + 9) % 12
answer = (7 - 9) % 12

Programming tasks

1. Go outside and take a walk. If it’s raining, open a window so you can hear it while you play a
game with someone else in your house.

Exercises

1. Check carefully your work on programming task #1 and re-do it if necessary.

2. Evaluate:

a. 528147 + 790378 modulo 62

b. 72177 − 162737 mod 81

3.

a. Find an element of ℤ18 that is its own (additive) inverse.

b. Find an element of ℤ19 that is its own inverse.

c. What condition must we put on n such that ℤn has such an element?

madness's book on classical cryptography
unit 15: caesar shift cipher
last modified 2020-10-09
©2020 madness

Unit 15
Caesar shift cipher

The Caesar shift cipher, also known simply as the Caesar cipher or the additive cipher, can be viewed
in two ways. Given its key k, which is a number from 0 to 25, we can think of the Caesar cipher as a
monoalphabetic substitution in which the ciphertext alphabet is shifted left by k letters, with wrap-
around. For example, if the key is 5, we have

plaintext: abcdefghijklmnopqrstuvwxyz
ciphertext: FGHIJKLMNOPQRSTUVWXYZABCDE

Another way to view the Caesar cipher is with modular arithmetic. The plaintext and ciphertext
are equivalent to sequences of numbers {pi} and {ci}. Encipherment is done with addition:

ci = pi + k mod 26

Decipherment is done with subtraction:

pi = ci − k mod 26

When the shift is 13, the cipher is often called ROT13. This shift has a special name because 13
is half of 26. Furthermore, since 13 is its own inverse modulo 26, this cipher is reciprocal, i.e.,
encipherment is the same process as decipherment. Also notice that ROT13 is the same as the albam
cipher.

Reading and references

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 83-84.

Wikipedia: en.wikipedia.org/wiki/Caesar_cipher

Crypto Corner: crypto.interactive-maths.com/caesar-shift-cipher.html

Practical Cryptography: practicalcryptography.com/ciphers/caesar-cipher

Programming tasks

1. Write a function to generate the key alphabet for a Caesar cipher from the key number. You
might not use this function if you work with modular arithmetic, but it is good practice to write
the function.

2. Write a function to encipher a plaintext with the Caesar cipher and a given key. Use whatever
method you like.

3. Write a function to decipher a ciphertext with the Caesar cipher and a given key. Use whatever
method you like.

Exercises

1. What is the size of the key space for the Caesar cipher?

2. Encipher this text with the key 11:

A horse is a horse, of course of course, and no one can talk to a horse, of course,
unless, of course, that horse of course is the famous Mister Ed.

3. Decipher this text with the key 15:

WTLPHDCRTPAXIIATVGTTCQPAADURAPNVJBQNQJINDJHWDJASHTT
LWPIWTRPCSDIDSPNVJBQNWTRPCLPAZXCIDBPCNQDDZHLXIWWXHE
DCTNEPAEDZTNIDDPCSXUNDJWPKTPWTPGIIWTCVJBQNHPEPGIDUN
DJVJBQN

madness's book on classical cryptography
unit 16: brute-force attack on the caesar cipher
last modified 2020-08-21
©2020 madness

Unit 16
Brute-force attack on the Caesar cipher

A brute-force attack involves trying every possible key until an acceptable decryption is found. Since
the Caesar cipher has only 26 possible keys (even when we include the identity operation [that leaves
the plaintext unaltered]), a brute-force attack takes very little time.

Programming tasks

1. Write a function that does a brute-force attack on a ciphertext that was encrypted with the
Caesar cipher. Use your tetragram-fitness function to find the best possible decryption. Your
function should return the key or the plaintext or both. Also write a wrapper around your
function that accepts a ciphertext and prints the plaintext or writes it to a file.

Exercises

1. Perform a brute-force attack on this ciphertext:

WLALYWPWLYWPJRLKHWLJRVMWPJRSLKWLWWLYZ

Remember this text; we will see it again.

2. Perform a brute-force attack on this ciphertext:

KLYJKPMCLDUFXAESCZFRSSZZADLEESPKZZ

Remember this text; we will see it again.

madness's book on classical cryptography
unit 17: attacking the caesar cipher with cribs
last modified 2020-07-04
©2020 madness

Unit 17
Attacking the Caesar cipher with cribs

A crib is a word or phrase that you have good reason to believe is contained in the plaintext. To use a
crib to break a ciphertext that was encrypted with the Caesar cipher, we try to fit the crib in all possible
positions in the ciphertext. For each position, we find the shift needed to decrypt that portion of the
ciphertext to match each letter of the crib. If each letter requires the same shift, then we have a good
candidate for the key. It is not guaranteed to be the true key, but if we find several candidates, then we
can decipher the text with each and use tetragram fitness to pick out the best plaintext.

Let us look at a short example. Here is a piece of encrypted text that we promised you would
see again (and you will see it again at least once more):

WLALYWPWLYWPJRLKHWLJRVMWPJRSLKWLWWLYZ

Let’s try to break it with the crib PIPER. We line up the crib with the ciphertext at each position until
we find one at which all the shifts are equal:

ciphertext: W L A L Y W P W L Y W P J R ...

crib: P I P E R _ _ _ _ _ _ _ _ _ ...
shifts: 7 3 11 7 7

crib: _ P I P E R _ _ _ _ _ _ _ _ ...
shifts: 22 18 22 20 5

⋮

crib: _ _ _ _ _ P I P E R _ _ _ _ ...
shifts: 7 7 7 7 7

We now have a good candidate for the key: 7. If we decipher with that key, we find that the plaintext
looks like English, and we are satisfied that we have found the correct key.

Python tips

To take a “slice” of a string (a substring), we use indexing. So, for example, to make a substring that
takes the fifth through tenth character:

newString = oldString[4:10]

Remember that we count from zero, so the fifth character has index 4. The last character that we want
to include has index 9, but in Python we have to add one to the index when we specify the last place in
a string or array. To duplicate a string (or an array), we also use indexing, but leave the indices out:

newString = oldString[:]

Programming tasks

1. Write a function or script that takes a ciphertext and a crib and breaks the ciphertext.

Exercises

1. Break this ciphertext with the crib CUSTOM.

RCCXRLCZJUZMZUVUZEKFKYIVVGRIKJKYVWZIJKZJZEYRSZKVU
SPSVCXZREJKYVJVTFEUSPKYVRHLZKREZREJNYFTRCCKYVDJVC
MVJTVCKJREUKYVKYZIUSPKYVXRLCJKYVJVUZWWVIWIFDFEVRE
FKYVIZECREXLRXVTLJKFDJREUCRNJKYVIZMVIXRIFEEVJVGRI
RKVJKYVXRLCJWIFDKYVTVCKJKYVIZMVIJDRIEVREUJZVEVJVG
RIRKVKYVSVCXZREJWIFDKYVFKYVIJ

2. Break this ciphertext. It may or may not include some of these words: VICTORY SPAIN
DISCO EUROVISION.

MFFTUEFUYQOMQEMDIMEQXQOFQPRADFTQRAGDFTFUYQMEPUOFM
FADMZPIMEOAYUZSFAEBMUZFARUZUETFTQIMDAZFTQIMKTQIME
YQFNKMYNMEEMPADERDAYOADPANMITATMPPQEQDFQPSQZQDMXB
AYBQKFTQKUZRADYQPTUYFTMFUFIAGXPNQQMEUQEFFAFMWQFTQ
OUFKMFZUSTFNQOMGEQFTQQZQYKTMPNKFTQZZAWZAIXQPSQARP
UEOAADARFTQZUSTFXURQADARFTQNAASUQ

madness's book on classical cryptography
unit 18: attacking the caesar cipher with monogram frequencies (χ2)
last modified 2020-07-05
©2020 madness

Unit 18 (optional)
Attacking the Caesar cipher with monogram frequencies (χ2)

Here is an attack on the Caesar cipher that uses only monogram frequencies. The technique is to make a
table of the monogram frequencies from the ciphertext, then to shift that frequency table until it
resembles that of typical English. In this unit, we will use monogram fitness based on the the χ2 statistic
to measure how well the frequencies match.

Let’s work through an example. Consider this ciphertext:

LIKHKDGDQBWKLQJFRQILGHQWLDOWRVDBKHZURWHLWLQFLSKHUWKDWLVE
BVRFKDQJLQJWKHRUGHURIWKHOHWWHUVRIWKHDOSKDEHWWKDWQRWDZRUG
FRXOGEHPDGHRXWLIDQBRQHZLVKHVWRGHFLSKHUWKHVHDQGJHWDWWKHLU
PHDQLQJKHPXVWVXEVWLWXWHWKHIRXUWKOHWWHURIWKHDOSKDEHWQDPHO
BGIRUDDQGVRZLWKWKHRWKHUV

The frequencies of letters in this ciphertext are

A 0 J 0.020 S 0.016
B 0.020 K 0.097 T 0
C 0 L 0.065 U 0.048
D 0.081 M 0 V 0.048
E 0.020 N 0 W 0.141
F 0.020 O 0.028 X 0.024
G 0.040 P 0.016 Y 0
H 0.133 Q 0.060 Z 0.016
I 0.032 R 0.073

Let’s write the table as a list:

0.000, 0.020, 0.000, 0.081, 0.020, 0.020, 0.040, 0.133, 0.032, 0.020, 0.064, 0.065, 0.000,
0.000, 0.028, 0.016, 0.060, 0.073, 0.016, 0.000, 0.048, 0.048, 0.141, 0.024, 0.000, 0.016

Here is a graph of those frequencies (in blue), along side typical English frequencies (in yellow):

We can already see that a shift of the blue bars left by three will give a good match. But let’s use the χ2
statistic and see how that works. Our monogram table for English looks like this (yours may be slightly
different) (rounded to three decimal places):

0.081, 0.015, 0.024, 0.045, 0.123, 0.021, 0.021, 0.064, 0.070, 0.001, 0.009, 0.041, 0.016,
0.068, 0.077, 0.017, 0.001, 0.057, 0.062, 0.091, 0.029, 0.009, 0.025, 0.002, 0.021, 0.001

Now, if we shift the frequencies from the ciphertext leftward by one, we get

0.020, 0.000, 0.081, 0.020, 0.020, 0.040, 0.133, 0.032, 0.020, 0.064, 0.065, 0.000, 0.000,
0.028, 0.016, 0.060, 0.073, 0.016, 0.000, 0.048, 0.048, 0.141, 0.024, 0.000, 0.016, 0.000

The χ2 between this and the English table is 18.02, indicating a poor fit. We can continue in this
manner, and for each shift we obtain these values for χ2:

shift χ2

-

 0 6.51
 1 18.02
 2 6.73
 3 0.10
 4 9.81
 5 5.17
 6 25.14
 7 7.67
 8 24.11

 9 3.91
10 10.27
11 13.92
12 10.99
13 31.47
14 3.91
15 2.90
16 3.91
17 22.50
18 7.88
19 3.83
20 19.38
21 9.52
22 4.00
23 24.56
24 21.31
25 11.63

The best fit (lowest χ2) is for a shift of three. We conclude that the key is 3. To get a feel for what a
good fit looks like, here is a graph of the shifted frequency table compared to typical English:

Programming tasks

1. Write a function or script that implements the attack. Make sure that you shift the table in the
correct direction; generate some ciphertexts and test it to be certain.

Exercises

1. Finish decrypting the ciphertext in the example above.

2. Apply the attack to this ciphertext:

QEBZXBPXOZFMEBOFPKXJBAXCQBOGRIFRPZXBPXOTELXZZLOAFKDQLP
RBQLKFRPRPBAFQTFQEXPEFCQLCQEOBBQLMOLQBZQJBPPXDBPLCJFIF
QXOVPFDKFCFZXKZBTEFIBZXBPXOPTXPQEBCFOPQOBZLOABARPBLCQE
FPPZEBJBLQEBOPRYPQFQRQFLKZFMEBOPXOBHKLTKQLEXSBYBBKRPBA
BXOIFBOFQFPRKHKLTKELTBCCBZQFSBQEBZXBPXOZFMEBOTXPXQQEBQ
FJBYRQFQFPIFHBIVQLEXSBYBBKOBXPLKXYIVPBZROBKLQIBXPQYBZX
RPBJLPQLCZXBPXOPBKBJFBPTLRIAEXSBYBBKFIIFQBOXQB

3. Apply the attack to this ciphertext, which we have seen before:

WLALYWPWLYWPJRLKHWLJRVMWPJRSLKWLWWLYZ

You should find that the attack fails. Why did it fail?

4. Apply the attack to this ciphertext, which we have seen before:

KLYJKPMCLDUFXAESCZFRSSZZADLEESPKZZ.

You should find that the attack fails. Why did it fail? Now you should understand why we do
not recommend using the χ2 statistic for cracking ciphertexts.

madness's book on classical cryptography
unit 19: attacking the caesar cipher with monogram frequencies
last modified 2020-07-05
©2020 madness

Unit 19
Attacking the Caesar cipher with monogram frequencies

Here is an attack on the Caesar cipher that uses only monogram frequencies. The technique is to make a
table of the monogram frequencies from the ciphertext, then to shift that frequency table until it
resembles that of typical English. In this unit, we will use monogram fitness based on the cosine of the
angle between vectors to measure how well the frequencies match.

Let’s work through an example. Consider this ciphertext:

LIKHKDGDQBWKLQJFRQILGHQWLDOWRVDBKHZURWHLWLQFLSKHUWKDWLVE
BVRFKDQJLQJWKHRUGHURIWKHOHWWHUVRIWKHDOSKDEHWWKDWQRWDZRUG
FRXOGEHPDGHRXWLIDQBRQHZLVKHVWRGHFLSKHUWKHVHDQGJHWDWWKHLU
PHDQLQJKHPXVWVXEVWLWXWHWKHIRXUWKOHWWHURIWKHDOSKDEHWQDPHO
BGIRUDDQGVRZLWKWKHRWKHUV

The frequencies of letters in this ciphertext are

A 0 J 0.020 S 0.016
B 0.020 K 0.097 T 0
C 0 L 0.065 U 0.048
D 0.081 M 0 V 0.048
E 0.020 N 0 W 0.141
F 0.020 O 0.028 X 0.024
G 0.040 P 0.016 Y 0
H 0.133 Q 0.060 Z 0.016
I 0.032 R 0.073

Let’s write the table as a 26-dimensional vector:

(0.000, 0.020, 0.000, 0.081, 0.020, 0.020, 0.040, 0.133, 0.032, 0.020, 0.064, 0.065, 0.000,
 0.000, 0.028, 0.016, 0.060, 0.073, 0.016, 0.000, 0.048, 0.048, 0.141, 0.024, 0.000, 0.016)

Here is a graph of those frequencies (in blue), along side typical English frequencies (in yellow):

We can already see that a shift of the blue bars left by three will give a good match. But let’s use the
monogram fitness and see how that works. Our monogram table for English looks like this (yours may
be slightly different) (rounded to three decimal places):

(0.081, 0.015, 0.024, 0.045, 0.123, 0.021, 0.021, 0.064, 0.070, 0.001, 0.009, 0.041, 0.016,
 0.068, 0.077, 0.017, 0.001, 0.057, 0.062, 0.091, 0.029, 0.009, 0.025, 0.002, 0.021, 0.001)

Now, if we shift the frequencies from the ciphertext leftward by one, we get

(0.020, 0.000, 0.081, 0.020, 0.020, 0.040, 0.133, 0.032, 0.020, 0.064, 0.065, 0.000, 0.000,
 0.028, 0.016, 0.060, 0.073, 0.016, 0.000, 0.048, 0.048, 0.141, 0.024, 0.000, 0.016, 0.000)

The cos θ between this vector and the English table is 0.393, indicating a poor fit. We can continue in
this manner, and for each shift we obtain these values for cos θ:

shift cos θ
-

 0 0.493
 1 0.393
 2 0.544
 3 0.970
 4 0.593
 5 0.443
 6 0.485
 7 0.589
 8 0.493

 9 0.512
10 0.547
11 0.452
12 0.434
13 0.478
14 0.648
15 0.580
16 0.584
17 0.550
18 0.693
19 0.569
20 0.443
21 0.435
22 0.608
23 0.499
24 0.444
25 0.600

The best fit (largest cos θ) is for a shift of three. We conclude that the key is 3. To get a feel for what a
good fit looks like, here is a graph of the shifted frequency table compared to typical English:

Programming tasks

1. Write a function or script that implements the attack. Make sure that you shift the table in the
correct direction; generate some ciphertexts and test it to be certain.

Exercises

1. Finish decrypting the ciphertext in the example above.

2. Apply the attack to this ciphertext:

QEBZXBPXOZFMEBOFPKXJBAXCQBOGRIFRPZXBPXOTELXZZLOAFKDQLP
RBQLKFRPRPBAFQTFQEXPEFCQLCQEOBBQLMOLQBZQJBPPXDBPLCJFIF
QXOVPFDKFCFZXKZBTEFIBZXBPXOPTXPQEBCFOPQOBZLOABARPBLCQE
FPPZEBJBLQEBOPRYPQFQRQFLKZFMEBOPXOBHKLTKQLEXSBYBBKRPBA
BXOIFBOFQFPRKHKLTKELTBCCBZQFSBQEBZXBPXOZFMEBOTXPXQQEBQ
FJBYRQFQFPIFHBIVQLEXSBYBBKOBXPLKXYIVPBZROBKLQIBXPQYBZX
RPBJLPQLCZXBPXOPBKBJFBPTLRIAEXSBYBBKFIIFQBOXQB

3. Apply the attack to this ciphertext, which we have seen before:

WLALYWPWLYWPJRLKHWLJRVMWPJRSLKWLWWLYZ

You should find that the attack fails. Why did it fail? When we used the brute-force attack, we
succeeded. From this we learn that using monogram fitness is useful for longer ciphertexts, but
not very reliable for shorter texts. Nevertheless, this attack is necessary if you have a ciphertext
that has been encrypted with both a Caesar cipher and a transposition cipher, which rearranges
the letters of the text and thereby makes it impossible to use tetragram fitness.

4. Apply the attack to this ciphertext, which we have seen before:

KLYJKPMCLDUFXAESCZFRSSZZADLEESPKZZ.

You should find that the attack succeeds. When we used the monogram fitness based on the χ2
statistic, we failed to decrypt this ciphertext.

madness's book on classical cryptography
unit 20: greatest common divisor
last modified 2020-07-22
©2020 madness

Unit 20
Greatest common divisor

The greatest common divisor (gcd) of two integers is the largest integer that divides them both evenly
(without remainder).

One way to find the gcd of two integer is to write out the prime-number factorization of each
and select the largest set of factors that is contained in both. For example,

 84 = 2 × 2 × 3 × 7
360 = 2 × 2 × 2 × 3 × 3 × 5

The largest subset contained in both factorizations is {2, 2, 3}, so the gcd of 84 and 360 is 2 × 2 × 3 =
12.

Another way to find the gcd is with Euclid’s algorithm, which is easy to implement in a script.
Here is how the algorithm works for two integers m and n:

1. while n is not 0

a. set m equal to m modulo n

b. swap m and n

2. once n is 0, output m

The least common multiple (lcm) of two integers is the smallest number that is a multiple of
both of them. We can find the lcm from the prime-number factorizations as well, by selecting the
smallest set of factors that is a superset of each factorizations. For our example of 84 and 360, we see
that we need three 2’s to accommodate the 2’s in 360, two 3’s, one 5 and one 7. So the lcm of 84 and
360 is 2 × 2 × 2 × 3 × 3 × 5 × 7 = 2520. An interesting fact is that

gcd (m, n) × lcm (m, n) = m × n

We say that two numbers are coprime if their gcd is one. In this case, the two numbers have no
factors in common, and neither one evenly divides the other.

Python tips

Python has a built-in limit on the number of levels of recursion. If you are working with large numbers,
and trying to find a gcd, then you could exceed this limit and get an error. (Recursion is when a
function calls itself. When some condition becomes true, the function exits all the way back to the main
control flow.) We recommend that you implement Euclid’s algorithm without recursion.

Python allows variables to hold boolean values. These values are either True or False.
Furthermore, functions can return boolean values. Notice that the following two short code blocks are
equivalent; both return True if the value of x is one and False otherwise.

code block 1:

if x == 1:
return True

else:
return False

code block 2:

return (x == 1)

Reading and references

Wikipedia
en.wikipedia.org/wiki/Greatest_common_divisor
en.wikipedia.org/wiki/Euclidean_algorithm
en.wikipedia.org/wiki/Least_common_multiple

Programming tasks

1. Write a function that calculates the gcd of two integers. Use whatever method you prefer.

2. Write a function that finds the lcm of two integers. Feel free to use your function for the gcd.

3. Write a function that returns a boolean value that indicates whether two integers are coprime.
This can be a very short function.

Exercises

1. Randomly generate a few pairs of positive integers. For each pair, find the gcd and lcm. Verify
that the product of the gcd and lcm equals the product of the pair.

madness's book on classical cryptography
unit 21: modular arithmetic: multiplication and division
last modified 2020-07-04
©2020 madness

Unit 21
Modular arithmetic: multiplication and division

Let’s return to our example of ℤ12 = {0, 1, ..., 11}, and construct a multiplication table. Remember that
what we need to do is find the product of two members of the set, and then find the remainder when we
divide the product by the modulus 12.

 │ 0 1 2 3 4 5 6 7 8 9 10 11
────┼───
 0 │ 0 0 0 0 0 0 0 0 0 0 0 0
 1 │ 0 1 2 3 4 5 6 7 8 9 10 11
 2 │ 0 2 4 6 8 10 0 2 4 6 8 10
 3 │ 0 3 6 9 0 3 6 9 0 3 6 9
 4 │ 0 4 8 0 4 8 0 4 8 0 4 8
 5 │ 0 5 10 3 8 1 6 11 4 9 2 7
 6 │ 0 6 0 6 0 6 0 6 0 6 0 6
 7 │ 0 7 2 9 4 11 6 1 8 3 10 5
 8 │ 0 8 4 0 8 4 0 8 4 0 8 4
 9 │ 0 9 6 3 0 9 6 3 0 9 6 3
 10 │ 0 10 8 6 4 2 0 10 8 6 4 2
 11 │ 0 11 10 9 8 7 6 5 4 3 2 1

That wasn’t so hard. But what about division? Fractions do not exist in ℤ12, so what are we to
do? In the same way that we defined the additive inverse, we must now do the same for multiplication.
The multiplicative inverse of some number x is another number y such that x · y = 1. The multiplicative
identity element is 1. We write “x-1” for the inverse of x, but we do not intend that it should be
interpreted as “1 over x” or “1 divided by x.” From this point of view, division is actually multiplication
by an inverse.

If we look at the multiplication table for ℤ12 we can see, for example, that 5 × 5 = 1, so the
inverse of 5 is 5 itself. But what about the inverse of 3? There is no number y such that 3 · y = 1. In this
case, we are forced to say that 3 does not have an inverse. This means that we cannot divide by three in
ℤ12. But what if we try to do it anyway? Notice that 3 × 3 = 9, and 3 × 7 = 9, and 3 × 11 = 9. Then if we

want to find 9 / 3, we have to face the fact that there are three possible answers. Since the quotient is
not well defined, it cannot exist.

In general, an element x of ℤm has an inverse if and only if gcd (x, m) = 1. This means that if m
is prime, all elements of ℤm are invertible.

To find the inverse of an element in ℤm (or to determine whether it exists), Euclid comes to the
rescue again. His extended Euclidean algorithm for finding the inverse of x in ℤm is presented here:

1. set t = 0, t′ = 1, r = m, r′ = x
2. while r′ is nonzero

a. set q = r / r′ (discard the remainder)
b. set new values of t and t′ to the current values of t′ and t − q · t′ (respectively)
c. set new values of r and r′ to the current values of r′ and r − q · r′ (respectively)

3. if r is nonzero, then x is not invertible; exit
4. if t < 0, add m to t
5. t is the inverse of x

Python tips

Python allows parallel assignment. For example, to set x to 1 and y to old value of x, this one statement
suffices:

x, y = 1, x

This technique should make implementing steps 2b and 2c in Euclid’s extended algorithm easier.

Reading and references

en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Programming tasks

1. Write a function that finds the multiplicative inverse (if it exists) of an integer with a given
modulus. If the inverse does not exist, it should have a way of telling the program that called the
function that it does not; one way is to return the boolean value False.

Exercises

1. Randomly generate some integer pairs such that the first of each pair is smaller than the second.
For each pair find the multiplicative inverse of the first number modulo the second.

madness's book on classical cryptography
unit 22: affine cipher
last modified 2020-08-15
©2020 madness

Unit 22
Affine cipher

The affine cipher extends the Caesar cipher to include the use of modular multiplication. When we treat
the characters of the plaintext {pi} and ciphertext {ci} as integers modulo 26, then encipherment under
the affine cipher is done with this equation:

ci = a pi + b mod 26

Decipherment is accomplished by solving the above equation for pi:

pi = a-1 (ci − b) mod 26

where the key consists of the multiplier a and the shift b. Note that a must invertible, so gcd (a, 26)
must be equal to one.

Another way to handle the affine cipher is to construct a key alphabet and treat the cipher as a
monoalphabetic substitution (which it is). It’s not complicated. Start with ‘A’ and take every ath letter;
then shift (with rollover) so that the letter whose number is b is at the beginning. For example, if a = 3
and b = 5, write down every third letter, starting with ‘A’:

ADGJMPSVYBEHKNQTWZCFILORUX

Then, shift so that the fifth letter (starting from zero) of the normal alphabet is at the beginning:

FILORUXADGJMPSVYBEHKNQTWZC

There are some special cases of the affine cipher:

• a = 1, b = 0: the identity operation

• a = 1: Caesar shift cipher with key = b

• a = 25, b = 25: atbash cipher

• b = 0: this is called the multiplicative cipher

Reading and references

en.wikipedia.org/wiki/Affine_cipher

practicalcryptography.com/ciphers/affine-cipher

crypto.interactive-maths.com/affine-cipher.html

Programming tasks

1. Write a function that verifies a key for the affine cipher and returns a boolean value indicating
whether the key is valid or invalid.

2. Write a function that takes a key for an affine cipher and returns an equivalent alphabet key for
a monoalphabetic substitution. This function should first call the function from the previous
task to verify the key before proceeding.

3. Write a function that enciphers a plaintext with the affine cipher and a given key. Use whatever
method you prefer. You should verify the key before proceeding.

4. Write a function that deciphers a ciphertext with the affine cipher and a given key. Use
whatever method you prefer. You should verify the key before proceeding.

Exercises

1. How large is the key space for the affine cipher? Include only valid keys for which the
multiplier is invertible. Include the identity operation (the key that leaves the plaintext
unchanged under encipherment).

2. Encipher this text with multiplier 11 and shift 9:

An affine transformation is an automorphism of an affine space which preserves both the
dimension of any affine subspaces and the ratios of the lengths of parallel line segments.
Consequently, sets of parallel affine subspaces remain parallel after an affine
transformation. An affine transformation does not necessarily preserve angles between lines
or distances between points, though it does preserve ratios of distances between points lying
on a straight line.

3. Decipher this text with multiplier 15 and shift 3:

TSLCZFRCEFRPECCETNUMDTQCLKCVFRMWTQGFMGLNFBLBDCELBDCTHDMQFQNLQ
NLCEDCQFFQLRQWLYNCDQWNTQNCLDWELYLTNDIFXLVEZWTWCELHETHXLQHYFNN
CELBFLSTRNNCYTUCFPLCCFCELNDBLNTWL

4. If we extend the alphabet with a space character so that it now contains 27 letters, how many
valid keys are there?

madness's book on classical cryptography
unit 23: brute-force attack on the affine cipher
last modified 2020-07-04
©2020 madness

Unit 23
Brute-force attack on the affine cipher

The brute-force attack on the affine cipher tries all possible keys and chooses the deciphered plaintext
with the best textual fitness.

Programming tasks

1. Implement the attack. Use tetragram fitness. Be sure to try only valid keys.

Exercises

1. Break this ciphertext:

HAGDGKDJKQNDFICEIVZOSABBNWIJIDIBWIDIBWSTITIDWTABD
JKPDNIDGDIJDWZTJSYDNKGDJSPKCPSJDIFSIJZDNKGDKVOGNK
PDNWYIDWUIGIYKQNDOGIKBKVYIVDNWGEKPPWJFJIXWIVZGAJW
TKXWPIGGWVQWJGGWDGIKBDNIDZIOTSJIDNJWWNSAJDSAJIDNJ
WWNSAJDSAJDNWUWIDNWJGDIJDWZQWDDKVQJSAQNDNWDKVOGNK
PUIGDSGGWZKTVSDTSJDNWCSAJIQWSTDNWTWIJBWGGCJWUDNWY
KVVSUUSABZFWBSGDDNWYKVVSUUSABZFWBSGDDNWGNKPGWDQJS
AVZSVDNWGNSJWSTDNKGAVCNIJDWZZWGWJDKGBWUKDNQKBBKQI
VDNWGEKPPWJDSSDNWYKBBKSVIKJWIVZNKGUKTWDNWYSXKWGDI
JDNWPJSTWGGSJIVZYIJOIVVNWJWSVQKBBKQIVGKGBW

madness's book on classical cryptography
unit 24: attacking the affine cipher with cribs
last modified 2020-07-22
©2020 madness

Unit 24
Attacking the affine cipher with cribs

If we can match two letters from the ciphertext with two letters from the plaintext, then it is possible to
solve for the multiplier and shift of the affine cipher. If all of the letters in a crib can be found from a
section of the ciphertext with the same multiplier and shift, then we have found a candidate key for the
cipher. This resembles the attack on the Caesar cipher, but whereas the Caesar cipher has only one
parameter, the affine cipher has two.

Let’s run through a short example to see how the algebra works. Suppose our crib is CRIB, and
that we are matching it to the sequence KFIT in the ciphertext. First, we replace the letters with their
numbers, where we begin the alphabet at ‘A’ = 0.

C → 2 K → 10
R → 17 F → 5
I → 8 I → 8
B → 1 T → 19

These give us four equations involving the parameters a and b of the affine cipher’s key:

 2a + b = 10 mod 26
 17a + b = 5 mod 26
 8a + b = 8 mod 26
 a + b = 19 mod 26

Suppose we subtract the first equation from the second to get

 15a = −5 = 21 mod 26

The multiplicative inverse of 15 modulo 26 is 7, so we multiply both sides by 7:

 7 · 15a = 7 · 21 mod 26
 a = 17

Then, from the last of our four original equations, b = 2. If we encipher CRIB with this key, we do
indeed get KFIT, so we have a good candidate for the cipher’s key. Finally, notice that if we had
subtracted the first equation from the third, we would have found

 6a = −2 = 24 mod 26

but we cannot remove the coefficient of a because 6 is not invertible modulo 26.

Programming tasks

1. Write a function or script that attacks a ciphertext encrypted with an affine cipher by using a
crib. Be careful that you only try to remove coefficients that are invertible.

Exercises

1. Try your program on this ciphertext. A good crib is CRIB.

OYFSTGLYYRSBXPTCLLIRSBSLZANYSGYNXXPFYXTONWRTVYRAYLDJRYLQ
OWLBLSOCLSLTTFSQIYLVRTRNSNGFSLUICNTRELNYQSFSVLQRTINTFCOL
VWSRVRFSRGRGFRCLQWLZNJCQZFHLJIZNJCQSOBNYRBWOAFVHONTCLLIF
SQNGOLSIYNOLTOLQCNJQCP

madness's book on classical cryptography
unit 25: attacking the affine cipher with monogram frequencies
last modified 2020-07-05
©2020 madness

Unit 25
Attacking the affine cipher with monogram frequencies

This attack is very fast, but requires a ciphertext that is lengthy enough to do the required statistics. It is
also a necessary attack if we are confronted with a ciphertext that was encrypted with an affine cipher
and a transposition cipher (which changes positions of characters so that tetragram fitness is useless),
since it can break the affine cipher so that we can then break the transposition cipher.

The method of attack begins by tabulating the monogram frequencies in the ciphertext. They are
then shuffled in the same way that the key alphabet is generated in the affine cipher for given multiplier
and shift. The multiplier and shift that give the best match to English frequencies is taken as the
cipher’s key. Armed with the key, we can then decipher the text.

The shuffling of the frequencies can be done by replacing the nth entry in the table with the (an
+ b)th entry (modulo 26), where a and b are the multiplier and shift of the affine cipher.

Programming tasks

1. Implement the attack.

Exercises

1. Use your implementation to break this ciphertext:

ZTYWFFAJYKAXTYLASNYLIKQJSZLWAJYRWJRZTYLYFQLYYWSIZQDLYWO
UAZTSZWZASZAKSYNYJUAZTWZYBZZTASSTQLZ

2. The following ciphertext was encrypted with an affine cipher and a transposition cipher in
which each block of three letters has been reversed. Use your implementation of the attack to
break the affine cipher, then reverse each three-letter block to reveal the plaintext.

MNRVVCMPWHWUZMNJIWKZMPYUZRIPWCCDMRDPZMNYVMMMZKICLYRCMZ
MSOKMZMAYMHBWRUCEPVWDZMVRPMCXHRPWRBM

madness's book on classical cryptography
unit 26: keyword substitution cipher
last modified 2020-10-09
©2020 madness

Unit 26
Keyword substitution cipher

The keyword substitution cipher, also called the keyed substitution cipher, or simple the keyword
cipher, is a monoalphabetic substitution cipher in which the key alphabet is constructed from a
keyword. The keyword is placed at the beginning of the key, its repeated letters are removed, and then
the remainder of English letters are added to the key. The three most common ways of filling the key
are these:

• Add the remaining letters in alphabetical order. For example, if the keyword is AUTOMOBILE,
then the key alphabet is (remember to drop the repeated ‘O’)

AUTOMBILECDFGHJKNPQRSVWXYZ

• Start adding letters from the alphabetically next after the last letter of the keyword. For the
keyword AUTOMOBILE, we start with the next letter after ‘E,’ which is ‘F.’ When we reach
‘Z’ we place the remaining missing letters ‘C’ and ‘D.’

AUTOMBILEFGHJKNPQRSVWXYZCD

• Start adding letters from the next letter after the alphabetically last letter of the keyword. The
keyword AUTOMOBILE has ‘U’ as its alphabetically last letter. So we fill in starting with ‘V.’

AUTOMBILEVWXYZCDFGHJKNPQRS

Here are some other variations. They can be used alone or in combinations.

• Fill in the remaining letters after the keyword in reverse alphabetical order.

• Put the keyword at the end of the key.

• Use a keyword for the plaintext alphabet rather than the ciphertext alphabet.

• Use keywords for both the plaintext and ciphertext alphabets.

Reading and references

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 103-104.

Programming tasks

1. Write a function to generate an alphabet key from a keyword. It should be able to do so in the
three most common ways, and there should be some way to tell it which method to use.

2. Write a function to encipher a plaintext when given a keyword and a key-filling method.

3. Write a function to decipher a ciphertext when given a keyword and a key-filling method.

4. Write a function to generate an alphabet key if the keyword is used in the plaintext alphabet
rather than the ciphertext alphabet.

5. Write a function to generate an alphabet key if keywords are used in both the plaintext and
ciphertext alphabets. Note that you can combine tasks 1, 4, and 5 into one function if you like.
Make new versions of your enciphering and deciphering functions that can handle keywords for
both alphabets.

Exercises

1. Encipher this text with the keyword KNIGHTS. Use the first key-filling method that we
discussed above.

Before Cai was born, Cynyr made the prophesy that his son would have a frozen
heart and be extremely stubborn. He added the prediction that no one would be
able to endure fire or water as well as his son.

2. Decipher this text with the keyword ROUNDTABLE. Use the second key-filling method that we
discussed above.

AVLIDWDPDAVLIDWDPDXBLSBDPQBRGGLAJHVQSLDINVPDQJVSSDPGZRGJ
IDSJNPRAHZGLTDJVSBRVISDNDWDPHJPDOZKRGDRUUVQLIAQKDUSPDQJT
NDRNFILABSQLURIIJSGDRWDSBDDKLSZHZNDQKRLPAXLIDWDPD

3. This ciphertext is an example from Gaines’s book. It uses a keyword for both the plaintext and
ciphertext alphabets. In the plaintext, ‘J’ is used as a space between words. Break it by hand and
reconstruct both alphabets to obtain the two keywords.

ROVLL ABTLD LBCQM PXLBA FBTCT ATCOR LTOLC RHPDT XLYOA
ELBXP HLXBT XXQLD RGLTK XRLGD BKLDP PLOHL YOAEL KOMXB
LHOEL VCRRC RJLTK DTLRC INXPL LLTKX LRCIN XPLVD BLVOR
LPORJ LDJOL FYLIO PORXP LMDEN XELKC TTLVK OLOHH XEXGL
TOLIO QMEOQ CBXLH OELTV OLIXR TBLBC RIXLK XLVDB LDFPX
LTOLB XRGLT KXLBO PATCO RLFYL EXTAE RLQDC PLLBT CPPLC
TLVOA PGLFX LVOET KLDRO TKXEL RCINX PLTOL HCRGL OATLT

KXLNX YLLTK CBLQA BTLFX LTKXL XWMPD RDTCO RLOHL TKXLE
XHXEX RIXLT OLDLI EOORX ELDRG LTKXL XQMKD BCBLO RLDLG
DTXLL MLBLT KXLTV OLIXR TBLKD BLROT LYXTL FXXRL MDCGL

madness's book on classical cryptography
unit 27: dictionary attack on the keyword substitution cipher
last modified 2020-11-27
©2020 madness

Unit 27
Dictionary attack on the keyword substitution cipher

A dictionary attack is an attack in which one tries to decrypt a ciphertext by using a list of possible
keywords.

Python tips

Remember that to split a text and store the pieces in an array, we use the split() function. To read a
list of words that are separated by newline characters (\n), you can do something like this:

words = open("dictionary.txt","r").read().split("\n")

If you are working on a Max or Windows computer, then the ends of lines might be \n\r or \r\n
instead of simply \n. You should experiment to determine what is the correct thing to put inside the
split() function. In addition, to avoid an empty word at the end of the list, you might try keeping only
up to the second to last entry, which in Python is denoted as the −1st entry:

words = open("dictionary.txt","r").read().split("\n")[:-1]

Programming tasks

1. Write a function or script to implement a dictionary attack on a substitution cipher whose key
was generated with a keyword. Remember that there are several ways to fill the key. Use the
word lists that you compiled earlier. Optionally, allow for the use of a custom word list. Use
tetragram fitness of the plaintext to determine if and when you have found the correct keyword.

Exercises

1. Perform a dictionary attack and break this ciphertext. The keyword is a common English word.

UHENTWVVENLCMCAONTAIOWTNETTYBTLIGHUEVWPFSOMYIUHINBNVIT
BYINBXIXIVYBCHOYUHEYHOLEWNIXESTEYBTMBVEWPOFPBSUIALETOF

MBUESIBLYHIAHNOMBUUESHOYVWLLBNVLIFELETTUHECMIGHUTEEMYE
SENEXESUHELETTFILLEVYIUHUHITINUENTEBNVXIUBLREBWUC

madness's book on classical cryptography
unit 28: stochastic hill-climbing attack on monoalphabetic substitution ciphers
last modified 2020-07-24
©2020 madness

Unit 28
Stochastic hill-climbing attack on monoalphabetic substitution
ciphers

This unit describes an attack on the monoalphabetic substitution cipher from Jakobsen’s paper in 1995.
It is called stochastic because it makes random choices as it goes along, and is hill-climbing because it
works to maximize some function. The function that it maximizes is textual fitness, and for us that
means the tetragram fitness that we defined earlier.

The algorithm begins by choosing a key alphabet as the “parent” key and a plaintext is found by
deciphering the ciphertext with it. From the parent, a “child” key is obtained by swapping two
randomly chosen letters in the parent. The ciphertext is deciphered with the child key, and if the fitness
of the resulting plaintext is higher than the parent’s plaintext, then the child becomes the new parent,
and the process repeats. This continues until the fitness does not improve for a few thousand trials.

Here is the algorithm, so you can’t complain that something was unclear:

1. choose a parent key, such as ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. decipher the ciphertext with the parent key to obtain the parent’s plaintext
3. calculate the fitness of the parent’s plaintext
4. set counter to 0
5. while the counter is less than a limit of around 10,000

a. set the child key as a copy of the parent key
b. randomly choose two distinct numbers x and y in 0, ..., 25
c. swap the xth and yth letters in the child key
d. decipher the ciphertext with the child key
e. calculate the fitness of the new plaintext
f. if the fitness of the new plaintext is larger than the fitness of the parent’s plaintext

i. set the parent key as a copy of the child key
ii. set the parent’s plaintext as a copy of the child’s plaintext
iii. set the parent’s fitness equal to the child’s fitness
iv. set the counter back to 0

g. add 1 to the counter
6. output the parent key and/or the parent’s plaintext

Python tips

While you cannot modify characters in a string, you can modify items in a list.

Bad:
myString = "abcdef"
myString[3] = "z"

Good:
myArray = ["a", "b", "c", "d", "e", "f"]
myArray[3] = "z"

Reading and references

Thomas Jakobsen, “A fast method for cryptanalysis of substitution ciphers,” Cryptologia 19:3 (1995)
265-274. DOI: 10.1080/0161-11959188394

Programming tasks

1. Implement the attack.

Exercises

1. Break this ciphertext:

IDSIYUDHJZXIXTOQOXUSVOROMNSRMOREXOESGOMMSVOMNSRSUSDHJS
YSTNIJOUQSTSMKSREMNUDJTNIISRJNIDOUKQLHMNGUXLUINIXINHRG
NCDSTIDSUNQCUHRUZSOIXTSVOMNSRSUSNRHRSSCNUHVSIDSUSGTSIQ
SUUOESIHMVYNSJSTUIHJOIGDZXIXTOQOIDXTUVOKUOIISR

Part III
Periodic polyalphabetic substitution ciphers

madness's book on classical cryptography
unit 29: periodic polyalphabetic substitution cipher
last modified 2020-10-13
©2020 madness

Unit 29
Periodic polyalphabetic substitution cipher

A periodic polyalphabetic substitution cipher is cipher in which there is a set of key alphabets which
are used in cyclic order as a text is enciphered or deciphered. The number of key alphabets is the
period.

Let’s run through an example. Suppose we want to encipher the message

SECRET MEETING TONIGHT PREPARE THE VEGAN PIZZAS

with these five randomly generated key alphabets, which are written under the plaintext alphabet for
convenience:

abcdefghijklmnopqrstuvwxyz
0 GAEUPDOXKYTZJWIMBQVHRCSNLF
1 FXBNKVWQAJLECTMHPOSGIRUYZD
2 ZWCPVIHLFXOJEYNTGRDMKUQABS
3 LNVJIEPMADCQZOTYGXWKBSUHFR
4 SUNXTEKWQZLVRIDJACGFBPOYHM

To make things more clear, we can label the characters of the message by which key alphabet we will
use to encipher each. The first letter ‘S’ is enciphered with the first alphabet to ‘V.’ The second letter
‘E’ in enciphered with the second alphabet to ‘K.’ The third letter becomes ‘C,’ the fourth letter
becomes ‘X,’ the fifth letter becomes ‘T,’ and the sixth letter is enciphered with the first alphabet to an
‘H.’ We cycle through the five key alphabets until we reach the end of the message.

SECRET MEETING TONIGHT PREPARE THE VEGAN PIZZAS
012340 1234012 3401234 0123401 234 01234 012340
VKCXTH CVIFKTH KDWAHMF MOVYSQK MMT CKHLI MASRSV

Python tips

In Python, an array (list) can contain just about anything, including strings or other arrays.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapters XII-XV and XVIII.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, chapter 4 and pages 236-239.

Auguste Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires IX (1883) 5-39 and
161-191, www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf, www.petitcolas.net/kerckhoffs/
crypto_militaire_2.pdf, part III.

Programming tasks

1. Write a function that takes a plaintext and a set of key alphabets and returns a ciphertext. Use
your functions for monoalphabetic substitution if you wish.

2. Write a function that takes a ciphertext and a set of key alphabets and returns a plaintext. Use
your functions for monoalphabetic substitution if you wish.

Exercises

1. Take these three key alphabets and encipher the following text.

LBRUVCJAWZYSHXINOQEPFTGKDM
SLNAXDIGOBKCEYQHTMWJFUVPZR
IFWVBXNGKHZQYOELPCDTJRUSAM

In his book published in eighteen sixty-three, Kasiski
presented a method for finding the period of a polyal-
phabetic substitution cipher. The method uses the
positions of repeated sequences of letters in the
ciphertext.

2. Decipher the following ciphertext with the same key as in the previous exercise.

IYBIDTAXYIWTNQLFCIQHESZISHGLLBPOWROLAXCGSDPGIPQXBCIWWB
UXRWIBXXCVOTGSDCOCEJLFLQWWGVAKXDKCJBVYBWIGPZXWUBBFTGSD
RQOEOVVMBUFOBMBLKIBCBFYTWCBWIGPXBXWKKJAPGCVX

madness's book on classical cryptography
unit 30: finding the period: kasiski examination
last modified 2022-01-13
©2020 madness

Unit 30
Finding the period: Kasiski examination

The Kasiski examination is a method for finding the period of a periodic substitution cipher. It involves
finding repeated sequences of letters in the plaintext. When more than one repeated sequence can be
found, the period is likely to be a common factor (possible the gcd) of the distances between them.

Let’s look at an example. Consider this ciphertext:

THZBAROLASYZFKHFNYCEYXOQMWHXLELXLAUHNPMIAZTLVDWNNHRDOW
SIHUCCMGNTTTCWSIHUCCMHTEEDCBUGMHZBAROLTSONNSHUDWQFZXRP
NABMHTZDPRYHUCMMNTWADUBUKAOCCMUKELRSDREHULXIAYPECDPNZR
OFVTRTWOCCMUKLAWGILYHNLCBRGWYNYCEYXTLVSGUFIDDMEKW

Notice that the sequence ZBAROL occurs twice. The distance from the ‘Z’ of the first occurence to the
‘Z’ of the second is 84 letters. The sequence SIHUCCM also occurs twice, with a distance of 14 letters.
The sequence OCCMUK occures twice, with a distance of 35 letters. The greatest common divisior of
84, 14, and 35 is 7, so the period is likely to be seven.

Reading and references

Friedrich Kasiski, Die Geheimschriften und die Dechiffrir-Kunst, 1863;
digital.onb.ac.at/OnbViewer/viewer.faces?doc=ABO_+Z224431001

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XIV.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter IX, section II.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 207-210.

Programming tasks

1. If you think that it will be possible to write a function that employs this method, go for it.

Exercises

1. If you wrote a script for this method, test it with the example ciphertext.

madness's book on classical cryptography
unit 31: finding the period with the index of coincidence
last modified 2020-10-15
©2020 madness

Unit 31
Finding the period with the index of coincidence

A ciphertext that has a period m is like mixing m different ciphertexts, each enciphered with a different
key. As a result, the chance of picking two characters randomly and obtaining identical letters is
reduced, as compared to an unencrypted English text. Without proving it, we state that the measured
index of coincidence of the entire ciphertext is related to the period in this way:

 IoC = IoCrandom + m (IoCEnglish − IoCrandom)

Solving for the period and using IoCrandom = 1 and IoCEnglish = 1.75 (in the normalization that we use), we
obtain

m=
IoC−1
0.75

In tabular form:

 IoC period

 1.75 1 (monoalphabetic)
 1.38 2
 1.25 3
 1.19 4
 1.15 5
 1.13 6

As we can see, as the period increases, the values of the IoC get closer together. Since these numbers
are approximate and there is a lot of variability in the IoC, we should not rely on this method for
finding the period.

A better way to use the IoC to find the period is to guess a value for the period m and then slice
the ciphertext into m slices and find the IoC of the slices. The nth slice is composed of every mth
character, starting with the nth character. Partitioning the text this way gives us slices that would each be
encrypted with one key alphabet, if we guessed the period correctly. The average of the IoCs of the
slices serves as a good measure of the IoC of the plaintext that you would obtain by deciphering the
ciphertext with the guessed period. If this IoC is not close to the IoC of typical English text, then the

guess is a bad one. By guessing periods until the IoC calculated in this way is close to that of English,
we can find the period, and we are usually correct.

Let’s look at this ciphertext, for example:

BUHMKLRASCKBLRZQQHRZMVVZBZLXWBNHOMKKEBTQWTUEMPLWLBQAGI
UWSFSFVPLHBVPHGXVOHYPMQWSCQAGXEMCHVFWQRJXXRUMLLVFTLTLD
PMPNEIQQPVYYAGLXRBVRRZQCKIOBUHFBAGZEVBBXWBBUHMKLRASCKB
LRZQQHRZMGRJFVQWLBXRUMLLVVXLKHWXEMPLTEMEWIUBVQXLAYLGBA
NQHXDRUEDMGKIFWPRJQPRVPFKRVMCBUHESMEDKBQBFMPKYRWBBBWLX
BBIIKOYLWEBUHRQPRQYJJRUSCAYLGBAVVPFSROCQWOHXEMCHVFWQ

And here is a graph of the IoC averaged over the slices, for periods one through ten. The measured IoC
is in blue and the theoretical values for a period of five is in pink . The peak at ten is due to the fact
that when we take ten slices of the ciphertext, then each slice is half of one of the slices that we took for
period five. We conclude that the period of the cipher is five.

But the astute reader will notice that five is a prime number. What happens if the period is not
prime? Below is a similar graph for a text with a period of 15. Again, the measured IoC is in blue and
the theoretical values are in pink . The secondary peaks at periods 5 and 10 and the tertiary peaks at 3,
6, 9, and 12 are due to the fact that when we take a number of slices that shares a factor with the true
period, then each slice contains some letters that were enciphered with the same key alphabet, i.e., that
are in the same “true” slice. The expected theoretical value at period n when the true period is m is

 IoCtheory = IoCrandom + gcd (n, m) · (IoCEnglish − IoCrandom)

Reading and references

William F. Friedman, The Index of Coincidence and Its Applications in Cryptography, Riverbank
Laboratories Department of Ciphers Publication 22, Geneva, Illinois, 1920,
www.marshallfoundation.org/library/methods-solution-ciphers

William F. Friedman and Lambros D. Callimahos, Military cryptanalytics, Part I, Volume 2, Aegean
Park Press, 1956, reprinted 1985.

M. Mountjoy (1963) The bar statistics, NSA Technical Journal VII (2, 4).

Practical Cryptography:
practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-vigenere-cipher

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 376-380.

Programming tasks

1. Write a function that cuts a ciphertext into a number of slices as described above. If the number
of slices is n, then the first slice contains every nth letter, starting with the first letter of the text;
the second slice contains every nth letter, starting with the second letter of the text; etc.

2. Write a function to find the period of a ciphertext with the method described above. You will
need to decide on an appropriate cut-off, which you can base on the results of the exercise in
Unit 10.

Exercises

1. Use your function to find the period of the example ciphertexts from this unit and the previous
unit.

madness's book on classical cryptography
unit 32: finding the period: twist method
last modified 2020-07-06
©2020 madness

Unit 32
Finding the period: twist method

The twist method was published in 2015 by Barr and Simoson. Let’s see if we can understand it. First,
look at the monogram frequencies of English, sorted in ascending order:

Now let’s look at this ciphertext, which was enciphered with period five:

ZTSCALWAVEXTWAEJSSCASNSVSGSAUQSALEVSUTQJKDMGOACDCWEPLN
LGKETGJPFVEJIHWVYJEUWWSIVWZTDCHABPQSDDFNMYWTCVGJNFMLIH
GQSCLQSCTDCXSGTJYJHAFPQXTUIWBEFCGJCJSGHECGGADPMYWTVSNX
SKXGJRFISSPNEFTTJIKPIFAZDWJSSGEASMHTCQETRGHSGTJYJIHGQS
CLQSCTDCASNAIEACAMMFSOHWSSNGWKHEGQWSTQGJDSULAHFCGWBYPE

ETIURGIIOTGGTCRLWEUEASHGWWTMGHLDHCZWHOOILWIPKGCHKWEXNF
GGCVGVKPTKSFLAUGDTATPQHOOILWIPKZTFGPLWEFMVCTJENTTQVMHH
CXSGTJYJUENXSLKYEJSIGVQDUUXSGTNIVBEJIKPIFPSBENCLWEOEFA
OQOWSRQYFSTQLABAIEACAPHKAIILLAYTEAHEFLAHEAITGOYWZBMOQZ
TSCMVXSCMVNOWW

Here are the monogram frequencies for it:

Notice that it is much flatter than the previous graph. But, now, here is a graph for every fifth letter of
the ciphertext:

The slope of this graph resembles that of English. This is the basic idea behind the twist method: If we
divide the ciphertext into slices so that each slice has been enciphered with the same key alphabet, then
the sorted monogram frequencies of each slice will resemble English.

Now we need to develop this into an algorithm that we can use in a program. Following Barr
and Simoson, we define the signature of a set of of letters (a text) as the sorted list of its monogram
frequencies. The twist of two signatures A = {Ai} and B = {Bi} is defined as

A ◊ B = ∑
i=0

12

(A i−Bi)+∑
i=13

25

(B i−Ai)

Notice what this does: it adds up the amount by which A exceeds B in the lower half and the amount by
which B exceeds A in the upper half of the graph.

To find the period, we try various periods n. For each trial period, we slice the ciphertext into n
slices, where each slice takes every nth letter from the text starting from a different point. For example,
with the sample ciphertext above, if we try a period of five, then we assign letters to slices like this:

ZTSCALWAVEXTWAEJSSCASNSVSGSAUQSALEVSUTQJKDMGOAC...
01234012340123401234012340123401234012340123401...

For each slice, we find its signature. Then, we average the signatures and take the twist of English
monogram frequencies with the average signature. The trial period for which the twist is the greatest is
likely to be the true period of the cipher.

Python tips

Arrays (lists) can be sorted with the sort() function, like this:

myArray = [1, 3, 2]
myArray.sort()

Reading and references

Thomas H. Barr and Andrew J. Simoson, “Twisting the Keyword Length from a Vigenère Cipher,”
Cryptologia 39:4 (2015) 335-341, DOI: 10.1080/01611194.2014.988365

Seongmin Park, Juneyeun Kim, Kookrae Cho, and Dae Hyun Yum, “Finding the key length of a
Vigenère cipher: How to improve the twist algorithm,” Cryptologia 44:3 (2020) 197-204, DOI:
10.1080/01611194.2019.1657202

Programming tasks

1. Write a function to find the signature of a piece of text.

2. Write a function to find the twist between two signatures.

3. Write a function to find the period from a ciphertext using the twist method. Feel free to use the
function that you wrote for slicing a text in the previous unit. You might want to write a separate
function for averaging signatures.

Exercises

1. Use your function to find the period of the example ciphertexts in Units 30 and 31 and in this
unit.

madness's book on classical cryptography
unit 33: vigenère cipher
last modified 2022-01-13
©2020 madness

Unit 33
Vigenère cipher

The Vigenère cipher, which was actually invented by Bellaso, is our simplest and one of the most
constrained periodic polyalphabetic substitution cipher. Essentially it is a periodic Caesar shift cipher.
The key alphabets are shifted versions of the regular alphabet, and the key is the set of shifts, which is
usually expressed as the equivalent letters by a keyword. For example, if we want to use the keyword
SPACE, then the key alphabets are

plaintext: abcdefghijklmnopqrstuvwxyz

0 STUVWXYZABCDEFGHIJKLMNOPQR
1 PQRSTUVWXYZABCDEFGHIJKLMNO
2 ABCDEFGHIJKLMNOPQRSTUVWXYZ
3 CDEFGHIJKLMNOPQRSTUVWXYZAB
4 EFGHIJKLMNOPQRSTUVWXYZABCD

And here is how we might encipher a secret message:

PSST THE UNIVERSE IS REALLY BIG PASS IT ON
0123 401 23401234 01 234012 340 1234 01 23
HHSV XZT UPMNTRUI AH RGEDAY DMY EAUW AI OP

We can also understand the Vigenère cipher in terms of modular arithmetic. If we express the
key as an ordered collection of L shifts {ki} = k0, k1, k2, ..., kL−1, then encipherment of the plaintext {pi}
to a ciphertext {ci} with a key {ki} is done with this equation:

ci = pi + ki mod L mod 26

and decipherment by

pi = ci − ki mod L mod 26

Note that if the period is one, then the Vigenère cipher degenerates to a Caesar cipher.

Some prefer to use a full table of all twenty-six possible ciphertext alphabets. This table is
called a tableau (the plural is tableaux) or tabula recta (“right table” or maybe “square table”). The
tableau for the Vigenère cipher is this:

 key plaintext alphabet
abcdefghijklmnopqrstuvwxyz

 A ABCDEFGHIJKLMNOPQRSTUVWXYZ
 B BCDEFGHIJKLMNOPQRSTUVWXYZA
 C CDEFGHIJKLMNOPQRSTUVWXYZAB
 D DEFGHIJKLMNOPQRSTUVWXYZABC
 E EFGHIJKLMNOPQRSTUVWXYZABCD
 F FGHIJKLMNOPQRSTUVWXYZABCDE
 G GHIJKLMNOPQRSTUVWXYZABCDEF
 H HIJKLMNOPQRSTUVWXYZABCDEFG
 I IJKLMNOPQRSTUVWXYZABCDEFGH
 J JKLMNOPQRSTUVWXYZABCDEFGHI
 K KLMNOPQRSTUVWXYZABCDEFGHIJ
 L LMNOPQRSTUVWXYZABCDEFGHIJK
 M MNOPQRSTUVWXYZABCDEFGHIJKL
 N NOPQRSTUVWXYZABCDEFGHIJKLM
 O OPQRSTUVWXYZABCDEFGHIJKLMN
 P PQRSTUVWXYZABCDEFGHIJKLMNO
 Q QRSTUVWXYZABCDEFGHIJKLMNOP
 R RSTUVWXYZABCDEFGHIJKLMNOPQ
 S STUVWXYZABCDEFGHIJKLMNOPQR
 T TUVWXYZABCDEFGHIJKLMNOPQRS
 U UVWXYZABCDEFGHIJKLMNOPQRST
 V VWXYZABCDEFGHIJKLMNOPQRSTU
 W WXYZABCDEFGHIJKLMNOPQRSTUV
 X XYZABCDEFGHIJKLMNOPQRSTUVW
 Y YZABCDEFGHIJKLMNOPQRSTUVWX
 Z ZABCDEFGHIJKLMNOPQRSTUVWXY

In the tableau we have highlighted the encipherment of the first letter of our example message.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapters XII and XV.

Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586,
HDL: 2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/
bpt6k94009991

Wikipedia: en.wikipedia.org/wiki/Vigenère_cipher

Practical Cryptography: practicalcryptography.com/ciphers/vigenere-gronsfeld-and-autokey-cipher

Crypto Corner: crypto.interactive-maths.com/vigenegravere-cipher.html

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 207-211.

Giovan Battista Bellaso, La Cifra del Sig. Giouan Battista Belaso [sic], 1553.

Paolo Bonavoglia, “Trithemius, Bellaso, Vigenère: Origins of the Polyalphabetic Ciphers,” Proceedings
of the 3rd International Conference on Historical Cryptology, 2020, ep.liu.se/ecp/171/007/
ecp2020_171_007.pdf, DOI: 10.3384/ecp2020171007

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939;
chapter VI, sections I-III; chapter XI, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 148-150 and 240-242.

Programming tasks

1. Write a function that enciphers a text with the Vigenère cipher and a given keyword. Feel free to
use your function that enciphers with the Caesar cipher, or to use the equation, or to use the
tableau.

2. Write a function that deciphers a text with the Vigenère cipher and a given keyword. Feel free to
use your function that deciphers with the Caesar cipher, or to use the equation, or to use the
tableau.

Exercises

1. Encipher this text with the keyword PACMAN.

DOOT DOOT DOOT DOO DOO DOO DOOT DOOT DOOT DOO DOO DOO
DOOT DOOT DOO DOO DOO DOO DEET DEET DEET DEET DEET DEET
DEE WOCKA WOCKA WOCKA WOCKA EEEEEEEOOOOP GAME OVER

2. Decipher this text with the keyword VIGENERE.

OPKZVKVRZZKGVTYIMEGWSMIWOLKWPVZFZLHCTMFZVVHEGXZWOIHIYPR
WJQTJVJKIZVLMSXPXCZKINRUMOZKQNMEIYCTFESBIICTXVPKLZUOHRM
XLOMKRUYEHMMJWVXJVZXAXNXZSIMGVAIUMOBNIAMTOIISIYITLDNLVR
MEHZKNMSJIEWTKAUMTLDALVRRTLAWXXUIZRYMIMCLVVVJRIPMGLZZ

madness's book on classical cryptography
unit 34: brute-force attack on the vigenère cipher
last modified 2020-07-07
©2020 madness

Unit 34
Brute-force attack on the Vigenère cipher

To do a brute-force attack on the Vigenère cipher, we need to try all one-letter keywords, then all two-
letter keywords, etc., until we find an acceptable plaintext.

Python tips

The product() function from the itertools module can generate all possible tuples containing items
from a set. For example, this block of code will create a list of all possible three-letter combinations:

from itertools import product
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
combos = list(product(letters,repeat=3))

The length of the combinations (3, in the example) can be replaced with a variable.

Programming tasks

1. Implement a brute-force attack on the Vigenère cipher. Use tetragram fitness to decide whether
you have found the correct plaintext.

Exercises

1. Use your implementation to break this ciphertext from the 2015 British National Cipher
Challenge:

WLHJLVVXLXHQLRRYUPLXWPHEXGWMRRZMOPEIWLHPRGDXLSQSIEVEII
KSXWHMQXKIXOVIFXRVRJEIUPLRLXLWDQLRRVVXRTRZHVRRWLHVDXOM
QIVFXXBSXRHZHVNRRABSXQLKKXJIWPXGNCDRGJLRGWRQHSQILRWIUI
VXLRJLLHLRJXKIUIDXWLHZHVBPHEVXBSXALPOMQGRRYIQMHRFIWLHV
HMFLVHROWSUMICRYWENISSVWHWVMRRRJLXKSZQXGKARYOHWLDXEIZS
UXKXRCRYGSLLHEUEEMGSIJLZHLXRGVHHWLRYVEQHIVDRFWIVRQRYUJ
UIQGKJUMHRGWSIULDTVXKIEVLXLWKARYOHSEBQRVHSUQDCEIWLHCFE
QRRXDJISUHWSLARRGIULRAWLHCIIHPDFRYWXKEWTHVKESWBSXWKSXP

GEVOWLHQLJBSXADRWXRSXXEMGCRYUWRGDPOIGJUMHRGWWLHROIDZHX
KIPSQIBMQYQQDVNIGXUIDWXVBFLPOWLROSFOHVDXWLHJDVHRGSIXKI
SPDXISUQLRIVLIGVLGKWWVDWVILALPOPHEYIWLHHHXDMOWLROSFOHV
BSXALPOJLRGXKINIBMQHRRRXWVBXRHRYEPHGUSVWPILXZMOPQSWARV
NEQHRYUPLXWPHKDQHALPOIQHEIISUILXKEVIYIQTUSSIUPBFHKXR

2. Now try another ciphertext from the BNCC (2002). This one has a slightly longer key, but it
may take a lot longer to find it. The time it takes grows exponentially with the length of the key.

BPPOFDATNWBDLJZOIACTQJJXTJZOTSIUQTPZLPZAJDQUUAXUBIBTFM
AVDMUTIUUIDOMQFGPGZPRNFDBPPQTOCTEBIQDBXCFANUTMNMBFDQBX
KPZKFDVJZOUTMFZOMUAIQVDDGQFQPZMOSQOQWONMIMTGANNKUBEBFD
KEMAZACDMVTQMJTIWQUPHMERZPYAPGBIMUQFWOFWBZIEPZFEAJZTPZ
LPZIOPAVSOFEBZACTTWVXLNQMUYMUTMSQIUZWPZIXQMLAVXQLOQAEM
GQXMBEMDAUFMTPZMBEQGQISFPFYIUQZJMTJEAIMTMIMTMGJZNMMUNM
JMQQUIWVXLCQUPEBVZNPDBVZIUQQGMABDMTGTUANBZIUFIDWWGZMSH
MTUEFDMUASOAKLADFDIMMVUQZOAZQQZIMXTPZPBIMUOIFMEOQHMZJZ
BIQDJOQOUBZANUTMTFWDWWGOPFYQDMTTUPBHMTFWSQLIQZFOPFYQTF
ZZUATGKIMXMQITMVUPQWQZTUWORWSFPFOCSUWVEUJZLBZLXUBIEWNM
VZRITOQOMBJZOBZLSMBIQZQXMBEQOSIQBTJOIUUWOEQOFPFYWEQZOI
WSXLJYAVDMZACXUTMMOSQMPRKPGZTQBIQXMQITGZFUVTGKIMBSMVTM
KUUWOUAOQKFEABDQMKUVFCBXIOPQIAXFFPBFIMXCOBTFMABZBOQATM
DPULFPQXUTMNMBNTFFWTMBJENZKWVDKVDQPEQUKKPZKFDVJZOQDWGN
ICNIHQAEQDJOMBZLZACXUTMNMBNTFFWTMBJENZYGNMAUQZTZMFPNPD
KVDZFZKZMABSMOFTFYIOUINECSQPFRMMFCOMJMQBPPQTOCTEBFDUTI
QUTGPGJVFITTQTRIJFPGGTTQZWMVUUUVEBPRKPGZTQMOPMBHWVDBPM
ZSUDFMBBZIHDMFYMOFNBHWVDICXMUAPJYQUDCTFEFGVEQZTFIOPWOQ
IOABIQZBZLUTIUACSYMFFQOSEJXTJZLFQLCQIQXMBECSQNPDCTNWUT
XMQITQZFBTZUVUTMVECBXNBEPJAVZACSEMT

madness's book on classical cryptography
unit 35: attacking the vigenère cipher with cribs
last modified 2020-07-07
©2020 madness

Unit 35
Attacking the Vigenère cipher with cribs

Attacking the Vigenère cipher with cribs is not as easy as it is for the Caesar and affine ciphers. To use
a crib, we subtract the crib from the ciphertext at some position, thus revealing a segment of what
might be the key. If the crib is sufficiently long and the revealed segment shows some repetition, then
we have a good candidate for the keyword.

Exercises

We will not ask you to program the attack, since it may be unnecessarily complicated.

1. Break this ciphertext with the crib NATIONALSECURITY.

JGVROAEAQNFRFEZGUFQAEAQNNOSPUWRVWYLYGNPBSAJKSZSRZYTAZF
OYLKNHHTZZCVRZOCDFWVGECARPYHEQXGCGVNPSTLLWWZEQNGKSLXVE
EXSQWFEEDLAJQSRFUEGTSPKACYGDAVAHZKSGOEMDQWRUEOOCRQVNZO
FEAZIEZGSCLOYSIENQDEZGFGRFRGXEEQMPFVPERPPJVYSRRMDQWVQG
EZGLVGOQXQFGKENDCNQHSEAPEFXRGWKLYDNNWRRBJRLEVHRFOXHCNL
WHLLUEPXRPVUNBZDPFUEYHCEJQNVFCZEOUALCLLKOAVWTLJJBXRYSN
IFWSLFFIAWECFCTVRNLDQFSLCTSNSUDSDZWTQRWYAVSRQCCQRTRGEX
SKLFHRGAEEF

madness's book on classical cryptography
unit 36: dictionary attack on the vigenère cipher
last modified 2020-10-03
©2020 madness

Unit 36
Dictionary attack on the Vigenère cipher

If we have reason to believe that the keyword used to encipher a particular ciphertext is an actual
English word, then we can perform a dictionary attack. Of course, the keyword might be a name, so we
could use a list of known names and previous keywords as our dictionary.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 112-116.

Programming tasks

1. Implement the attack. Use tetragram fitness to determine when you have found the correct
plaintext.

Exercises

1. Break this ciphertext. The keyword is a common English word.

ARVYIMZVGVQHFXJJWBFGGVHPSVFJRHOHGEFXYEPYMLOLKJXEWFNFAB
FKERQISMIEEZSMPJXMZIPRXBGRCCWXUYTZXRSKGEGRLLGWSKEITXSO
WVPDIGLGQEXKSGVFVASWGOTHKIFKLXSKGEGRKQCJWBNIQEPBFIGRZX
KHTFTIARIVJYGVVJEGVEVKIFHXUKSVAVELQOWRVVRVJCRKMHFYUVHM
GWGTYKWHKXMMSPEFQFMRKTEMASPJXAWPCKILLENCIZSXKFRLARFZGT
LIVYIGKEORRBHYNRXXVEPUAXSOGEIWSGTPTMGKTRTAQWVRRWSVFKLX
FEVZSGSPKEWMAXWKIHXWVRRWSVFJEGVXGTLGGPQXCASHKJWNWHUVZX
JENPITJWCXSTKETVWNDXPZWMDEUKAXWORLFEAGNPHBKGQLVTYIFKIV
ZGQDTTFMGJJKGQWJMGYXJRXVJCRKSZJERYMVSTRISTULCEHIJSOZWX
VXQXMOWXJVTNTPKTEGGTRFVMMRKKCMGAGZKAARQEEKWZKJIWKXCEHT
JHVYIYABORCGGXDVEEDXJRXWAJHZGNDXVYIMSMPKIWHETKSYLLGJXT
FHCIHBKEJZKADCKEIYXMEZIGLENXSKAXJDXASXUVGNJMVPIQHITKWB
VIPKMYAIFRWTHVQSPXEPQEKTYSKEJTUXVYIUAKIVWMECUKIKQXJFWX

WBRVVMKWCPMLOLAKLXFWCKLHMKJKEGQGQDTTFCQIKHNITEQXFXCXIG
UCYFYEVAKCPBFKNPYLWXJRXISVVZGNDETRPZGVKKLFLSRISMWGVKLX
AVFRXT

madness's book on classical cryptography
unit 37: hill-climbing attack on the vigenère cipher
last modified 2020-09-20
©2020 madness

Unit 37
Hill-climbing attack on the Vigenère cipher

In this attack, we first find the period using the method described in Unit 31 or 32. Then we start with a
key that is all ‘A’s. We start with the first letter of the key and replace it with each of the letters of the
alphabet. The choice that gives the best textual fitness for the deciphered plaintext is kept. Then with
the new first letter in place, we move to the second letter of the key and do the same to it. We continue
until all letters of the key have undergone this process. Then we repeat again from the first. We
continue in this way until the fitness can no longer be improved. This attack is very reliable, even for
shorter ciphertexts.

The algorithm:

1. find the period m
2. set the key as m copies of the letter ‘A’
3. set the current fitness to the fitness of the undeciphered ciphertext
4. set a flag equal to FALSE
5. while the flag equals FALSE

a. set the old fitness equal to the current fitness
b. for each position i in the key (i from 0 to m−1)

i. set maximum fitness equal to current fitness
ii. for each letter x in the alphabet

- set the ith letter in the key equal to x
- decipher the text with the key
- calculate the fitness of the new plaintext
- if the new fitness is greater than the maximum fitness

· set the maximum fitness equal to the new fitness
· set the best letter equal to x

iii. set the ith letter of the key to the best letter
iv. set the current fitness to the maximum fitness

c. if current fitness equals old fitness
i. set the flag equal to TRUE

6. output the key

Reading and references

Practical Cryptography,
practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-vigenere-cipher-part-2

Programming tasks

1. Implement the attack. Use tetragram fitness.

Exercises

1. Break this ciphertext.

HVSWYTMSBBDIYGKDIJSWNJVCWITWDMTIHSCIJHVFIRFSTCCMOKTNHW
RTJHVJAVBUYWFTHMTBSM

2. This ciphertext was encrypted with two Vigenère ciphers. The order in which they were applied
is irrelevant. The result looks like it was enciphered with a single long key. The period is the
least common multiple of the lengths of the two keywords.

a. Find the period.

b. Use the hill-climbing attack to find the plaintext. At the same time, you will find the
combined key that looks like gibberish.

c. Use the hill-climbing attack to “break” the key that you found in part (b), and recover the
two keywords for the two Vigenère ciphers. It may be helpful to know that the lengths of the
keywords are factors of the overall period.

d. Now that you know the two keywords, decipher the text with two Vigenère ciphers.

e. Repeat part (d) with the order of the two Vigenère ciphers reversed. Verify that the resulting
plaintext is the same.

KBLFZROYITGKACGXWGSWSYOKTSYMRQZEPCZSRLAOWXUYRHVMTEFIQY
ZNVGULHCBZVBOKCJWVLKDCMNEXIYFNZLWFLTJBQFCUBFTEDBCXZDLZ
IMJFLAFSQZROCMNUKISZGOWOBWZLGVIIICTXMOZXCFRHKCWRZSPYAX
LJOIVPMAOLVRNUBFXEBIBWOGZGCIYZLJKHGLWYQWCRXHRUHAHQMFOB
SUFGQKBMCOCUNFQFERDRQLRDMXLRCTFQXEPLNHCYACOHJFBEDDERTI
JDOBUOLLNERICAMBSDVINVIZJHUJBRTGKAVXOOCHTXMUWGSOIIBXLR
GAZAVNCJMBOYRYJXXFBTMDD

madness's book on classical cryptography
unit 38: attacking the vigenère cipher as a periodic caesar cipher
last modified 2020-08-12
©2020 madness

Unit 38
Attacking the Vigenère cipher as a periodic Caesar cipher

Since the Vigenère cipher is a periodic Caesar cipher, we can use the technique of Unit 19 to break it.
First, we find the period m with the index of coincidence or the twist method. Then we cut the
ciphertext into m slices, where the nth slice includes every mth character of the text, starting with the nth.
Each slice contains characters that were enciphered with one Caesar cipher. So for each slice we can
find the shift using the technique that we used to break the Caesar cipher and convert that shift into one
letter of the Vigenère’s keyword.

Reading and references

Practical Cryptography,
practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-vigenere-cipher

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 210-213.

Programming tasks

1. Implement the attack.

Exercises

1. Break this ciphertext with the attack.

BNAGGUTAGGOTGNTALTNTVEWFZSMARGSGWGNWKTBTWEGQGQGWBTWAME
KTNBZKEHZRRGGMYOFXAFZZTVNTQFIAIGNTQHWTZEKKVCRSWUMSUJXQ
SGDEQAZGWMFVSBZVRDLMAJSGABYLHBUKOHZYJAAWCKLAIGYGFMBTWZ
MGYERURYKTOROFTJBZLEMNEWTZUGKIIFYWWAVTUXQJXGMMZEFHBROK
AWHRVAIIKCGWJTLAQFXAZPGLJHUGNWLBNXLHVYEZHXRISGSRKHFMGU
YXBUKJEWIKUTVZKFWGBAJEQSKTNBYUNXKNTTKMNQQHCENWTZGCSESR
JGNBGNALUBXFBVTOVHVGHWEQRBWPPNZALIJGZNVQXWWUVRDBWAHGMB

YKKPIFNWWCCUFMPRYZHZRYWXUFOEGWGGDHVROFUMVTYTTBTWTPHTVK
MQSAETVUFVIFZSPILYDHWXOFZNBXSAWZK

madness's book on classical cryptography
unit 39: gronsfeld cipher
last modified 2022-01-13
©2020 madness

Unit 39 (optional)
Gronsfeld cipher

The Gronsfeld cipher is the same as the Vigenère, except that the key is a string of digits rather than
letters. Because the key is made from digits, the largest shift is nine.

The attacks that we developed for the Vigenère cipher also work for Gronsfeld, except for the
dictionary attack. Notice that they only needs to try shifts zero through nine for each digit of the key,
rather than run over 26 letters.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 117-118.

Practical Cryptography: practicalcryptography.com/ciphers/vigenere-gronsfeld-and-autokey-cipher

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 213-214.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter VIII, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, chapter 4 and pages 245-46.

Programming tasks

1. Write a function to encipher a plaintext with the Gronsfeld cipher and a given key. Feel free to
simply make a wrapper around your function for the Vigenère cipher.

2. Write a function to decipher a plaintext with the Gronsfeld cipher and a given key. Feel free to
simply make a wrapper around your function for the Vigenère cipher.

3. Write a function or script to brute-force a ciphertext enciphered with Gronsfeld. Feel free to
copy your work for the Vigenère and make the appropriate changes.

4. Make a copy of your hill-climbing attack on the Vigenère and modify it for Gronsfeld.

5. Make a copy of your attack on the Vigenère as a periodic Caesar cipher and modify it for
Gronsfeld.

Exercises

1. Decipher this ciphertext with key 78345024.

VCWHFMPIKASSYOWXPADCTNGXDWZLDTJIUQWMXTKQLBRHTIVLLTOMXM
WVRGIMJMAPVZGJNECWVTGMJRCRKIIIFRFAOIWRJEFALNHEWWJSRVRA
XIVAOMQRTNGGHVFEQLQYYXRAJRVSHKFSZNVCLBZLTWQYSLKEAEVLVC
JLYTJIVTGQFNVSOIYIMAFWVUXGMBNSVLLRMIO

2. Brute-force this ciphertext.

TNMDFHBUXUYQLOXBWWLDXMTDYQRMJRMTDUIVFXNSKFPYQPSJMTALXC
KFARKXYYQLXCYFRNMCMTADFAKUJAMFHDQHIKLJWSTBAFQTJQVBQHWM
HYQPSPPYRZYXZFHDMJABJZYQPXOVWNZYBHAJNJAVZPOFWKXCLWWDMR
JMRUYQLANYDCOTDNMCYJWLBBAMNMJJYXXINCAJAPXRAINHYQPXUPYC
SJVVWNIZCVKCOJPVTMATCYJJABQPHQAMNYJRMTDUIBWJJRBRSQRVKC
OJXAMNYYQPSPZNBHBCOJALNLHSWVYFLQUYJYLFCOTFAMNYJRLSCLWN
KXXMZUSBJZNXMXUBRKLWJAYQLRXTJWANWDMRJMROFMHGJUIXUJMAMN
AWDLBJF

3. Break this ciphertext however you please.

CVPJIWAGLSMGXWVLNLKXAQSEYNHBRHCYXHXHFORSXWKVMFROCJHPTC
HAURFTRGNWUOUKKJXHESZHAGGISZRJJRLDGOUKDNHKWXGAOWILBGWH
NYVYGFTWKSXRHASJFICUMJZWNTQIHNDWFJUNFRCHUESIKACGIHGOBC
QDLKUVCQPTRLLGVPNKVFJHRJOVCJHPFXWHKQOUVRBKWITTWQCWHFYQ
XVEEJTGNEUIJJDBERMRAQRUWIHHBRVVOUVRWGQTXOQYQZEWCKNTHIX
ZKNQSPTYLCKRNYNDCJDSSUWQWULJJEJENTMKEACQDNTJAGSRTGFQQI
CTSPDPLSRGJJKQSYZKNORRJGGECQCJJRYRRSNZLXPSAWZLNUDSBKOU
CVALGLWUWIYYUNCFTNUQJTBAIBHAUDRNKV

4. Break this ciphertext.

NQRTSGRRTSGFQHCWYWSNBFLPWPTZIRMLRSDTNWXLMGXRNQJVAEVYGS
WVYKILISHXOOFWLEZGOECSGHVRQJVFUBUHXEZBKSWIXYIRGSDYGPYB
VAVXWVAQLKXAEFBXOUWPGGZJJSRALDVDMSDRDAVXIEHJGYNLJUXHML
DXENNUWTPJDXEATPILMYWYCMXDRDATPIFZJQGHJJDRSISGXHMSKIAB
JVSMMWDHIAMHWAVIWLEVKHILQSJVABMHVSQHNLEEJQXTWQRSKNTUWO
UJSERAQHC

madness's book on classical cryptography
unit 40: beaufort cipher
last modified 2022-01-13
©2020 madness

Unit 40
Beaufort cipher

The Beaufort cipher is a periodic polyalphabetic substitution cipher in which the key alphabets are
shifted and reversed versions of the regular alphabet. Encipherment and decipherment are the same
operation. The key is series of shifts, which is typically represented as a keyword. Each letter of the
keyword gives the first letter of the key alphabet that it represents.

For example, let’s encipher a short message with the key BEAU. The key alphabets are written
here under the plaintext alphabet:

plaintext: abcdefghijklmnopqrstuvwxyz

0 BAZYXWVUTSRQPONMLKJIHGFEDC
1 EDCBAZYXWVUTSRQPONMLKJIHGF
2 AZYXWVUTSRQPONMLKJIHGFEDCB
3 UTSRQPONMLKJIHGFEDCBAZYXWV

Here we have labeled each letter of the text with the key alphabet that is used to encipher it:

HARRY SAYS BEAUFORT CIPHERS ARE BEAUTIFUL AND STRONG
01230 1230 12301230 1230123 012 301230123 012 301230
UEJDD MAWJ DWUHZMDI CSFUAJC BNW TXEGBTZGJ BRX CINMHV

We can also understand the Beaufort cipher in terms of modular arithmetic. If we express the
key as an ordered collection of L shifts {ki} = k0, k1, k2, ..., kL−1, then encipherment of the plaintext {pi}
to a ciphertext {ci} with a key {ki} is done with this equation:

ci = ki mod L − pi mod 26

and decipherment by

pi = ki mod L − ci mod 26

Notice that the two equations are the same, but with p and c exchanged. This means that encipherment
and decipherment are the same process; a cipher with this property is a reciprocal cipher.

Here’s a fun fact: The Beaufort cipher is the same as a Vigenère followed by an atbash cipher.
Try it and see. The key for the Vigenère in this case is the Beaufort’s key enciphered by the atbash. We
can reverse the order of the atbash and Vigenère, so long as we also adjust the key.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 121-125.

Wikipedia, en.wikipedia.org/wiki/Beaufort_cipher

Practical Cryptography, practicalcryptography.com/ciphers/beaufort-cipher

Crypto Corner, crypto.interactive-maths.com/other-examples.html

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 214-216.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter XI, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 202-203 and 240-242.

Programming tasks

1. Construct the tableau for the Beaufort cipher.

2. Write a function to encipher a text with the Beaufort cipher and a given keyword.

3. Write a function to decipher a text with the Beaufort cipher and a given keyword.

4. Make a modified copy of your script for the Vigenère cipher that can perform a brute-force
attack on a ciphertext encrypted with Beaufort.

5. Make a modified copy of your script for the Vigenère cipher that can perform a dictionary
attack on a ciphertext encrypted with Beaufort.

6. Make a modified copy of your script for the Vigenère cipher that can perform the hill-climbing
attack on a ciphertext encrypted with Beaufort.

7. Make a modified copy of your script for the Vigenère cipher that can attack a ciphertext
encrypted with Beaufort by finding the individual shifts by matching monogram frequencies of
slices of the text with frequencies from English.

8. If we encipher a text with a Beaufort cipher using the key BEAUFORT, then what must the key
be to get the same ciphertext with a Vigenère followed by an atbash cipher? What must the key
be if the atbash is done first?

Exercises

1. Decipher this ciphertext with key HUSBAND.

ZBKJAUMNBLHNFIDDABPCFHSIOMRSDRMXXUWHBSJSAXWQGBNFQSGAJW
VLZGFNVNXTGPWMWKNHOPGVKGQKOENQOGNBEFYDNEFWSZQJKIHCZXHE
FNUWDPOXPFQBCEKFFZLCEWITBAUGBNBDJTONNGVPPKKIUZUBOKSAXH
HOTUGCTABUMZAONKJHWJONKJIZHDJHWSQZEMFITJRZHPJMIKAQAHJW
PNHPTNHYHIKQSJLONSITJVPSEOIFADDOYHGZQMMUHIJWFBNLJMOWEW
IZRDGFXMWPONOKMIKAQKKXNJBNZXJV

2. Brute-force this ciphertext.

QEPHSWKMTGEWHMMGACOEJAEUERWXAJGWNPXMWTMFYLBAYKMWHGTSJS
FYPKLHHAMBRMGQNOGSFSCDKJAAAFBNELTKRUDEJZWYYTABLMKRHONW
ALOOQNAXMBASZXMYYTZWEEKPPMAKTARQGZEPKLHHAAFBIOAHLAESLW
BGLSNHEZHLAEENPPWHKMAWECKXAXAMNBJKJSFYMNZHLAIDTWORAFBJ
OYGHEHKRUZXWQWJQKPSLSERELANOJWBWVKRXGGIOTVMNMWWNMYJKSA
RQGZLTOSMYLTWXWFAFONSZWISBAGPXBWBTTCFQFOSZONSFSCAQGHIT
ORWXAJKZSFBOUMWHZSFJMHKNZEJKTCDEGAWNMDWNQJOCMNZSFIABAT
EKIOMAFBZBWNMWNMKLZXWBAABQVOJWBGVYRWBEPKSWOLAFBWAPWQWA
HTCWXWFAFONOUXCDQIMAHAKYLENYPLONTSRXEZOOLTSLSZNWCKSBAI
SMHBQNMSMBEPDNSFCSDTWZQLBAFORHGAVBQOPAPKDWBEHOTCALWDPS
FYSFLMZXWALJOAHSRXGAHLQXKCAHTCIRMQUSFYLOQLHAILEHAQVNLT
ORSSCYEKNZWHLWULLSGAHEYWZLMAAASMIEQNSMSQEN

3. Break this ciphertext with a dictionary attack.

WWOQTJIVANTKVMCOEILZMBYIGISXAZHDITZIEQARODBLNMKTXFECYS
JJVTQHOTILGSCMTFDVBAVMKTCGIJTXJRASNVOWTAWESFQVWVCRFDVE
RHWSMGFJVFAUAGBWHPVQXFLKTXJTKKABVKVMAISHACLYSWJDDOIFDH
YKUWBJLGSJENJUXMCDLKJCGSKVZTLDOIFDHERFDSMMNUAAZZFVMDCS
XYQBDHYKHPVFALWXXAUAOUZNTKJEATVFAICXZWUCXIJJFQXTNOBHQW
WIYQKHGKLTFKYNUAAFKAQAZLGSSMTCENYQDEJETCSLTXJFKKAVEKUC
GFQUEADHISTKWMRKUHVWVDCMMWIWIMMLAYSJTGZLGSSERKISUEATOX
TJWWMRUWVAQVHHINJIJFQBSZIELSZINSWLIBFD

4. Break this ciphertext with the hill-climbing attack.

ZDJPPAIENXVBYODKGKPZNZKTDIGZUDUMSIKZCUYWNGZAXNGZVMZCEH
LMXSODCWBWZYSMQZAWTTZIKVSQJWTJDFB

5. Break this ciphertext with the attack that matches monogram frequencies.

LTTFHWGKAFAASOUXHJRDSOZCNCWPRDJYSULDAGHGWZLKEKGKARKJHV
UXLZMVLQKKFEXJTHCJKOMVHXYTOBKGLXURWHMALXYFEQXJZVOJONPR
GVYTZDRRSBUELOEEIHYDSEWEQOLCSGTTKXYKICEZSKZKFEYDYKOQZG
AMXXYCBTMNDBJDOVQAYGPEATSNSGQGAAAZWKPRLZMOLQCRZAAPEKQC
QHTGLNOTSOQANWOYOOWFHWUXZAAODWKGQOWEFXOWGPEEIAAISPWDYO
RZUZRGXBWOSWUZPHUILHPCHOLGPOQYLEYDKVWESAJDOWQVHWJVEQLJ
XBKWNOXNJGJMFTLKDBWIENTOHRAGOEXJTKPGBBGVEKPRLDIDUEUXMC
WYPOKQDTRKDCBQZUQVLBZKMHWELXYKQOWDYSOQHEMNDPYDKVEEIJOT
PHGZXBYXPAAVXURHHZAXWAPRLDMDGOUXZAAZDVJCFBNDXCVKBETTRV
JGBZRLLSOTPTNFXTUXMHSXTMRGNQQFZALXKUYYXBUELO

madness's book on classical cryptography
unit 41: variant beaufort cipher
last modified 2020-10-13
©2020 madness

Unit 41
Variant Beaufort cipher

The variant Beaufort cipher (also sometimes called the German Beaufort cipher, or simply the variant
cipher) is the inverse of the Vigenère cipher. Encipherment with variant Beaufort is the same process as
decipherment with Vigenère. In fact, by modifying the key, a variant Beaufort cipher can be converted
to a Vigenère. The modification to the key is to apply an atbash and a Caesar shift of one.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 121-125.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 202-203 and 240-242.

Programming tasks

1. Construct the tableau for the variant Beaufort cipher.

2. Write a function to encipher a text with the variant Beaufort cipher and a given keyword. Feel
free to merely make a wrapper around your Vigenère decipherment function.

3. Write a function to decipher a text with the variant Beaufort cipher and a given keyword. Feel
free to merely make a wrapper around your Vigenère encipherment function.

4. Make a modified copy of your script for the Vigenère cipher that can perform a brute-force
attack on a ciphertext encrypted with variant Beaufort.

5. Make a modified copy of your script for the Vigenère cipher that can perform a dictionary
attack on a ciphertext encrypted with variant Beaufort.

6. Make a modified copy of your script for the Vigenère cipher that can perform the hill-climbing
attack on a ciphertext encrypted with variant Beaufort.

7. Make a modified copy of your script for the Vigenère cipher that can attack a ciphertext
encrypted with variant Beaufort by finding the individual shifts by matching monogram
frequencies of slices of the text with frequencies from English.

Exercises

1. Decipher this ciphertext with key TOWER. What is the equivalent key for Vigenère?

YMTQWGQPCALIMJCVFLAVVEXXNHGXEOBXGDRSPYJMLDXDNZGRSQLZWD
NDMWPFLXZAHLMVOXSPXDNLZGDJUFVABZELQCOQVEWAAEPXDQVSQPOL
HJFURWOVDIOCHZHDJKZIECOQVOCHUVOWVDHKXYNYPZBUXAJAFLACVB
AWBHXMPCSQAEWKAASQLZXDNLZGDJUFVABZIEJCLPXKPVUROQLBPWLL
PLAAZQPBKLZIWCOUXWWKOVENKDELDULIHAHBYJILXPACKAAJHVGVDJ
PD

2. Brute-force this ciphertext. What is the key? What is the equivalent key for Vigenère?

IHPHYYEHPRYKFNDELKOGYLUIPYZTIWNOLRCCHNAAMALMPOIZTBAFOH
LFANAPHJKRNNACPOZWYIQNAIAHKFYTTLWOLZIHWRSLELOOHWLVAAOP
YUJDCJFLKNNKFCPSIIEFETNHEXESNWNWAAQWYQWSMETNENAPHYWRNE
SNDIGOEFBBUOIFDAFHWUNDQDOMASOZDYJDCOAJLEUNAHYEMKMYUEUN
SUCOWWUMADUPTBATCIEMQCBLUVHIWAXWETYIEHPAHZGURELESYPOMK
MUJYMPRUJGYYOHFEWPULAS

3. Perform a dictionary attack on this ciphertext.

POOAQRXNAJHEAZXOHRHOZZDJLBOTWXVWUMWDDKWPBAAHMGCWUMYOTJ
RBZLDOWTNNZROLITMOHWZMIXXKUBWNLHDYJJJEMXBWUMXUZONZNXHD
ITMWSUPHMUUZYXIAVINNLCKLLKGWJCHYQTCDLJJCQKWPDJUCITYHLJ
OEIYVAAQAYXRNWZNZONUUZAQAWQYNNFXQNOYCAYBKFBUMWFBKBMOCW
UMBATRXJPOJOBOOOADZIWABUVDPHVUUKUPARKXJRLQESITLELWPAXV
NPPCASNUACVCGIVMBPVWKRJGUHHWPYVKCDLKNADKXNJXKPMXXBAQAW
WUMWUMSADKBKINETIRBKHWZMIERWUMWLTSHLPAWTMYBDHAATPKPNHE
AWPKAAAQASMGWZAQAIZIAAHCEOVYUEL

4. Perform a hill-climbing attack on this ciphertext.

WXDJUOJOYHKPDGPTAWDWSIWPOAXVYSHXLGJGIGYONPAJPHTJCOAEGP
LOXKCYLDKCXEWALZUHSLZHTKRNEPVGJGDFKUTPAJOETZMSEPYCNLNL
FALDTQPEGKYJDIZCPUGLJASPDJWDKSLYEIZCUAGWUWIIALCOCLFASW
ALCLTOGHLNGSYOBWYJDYGGJTWWBWNRW

5. Break this ciphertext with the attack that matches monogram frequencies.

ETWZQJLEGVORLBGWDJTPGEIUZXADQQTZSTAAPXQKAGEMYMUAQDGVFB
QFZMOBEFSOQJLESOMEOQFETRCQAVEGZAVBIBCAKMFEPQKWZRZROPUP
SNGZQJSULMMAOFZMAGSQJZQQCAKMEFSQZIPGHAUPUYODWVIUZIWZQY
TWWBTREIGZAFPFJMQFLZVWZRHMKKMYWQVAZBHIZQFRLZVBTRZFZMDE

ZEWZQQETWGIRCQSASBZPSVPULBHGMFMGKGMAOOZMQEQGDIERGQJBIB
NTATPEPZAVFUPIGZXQHQJMAAWKKVAJHTABQJLEEWDRBGAMFNYPYMZG
WQLPMACAKMDRODGAQEPPDQWRONWBFRCFGZGALNGCFVYFZMYRLPGEEN
YPXQQYOEKMQXTZYNXBHQJAMAOOSBOUTZYJGGEQJNXVPETCFFYAOETV
EQKIFNETGUQJTFZPQEXALPQELZVPQYAQVPQEHULPTRCTGCERHAJSAE
CQSLFBSQJETRYFZMDRHMKVAGSUFOFBOA

madness's book on classical cryptography
unit 42: porta cipher
last modified 2020-10-18
©2020 madness

Unit 42
Porta cipher

The modern versions of the Porta cipher (actually originally invented by Giovan Battista Bellaso) use a
set of thirteen key alphabets. The key is again a keyword, but there are two common versions for
assigning key alphabets to keyword letters. Below is their tableau. Notice that each of the key alphabets
is reciprocal, i.e., it is its own inverse. Thus, the Porta cipher is a reciprocal cipher and is also its own
inverse.

key (version) plaintext alphabet
 1 2 abcdefghijklmnopqrstuvwxyz

A/B A/B NOPQRSTUVWXYZABCDEFGHIJKLM
C/D Y/Z OPQRSTUVWXYZNMABCDEFGHIJKL
E/F W/X PQRSTUVWXYZNOLMABCDEFGHIJK
G/H U/V QRSTUVWXYZNOPKLMABCDEFGHIJ
I/J S/T RSTUVWXYZNOPQJKLMABCDEFGHI
K/L Q/R STUVWXYZNOPQRIJKLMABCDEFGH
M/N O/P TUVWXYZNOPQRSHIJKLMABCDEFG
O/P M/N UVWXYZNOPQRSTGHIJKLMABCDEF
Q/R K/L VWXYZNOPQRSTUFGHIJKLMABCDE
S/T I/J WXYZNOPQRSTUVEFGHIJKLMABCD
U/V G/H XYZNOPQRSTUVWDEFGHIJKLMABC
W/X E/F YZNOPQRSTUVWXCDEFGHIJKLMAB
Y/Z C/D ZNOPQRSTUVWXYBCDEFGHIJKLMA

Let’s work through an example with each version. Here is a short message, which we encipher
with the keyword PORTA.

plaintext: GIOVANNI DELLA PORTA PUBLISHED IN FIFTEEN SIXTY-THREE
key letters: PORTAPOR TAPOR TAPOR TAPORTAPO RT APORTAP ORTAP ORTAP
version 1: NPGMNGGQ ZRSSV GBKMV GHVSQJUYX QE SPZLNRG LQBGE MPIRY
version 2: ZOJENHHN URRRS LBLAS LHURNBUXW NJ SOYBVRH MNGGF AZARX

The modern versions of the Porta cipher are descendants of ciphers invented by Bellaso. Recently, his
first cipher (from 1552) was discovered in Venice, Italy. Here is its tableau:

 key plaintext alphabet
abcdefghilmnopqrstuxyz

 A NOPQRSTUXYZABCDEFGHILM
 E ZNOPQRSTUXYBCDEFGHILMA
 I YZNOPQRSTUXCDEFGHILMAB
 O XYZNOPQRSTUDEFGHILMABC
 U UXYZNOPQRSTEFGHILMABCD
 B TUXYZNOPQRSFGHILMABCDE
 C STUXYZNOPQRGHILMABCDEF
 D RSTUXYZNOPQHILMABCDEFG
 F QRSTUXYZNOPILMABCDEFGH
 G PQRSTUXYZNOLMABCDEFGHI
 H OPQRSTUXYZNMABCDEFGHIL
 L MLIHGFEDCBAZYXUTSRQPON
 M AMLIHGFEDCBYXUTSRQPONZ
 N BAMLIHGFEDCXUTSRQPONZY
 P CBAMLIHGFEDUTSRQPONZYX
 Q DCBAMLIHGFETSRQPONZYXU
 R EDCBAMLIHGFSRQPONZYXUT
 S FEDCBAMLIHGRQPONZYXUTS
 T GFEDCBAMLIHQPONZYXUTSR
 X HGFEDCBAMLIPONZYXUTSRQ
 Y IHGFEDCBAMLONZYXUTSRQP
 Z LIHGFEDCBAMNZYXUTSRQPO

He used a 22-letter alphabet, which was all the rage in Italy at the time. Notice that all of the key
alphabets are reciprocal, and so the cipher itself is also reciprocal. Notice also that there is only one key
letter assigned to each alphabet, so that keywords are unambiguous.

We can modernize the Bellaso 1552 cipher by using the 26-letter English alphabet and putting
the key letters into standard order to get this tableau:

 key plaintext alphabet
abcdefghijklmnopqrstuvwxyz

 A NOPQRSTUVWXYZABCDEFGHIJKLM
 B ZNOPQRSTUVWXYBCDEFGHIJKLMA
 C YZNOPQRSTUVWXCDEFGHIJKLMAB
 D XYZNOPQRSTUVWDEFGHIJKLMABC

 E WXYZNOPQRSTUVEFGHIJKLMABCD
 F VWXYZNOPQRSTUFGHIJKLMABCDE
 G UVWXYZNOPQRSTGHIJKLMABCDEF
 H TUVWXYZNOPQRSHIJKLMABCDEFG
 I STUVWXYZNOPQRIJKLMABCDEFGH
 J RSTUVWXYZNOPQJKLMABCDEFGHI
 K QRSTUVWXYZNOPKLMABCDEFGHIJ
 L PQRSTUVWXYZNOLMABCDEFGHIJK
 M OPQRSTUVWXYZNMABCDEFGHIJKL
 N MLKJIHGFEDCBAZYXWVUTSRQPON
 O AMLKJIHGFEDCBYXWVUTSRQPONZ
 P BAMLKJIHGFEDCXWVUTSRQPONZY
 Q CBAMLKJIHGFEDWVUTSRQPONZYX
 R DCBAMLKJIHGFEVUTSRQPONZYXW
 S EDCBAMLKJIHGFUTSRQPONZYXWV
 T FEDCBAMLKJIHGTSRQPONZYXWVU
 U GFEDCBAMLKJIHSRQPONZYXWVUT
 V HGFEDCBAMLKJIRQPONZYXWVUTS
 W IHGFEDCBAMLKJQPONZYXWVUTSR
 X JIHGFEDCBAMLKPONZYXWVUTSRQ
 Y KJIHGFEDCBAMLONZYXWVUTSRQP
 Z LKJIHGFEDCBAMNZYXWVUTSRQPO

Here is a short example of the encipherment of a message with this cipher. The keyword is
PLAGIA.

plaintext: BELLASO BEAT YOU TO IT BY ELEVEN YEARS
key letters: PLAGIAP LAGI APL AG IA PL AGIAPL AGIAP
ciphertext: ATYSSFW QRUB LWF GH NG AJ RSWIKL LYSES

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 119-121.

Practical Cryptography, practicalcryptography.com/ciphers/porta-cipher

Paolo Bonavoglia, “Trithemius, Bellaso, Vigenère: Origins of the Polyalphabetic Ciphers,” Proceedings
of the 3rd International Conference on Historical Cryptology, 2020, ep.liu.se/ecp/171/007/
ecp2020_171_007.pdf, DOI: 10.3384/ecp2020171007

Paolo Bonavoglia, “Bellaso’s 1552 cipher recovered in Venice,” Cryptologia 43:6 (2019) 459-465,
DOI: 10.1080/01611194.2019.1596181

Augusto Buonafalce, “Bellaso’s Reciprocal Ciphers,” Cryptologia 30:1 (2006) 39-51, DOI:
10.1080/01611190500383581

Giambattista della Porta [Giovanni Battista della Porta] [Ioan. Baptista Porta], De Furtivis Literarum
Notis, Naples [Neapoli]: Ioa. Maria Scotus, 1563, HDL: 2027/gri.ark:/13960/t37142x6g, book 2
chapter XVI.

Programming tasks

1. Write a function to encipher a plaintext with the Porta cipher and a given keyword. Allow for
the possibility of choosing the version of the tableau. You can hard-code the tableau into your
code, or you can find a way to generate key alphabets algorithmically or with shifts, or you can
use the magic of modular arithmetic.

2. Write a function to decipher a plaintext with the Porta cipher and a given keyword.

3. Write a function or script to brute-force a ciphertext that was encrypted with the Porta cipher.
Note that you only need to consider a subset of the alphabet when generating keywords. Use
tetragram fitness.

4. Write a script to search your word list for words that match a keyword. For example, if your
brute-force attack finds the keyword SECQES, then SECRET matches because it gives the same
set of key alphabets.

5. Write a function or script to perform a dictionary attack on the Porta cipher. Use tetragram
fitness.

6. Make a copy of your code for the hill-climbing attack on the Vigenère cipher and modify it to
attack the Porta cipher.

7. Make a copy of your code that attacks the Vigenère cipher as a collection of Caesar ciphers and
modify it to attack the Porta cipher as a set of monoalphabetic substitutions. You will not be
able to use your Caesar cracker as part of this attack.

8. Implement an encryptor for the modernized Bellaso 1552 cipher.

9. Implement a decryptor for the modernized Bellaso 1552 cipher.

10. Implement a brute-force attack on the modernized Bellaso 1552 cipher.

11. Implement a dictionary attack on the modernized Bellaso 1552 cipher.

12. Implement the hill-climbing attack on the modernized Bellaso 1552 cipher. Feel free to copy
and modify your attack from Exercise 6.

13. Implement an attack on the modernized Bellaso 1552 cipher that is similar to the attack in
Exercise 7.

Exercises

1. Encipher this text in version one with the keyword KEYWORD.

The Doors were a rock band from Los Angeles. The name
was taken from the title of Huxley's book The Doors of
Perception, perhaps because the band enjoyed
hallucinogenic drugs.

2. Decipher this text in version two with the keyword CIPHER.

KNRVTOIJAQDBUEAEIJKETYDCHWHRDCFWZEIJCTTVDJWWLEJIPJXOLZ
UYNMYGHQXMTIPXRELAKQXHPBTNRSIBXNZSGQGRHJSWUINEWQMAIEOT
IEZXWJKJTHPGCLTVJUWCRSIBXNRXOGUEARPUUKFEQQUPNJYMQCIKYQ
IYQBWNHKROWSPCODIZQYOJAJRUOQSBCIPKHBZEIJSWFUIIISBPXVTI
HQXZTBMFYDTYTKRXLJYWH

3. Brute-force this ciphertext and find a short English word that could be the keyword.

RGKYIPFKZHFKJONSGYELLKNIIPMUYEIYZAYYEHRLNUEXYUEUULFORX
NKFHVLFKWKNUJMQUKUIYLGKPZERGKYIPFKZHFKJWFTNPEUAPZYMUIP
NMCHOLKEUYJCQPYOVUTYJPKYWLCMFTWMYOFKYHVIUYVYEMWGNDRLKP
ENKKRTWGZZRGRLQPEEFAIOFTNLZYYHILGYYPOPYKFHVLJAYOWLXUKO
IHFTJVNXIHFTJUEXYSFLNMJKNJLPIYZPOZNKNGKXFHIZLGYMRHEUUP
KEJHXYJAIYKHYHELRXNKAONKNEFAAPUSXYRGJMWSUPENCHLKEYAXFH
IUEXRMJUGINUIUEWNVNZFKNTWRRGPEFAIILKYOWLNIWGNSZHFKJUUL
FREHAGWLJSWVZHFKJWFGKURGGUKMNKELFZJJLUIYFKFVUHENGUEYUL
WGZUIYWWUUJLRWYOFPYYWXFHITWEYHEMWPEMAHUUINNIWGNSJLRDJT
WSUHEYJHILFTNHKONKYHEZRNLKWMRHEWQHFLNIWGNSJCRMQLKKWPPO
KHIWLKMYZMFIJMFLLPKEFAIXNWFKWMRGPGNYZLWWYHIXRHEXFHILWK
NPZYWSOHIWUHJYKLWGZYEMIEAUCLAPKOJIWWNWFGJMIURGKLKONEVU
CWFGJPJMFZWZNCUUINNIWGNSJHITLSKPGSNLVUUSGUEYULKOWMOHUX
RGFGKONTJYUBNLWGZKNLKUPURGJMFGNLRXNHOMQYZHFKFINGRGP

4. Perform a dictionary attack on this ciphertext.

SOOKZSUIFAEPAXWXAMUIGCWMJYFAQNKMNCENRBEUDJAIFQEARHKAWT
BMKKDPXXIKAOBTEUAEYXIBNPPRNAEARVNBWLHILAVMQXYYAMBXXZTM
PWZKACBAQRFUKRZSOROAFKMTBOZVAUCNNKBTJOEXACSOOKZSUIFAEE
YTKWANUUWTYEKUFCVDZWNBAUCNNKBTJOEXPPAHZKACBIOWSCRVURED
ZVIDEEZVUKAZCNNHVPJZOAAORAFLDPZRWPZMFOEXFWVSKKENZWNKHT
AWFKDMLXEZMVBDFKRTJIIQWCAIIVRDPOZZMVUIFAEPAXWXAMUVQKWR
VYFAQNKMNCEEYXCDETBJWTSTTIEKNXTTUPKPJWVZDCKLNURMKLJUAS
KBXPSSDACPOCXXVZDCKLJRZDKSWOSPAIFQOALXWANMAXJLORZILB

5. Perform the hill-climbing attack on this ciphertext and find an English word that could be the
keyword.

TQWUPJPGIAHRFZUVNKYQHXXKFZJKEDXVLZCYCUXBIYQDJADEUYXROU
QYMVNDFQAHYBKZRPYBZLIDNYCNDYTQGDAKYACGSCSVMMMDYPXDARVV
HPXWDAYGYRCKILXAZKCSVRHVHPTCHPUYXBDAFGARIVGLIAPEQVRRSZ

PYXJGKCUXJIAZFVVSKKZCVGCTZMVOKCJMTYJNZVAPRHZWTJBHGSZBV
PLIVCTCUJRHBYGLVPPZWIAYCQYXBTXBK

6. Attack this ciphertext with your code that treats the Porta cipher as a set of monoalphabetic
substitutions. Find an English word that could be the keyword.

IBPTSPAHRUDMEEESWPCGVONLETNDXATPPARNHAYQVZSGHDUFAVVULM
BRXGRXMESXSWDCQOYYVECVQOGYPJNDORJRXASOEVOHVFRNBDNVRMBK
OUVPOETDCRTEERSTNHBSVPNGVXGBNNBEOECDEUOJBWYDBZSQFDMQRE
BAIWREOZDQUYSIBDCSOSJGVGEUODUKWNBIZBAPSBAHF

7. Decipher this ciphertext with the modernized Bellaso 1552 cipher and keyword PLAGIARIZE.

OTYSBUMXDISETKWNPRLEOWBYDRREWFRTZYSYMBUNTHNLJHRYTNSEBS
NIMMRNXSRSQUUQMNSWRCSFDQVFRWRZNEQBFIKPGSNGMMLIZONGNRNW
WJRMYYSAXBERXVSKJZDIIKHPGPAUUEDYBORMJJRNUNRMUPRNVVENRM
ZYEUMIMCJXELBOUJBABDAYENLMDNXSBZRVVWVWGSGHRRPZHZKSVWSG
IJNRSGRKGAMSUCKDVLSVANUQWFTOBVPELJCJSKNRVVVWGSVUQJDGVW
LOVKWQIBHMKLOYXBRWDJBHVMNAPZHRXLBWWAPALXTMNXNADBTIBNYE
ANIVRQBEQHGBORHWXHUYMRANICWFRBWEQWHRRQRZJEMEHUDXFUEVPX
DISEFHRRXWLISPTHSFAJJKWCUHQZMAVZKSVWSGIJNKWWVLABVYVRXO
NGGXMGV

8. Break this ciphertext that was encrypted with the modernized Bellaso 1552 cipher. What is the
keyword?

YITCPACDICCCRDYCDGOZPSNLGLNOTYRDPASGSHNQYSCKWOYACZJGOR
NTMFWUHGSRJRVDNPYFDSYLOIARCDANDXESSNNSJRDDHMSSONJYCZJB
WSBPILQVWBOIGGWLNVYYLFDHTOGGLHRHQFXKCRNLXTADSGPAXGKVHW
XWATAMHSTGPGOQJKMTAMGARDPETPUPNJFLPMKEYANDPBMVRWIUKLPY
VQASVLUBCTQHORTWNWUIBAYYBXNUXYNTKCNDSFDHGVMSSAGIJBPYHC
HYBRTGVQRHWXXVSRRYQKLPANSJRXTCRPKWTPEKIAXHIEFXWDGOHRDY
GVZRKCHWFNBZGTKTPEVXRMDQEKRGRGCRCYYLKWVNICKDJENTSAGRNT
IXSIGRFXAXHTAFQJOWPPSCKSVSRXSXDGHGPPJRSYFAJCDNQESJHHZP
BRWJODDPFXJVNJEKCHWUIBAIGKDDHOPTDCVRFCSSVSRVHRTXDHTOJL
DTZFCKBWVRCSFCDTFTYBKDPJFHEQWINEDRRVDTKKJGVLUBCGKWJQCP
YDQGRGPBAGGRCIGKNERTTYICCPKOJXVTAGGTRGKRTHXXWHGSGNHGLN
OHXJCWYBOPGVSUSGUWXYGLYQGOREBYCGWPQKCGGWDJTEJTWDANSARV
PEPTMDGYACLJDMLEKISKOHPBCJBOONNSAPCCTCDYKKNPKOJXVYYHAS
HNJTLTYJKNGXSARVSRGGGZHPBAQFMVTBTSALHDABLFRDORHTMKXYGB
TYRGCGNSARDPEFCAOKANOSATHYFLPLWUWQMDGKSYFLDPKTPEYPUZIW
BOPCZFDYHDPKHYACQFXKWYVSJRNDXPPIQEPVTYTQXRRPASHGOBSGXJ
SSVDSGBZERTPKRNZRSEJXSSRPPGKGMCHYFXGOGSYNWUCTFHTGWINTI
PHNSNREJXGOGSZJRDPEBPOBIIYVLGBVSNCDLMUGEBOSHGSHGYYGVYE
KYYMXDJCLJTGTACJLKHIBMDAOKABTSFSETIKCHRDPZFHBBMWFZXXJL
DABAAXHYFODXXKHGLPLWKHGXYTMMPNPSJDGQGFHGKZYFOPKWUIGLPY
BLPBTIGKJGNOHKWNGCHYSKNQGLPTQXRRPALBURUNSFSGARKIPBWURI
ACDKIYBYTRCIFLDRDHSNYPMKGC

madness's book on classical cryptography
unit 43: periodic affine cipher
last modified 2020-07-29
©2020 madness

Unit 43
Periodic affine cipher

Suppose we construct a periodic polyalphabetic substitution cipher in which the key alphabets are
generated as if for an affine cipher. Then we have a periodic affine cipher. The key for such a cipher is
a set of pairs of integers.

For example, suppose we want to encipher a message with a period of three, and want to use
these affine keys (multipliers and shifts): 5, 8; 11, 2; and 21, 18. The key alphabets are these:

abcdefghijklmnopqrstuvwxyz

0 INSXCHMRWBGLQVAFKPUZEJOTYD
1 CNYJUFQBMXITEPALWHSDOZKVGR
2 SNIDYTOJEZUPKFAVQLGBWRMHCX

And here we encipher a short message:

ANY MONOALPHABETIC SUBSTITUTION CIPHER CAN BE USED PERIODICALLY
012 01201201201201 201201201201 201201 201 20 1201 201201201201
IPC QAFACPFBSNUBWY GENGZMBEDEAP IWLJCH IIP NC OGCJ VCHEAJESCPLG

When the multipliers of all of the affine ciphers are the same, then we have a special case in
which the cipher can be factored into a single affine cipher followed by a Vigenère cipher.
Decipherment is in the opposite order. There are 26 choices for the affine cipher, for the 26 choices of
the shift. For each of those choices there is one Vigenère key so that the combination of ciphers is
equivalent to the original periodic affine cipher.

Programming tasks

1. Write a function or script to encipher a text with a periodic affine cipher with a given key.

2. Write a function or script to decipher a text with a periodic affine cipher with a given key.

Exercises

1. Encipher this text with key 3, 4; 5, 6; 7, 8; 9, 10; 11, 12; 25, 24.

AN AFFINE PLANE IS A SET OF POINTS AND A SET OF LINES
SUCH THAT ANY TWO POINTS LIE ON EXACTLY ONE LINE AND
GIVEN A LINE AND A POINT NOT ON IT THERE IS EXACTLY
ONE OTHER LINE THROUGH THAT POINT THAT DOES NOT
INTERSECT THE FIRST LINE

2. Decipher this ciphertext with key 11, 9; 9, 8; 7, 6; 5, 4; 3, 2.

HTEWPQSVNSRMGRWXEATJNAVYCKGVYEJFIVXBFINOOSDWQUSGAHBEQQ
MJVYSPQCCWFOIXYPBYEWBAJJNCKTGQEVADBOHNFYAWCJ

madness's book on classical cryptography
unit 44: attacking the periodic affine cipher as a collection of affine ciphers
last modified 2020-07-08
©2020 madness

Unit 44
Attacking the periodic affine cipher as a collection of affine
ciphers

In Unit 38 we built an attack on the Vigenère cipher by partitioning the ciphertext into slices, each of
which was encrypted with the same Caesar shift cipher. We then used the attack from Unit 19 to break
each of the Caesar ciphers by using monogram frequencies. Here, we will do the analogous thing and
partition the ciphertext, but use the technique from Unit 25 to break each affine cipher with monogram
frequencies.

Programming tasks

1. Implement the attack.

Exercises

1. Break this ciphertext:

EMNMGYUQNIXTEMNMGYUQNVGUKOYJUZKRKCINNCEKZLGLGXMEUJXKFE
UKYJUNJEXKRETSGEMKQNLUUPGQXCVOAXYCHDKJXHUPGQXMAKPNAXAL
QSUHFVWJYVSKWDSFGEUETDQNQKEMXAUTYXSKWRYGLECDSMOCWDAMQL
CRXPUMDLAMQLCLJPUMIDAIZTGEJLGKHENCDPVUXXGYDLAOSCGLFITK
WJWCIQQMOSQNOETIMEVZAPUCVSGUSKWKGVTYVCOSQNDQEMXTVUXFUO
QDDKHLCXSLVEASYVZUCLELVEYEWMAMPJXCMKNQXOUCGQUHFAKPALVE
OETKAVCCNCDXQUXEUJGDWWVRKGXOKCVZAUOYUJKCTQVZAWKRTCAXQL
GJPCIAJJGVLLQSFSXZACXHFCGQOEUZFCTYPRGGAVZCVUYVUCQSTRUE
VETDVKYUVDZLGNUXUIVCYVQUKLJHGKM

2. Break this ciphertext from the 2017 British National Cipher Challenge. You will notice
something about the resulting key. Can you factor this cipher? Can you find a meaningful
keyword (it won’t be in English).

YKUFRQHUDDQRGZPPISMXOOEYZUDOGMPPRLZQAERLOPNLOVKTVFNXOY
ZCQDZOVDVECXUAIBKVGLBEJRVPSLARHDTWOBNIMLWDFGGTAUQGONBL
RFLNMGMDRPYBVIGKXVXDBOQXUGBUVOKLQLPGHROVAMGIUKRDPHDOQE

OEIGIUKXIVDLYJLZIPEGELWVFDBMDBSGZKCGSYSOOOIOEOBOPTEMMK
HCROCVNLWDJOKSIGWCODTJGZCVLSYOYVTOURIWMHFDLZQKUAIIAWBO
OAMKHDNGEQBTOEICUGKFGYUCZIESQPUGAKANFMELCLZTMVINRRIRDB
OBVGHJBQYHGCKMSJILPIZQJLXEELPZJSNOYCQIMJMDHKIPIAWBOAOB
MBOLWESOGLYVOABXCENDBOQXUGBUVNJCDNVBQUUQGVAJTCLIOXGBJV
PUBAUTDSQYCTMNNTRHDAUFEKVPFBSNVYVWAXKZQJAAMMRIZOVJGMMU
MXELJTHYBAJVCPKLWHMRBVCMWIGKQRNVLYROVAONGUKWBOXGGDMVTG
JJOKEUMCTGDYDHPAYTVGNKAUBSFNDMYGNEEBODYLSIVMWEIUHOIYXI
IXRZILMINLCRNYBODTQGKACUKPJNVLYROVGSBIGCRKFYRNLDPIAEGE
EZSHVGMROREIAWGMEFFKAILLHWPUMTIPJLBEQBADDORIELFILZDJSN
CTQCTMEGRJAAVQQWEIAVTIBNFWAOFTGLYDDLEERFYBGUOVCMWTLLDQ
AWYZOQSQENAPVPYRHGBKXNTOUXTXWXOXGNISDDMOIRVXRICLWKDZEI
WINWCUNDYJSNQYWWIRVXSYBOTNVHFLAUTECBGYBODTKGBSTLLYIUDE
LGTIAKCVTIYKNGLLQMQIINGXKAOHURMNQSINWTLXXSGAAQBHSGIUQQ
CPLNATQBHNNJECMKCRIPGXIVHGMDJOKPQJWYBXLIUODKUQMSZSDYRO
XAIMMSIFLXYEISEHTOACTDJAOXGKSMVANPIRDRYRUOBROTHJCDRDJQ
NNTOULKGHHSSCGKFNYZROVGSBIGCRKZUKSOEOZGGKUMCBKUAPBLWIS
CKEIDPFERPSEJHJCGXPGRPUOIKRSOIDKBEBYZKDLYNTAPXIEKAEFRG
BBLIYVDDTJRICERAQOVCMWUOIRENVCQROPGAKVVVSRICNBOHXDOBIR
WEMPDBAOQVZGNKRIPJICEHQMWBOPIUCQIYJTGBUHELQGFSYSOYEIIE
SQPXIELZOODBONLPAGJJOKQIGCJKONIGDCGQKXKLZOIRVDAKPAUKWX
IEAILLHWMDJOKPQJWIZOQVHPCVUCQOOUZMRTOHJCPVRFLGAQTQANTO
DDTACNNNZIIAZEYETUFEANATGXUQGAUTNSBKIEFIIAZEBOQNIRDNOI
ZYNHDOGIEEGSLNZLYFXOIHGTPGYHXYZIGTHWWETIRQNFFBQNPDYODR
XSQGHQGYGZYIDMBVGXPOGZRRGZCPIRLEUMCTGDMNKQDKRVFIHCSWDT
UERPAXIPOPNHJQENTPXIGVUSYQZGUNTRHMIUUWYJPIPQUNKOUPUFEN
FWAGXUQGAUBTNWCZKDPIGDKYUQGHEOGCTMEGXSGZGOIYOKPGMJDUEQ
VJOKDDPOGGXNDSJAFLEYVVDIVALDZGNAUXECFRGBROVSGVIWPEXFPG
PLTUEIWKEYWXOXGYQRIHJCTDCMULMLOKBIGPXGUUWYJEDLZLXRJEMD
CMRNZDSQUQEPETUKBNPQGZCTCTGGGFIDRVPGHKSFAWQWTEFKOXEPRO
VHBAKUCRCLZUMCBPBMWJOKQIGCJMBMXASACNMPEIEAIYSUYBDIGEGB
OXGZIGWBKXKQKFLNHEBVRIIMNCUFEUHCDDQNTTOKTQMUQKMHGURLGS
KUOCLRICSGJTYSMZWRWMKPWEZQMDSMDIMXWULNEZJOVKWWJYKYRFBF
OJYVNGPIOKQOYVGIRGNQPXINKQYAEHYIAWBOEMSKRSLZSQPOVTIDDT
WWJNFCQNQAGBCULZEDNVYBALDQGKVAIISKMEZJTKGBMAEKOIVSRGMP
XDLBGDLZQMPIAQRGZIUJLLZQHCVOBUQFMPJLRFLNDTWQNWYBMAAISD
POYLOVGCJEUOLZQUAHOIAWBONKELZNNQIGBRGZGJJOKQIGCJQRNVDV
YKQHGBOEKOVTIGDCGQKXYYDILROVRQDEVHBVNQOMDMVZTMJOKCBZEG
ZRYTLYZAEMCBBUZHQNPYVYGG

madness's book on classical cryptography
unit 45: quagmire 1 cipher
last modified 2020-10-03
©2020 madness

Unit 45
Quagmire 1 cipher

The quagmire 1 cipher (also called polyalphabetic type 1) uses a mixed alphabet for the plaintext and
shifted alphabets for the ciphertext. The mixed alphabet is generated from a keyword. The shifts of the
ciphertext alphabets form another keyword, as they do in the Vigenère cipher.

Here is an example. The keywords are QUAGMIRE and CIPHER. First, look at the table of key
alphabets. Notice that the shift keyword appears under the ‘A’ in the plaintext alphabet.

plaintext: quagmirebcdfhjklnopstvwxyz

 C ABCDEFGHIJKLMNOPQRSTUVWXYZ
 I GHIJKLMNOPQRSTUVWXYZABCDEF
 P NOPQRSTUVWXYZABCDEFGHIJKLM
 H FGHIJKLMNOPQRSTUVWXYZABCDE
 E CDEFGHIJKLMNOPQRSTUVWXYZAB
 R PQRSTUVWXYZABCDEFGHIJKLMNO

Now we encipher a short message with this key table. The center row indexes the key alphabet.

THIS MESSAGE IS ENCRYPTED WITH A QUAGMIRE CIPHER
CIPH ERCIPHE RC IPHERCIPH ERCI P HERCIPHE RCIPHE
USSY GWTZPIJ UT NDOINSAUP YUUS P FDRDKSLJ YFYZMI

There are some special cases of the quagmire 1 cipher:

• period = 1: monoalphabetic substitution in which the keyword is used to generate the plaintext
alphabetic

• mixed alphabet = regular alphabet: Vigenère cipher
• mixed alphabet generated as in affine cipher: periodic affine cipher

Because the plaintext alphabet is the only one that is mixed, the quagmire 1 cipher can be
factored into a monoalphabetic substitution cipher followed by a Vigenère cipher. However, the key for
that monoalphabetic substitution is the inverse of the quagmire’s plaintext alphabet, and the Vigenère

key must be shifted by a Caesar shift until its first letter is ‘A.’. For the example above, the substitution
key is

CIJKHLDMFNOPEQRSAGTUBVWXYZ

and the Vigenère key is CIPHER shifted by a Caesar shift two steps back to AGNFCP.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XVIII.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/QuagmireI.pdf

Programming tasks

1. Write a function that takes the keywords for a quagmire 1 cipher and outputs the key alphabets
for the periodic polyalphabetic substitution cipher.

2. Write a function or script to encipher a text with the quagmire 1 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

3. Write a function or script to decipher a text with the quagmire 1 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

4. Write a function or script to perform a dictionary attack on a ciphertext encrypted with a
quagmire 1 cipher.

5. Write a function that takes the two quagmire 1 keywords and outputs the keys for the
monoalphabetic substitution and Vigenère ciphers into which the quagmire can be factored.

Exercises

1. Verify that the example above does indeed factor into a monoalphabetic substitution and a
Vigenère, and that the keys are the ones given.

2. Encipher this text with the keywords ULTIMATE (alphabet) and QUESTION (shifts).

O PEOPLE WAITING IN THE SHADOW OF DEEP THOUGHT!
HONOURED DESCENDANTS OF VROOMFONDEL AND MAJIKTHISE,
THE GREATEST AND MOST TRULY INTERESTING PUNDITS THE
UNIVERSE HAS EVER KNOWN... THE TIME OF WAITING IS
OVER! SEVEN AND A HALF MILLION YEARS OUR RACE HAS
WAITED FOR THIS GREAT ANSWER! NEVER AGAIN, NEVER AGAIN

WILL WE WAKE UP IN THE MORNING AND THINK WHO AM I?
WHAT IS MY PURPOSE IN LIFE? DOES IT REALLY, COSMICALLY
SPEAKING, MATTER IF I DON'T GET UP AND GO TO WORK? FOR
TODAY WE WILL FINALLY LEARN ONCE AND FOR ALL THE PLAIN
AND SIMPLE ANSWER TO ALL THESE NAGGING LITTLE PROBLEMS
OF LIFE, THE UNIVERSE, AND EVERYTHING!

3. Decipher this ciphertext with the keywords WAR (alphabet) and PEACE (shifts).

IMFUUBNTVNDLUSTVXIHDEFMGNDXPVMQJFJFUETUYFJBUXPXFUDPWAQ
JKJOVDXNDKHEYMGGUEOGNDIFHIOESITQJSHJDGFITQJTKJCNEGQUTG
VMUXZHSINFVMSJOVYQBZLXXXIHERWPDUINPQTVJUDTFJCZFJWSLEPS
ERKIMFEFYXJUMURQLFUGXVMUYOLXUISVEIJSVDETGVMUXIDJUJWLWI
NOJUEDFDWUYBCWYEAQIEHFCSYEZHFUEMDJPIXHKVJDVNKJMZNDGFLS
WXIHXXNBGJPWTCWYEPQQMJNHFWJECWPIJUXYSDVYDNTCKIJBCSEXIH
FTJDCIUTGFTDKUUJTKJJMINOJXXJGDTDXJHFHGFVDUJOVMUXIDJUWU
SJQWTCXUWADJYSSRRUUMCHUWADGYXBCFMEOGNDTTKJQWTKJMKMWHIY
AVJPHDRFTNOJXEXIHKEFTWSUWPIDPFCWXYSHHSUFAOXXJXITBQPBLU
THDEFMJFEBQJQJHJUDEHNAFTCUBLWUWTKJOMPOJEKTKJDTBVMUFOSE
QXPIXXJFWFEUFCSPSECWYETLHBEOGRPWSIFERQRFIYHCQITTKJRJBL
SWWTDEYXPFJPSJCHERQDNHJSVMUENHFYHAUXXJAVQPSTLHYWMCSTWJ
QHBYELSWXIHGQNTLWXNSOJHEUUXQEMCWYEAQIIMFUTJXIHFDUPDXYT
ORKPKBLHPJAUXPWJCWCEMOJQXICSIMFRXXJBUEDIZLXXEMHWHIFIND
NTHDUWTHFDKBRSINFDHERQDNHJSFMYSACSTXIHHEYOVFYJSVTIMFUT
JXIRKYX

4. Break this ciphertext with a dictionary attack. Both keywords are common five-letter English
words.

VXUHEXTOLHJMJVCVCHQCQENAZOZWKOMQNHEJRGQUAOJVCYZFAGVFXA
UAMDQCKZMQKUTYGVEXDENTGGQKFCGCNEJIVIMXDBNVROMESMYCBTQI
TTTULNFLHTQMKZNCSYOJFUAMJVCVCGMVXTFAULMWSJVPYHCUOSMEKO
JFHTXYCTUOSMEKOWATLFUIHLTGXEEXBAEJNWACWOJFHTXYCGAURFST
PBAEJWNCMBZNDPBRTDUOOJSUGARCZOUYHHTXYCGAURFSTPIDHTAXIN
GPXCSTDYINEHTQTTENAZJMYNPKEZOKYETZCVLRAUGCGCHGCBQKLMFA
TBRGRUAMDVCVCFLEXWBHKXTORTMQNCBTOXSNQQTLPMCOMTGNRCHBYI
ZCLO

madness's book on classical cryptography
unit 46: two-stage attack on the quagmire 1 cipher
last modified 2020-07-08
©2020 madness

Unit 46
Two-stage attack on the quagmire 1 cipher

Because the quagmire 1 can be factored into a monoalphabetic substitution followed by a Vigenère
cipher, the shifts are exposed to cryptanalysis. In this attack, we find the shifts by comparing the
monogram frequencies of slices of the ciphertext. What remains then is a monoalphabetic substitution,
which we can break with the technique in Unit 28.

Here’s how the attack works:

1. find the period m

2. partition the ciphertext into m slices; each slice contains every mth letter, but each slice
starts from a different one of the first m letter of the ciphertext

3. find the monogram frequencies for each slice

4. fix the frequency table for the first slice; for the others, shift them left (with wrap-
around) until they match as closely as possible the table of the first slice

5. the shifts needed to align the frequency tables forms a Vigenère key; decipher the
ciphertext with this key

6. break the resulting text as a monoalphabetic substitution

To recover the original keywords of the quagmire cipher, look at the key that you find for the
monoalphabetic substitution. Take the value of its first letter, where we start at ‘A’ = 0, ‘B’ = 1, etc. Add
that value to each of the shifts that you found in step 4. Convert the resulting shifts to letters to get the
shift key of the quagmire. To find the alphabet keyword, invert the key of the monoalphabetic
substitution. You may not always get a recognizable keyword, due to problems with infrequent letters.

Programming tasks

1. Implement the attack. Use the cosine of the angle between vectors to find the best match for the
frequency tables. Feel free to also use your function that performs the hill-climbing attack on
the monoalphabetic substitution cipher.

Exercises

1. Break this ciphertext and find the original quagmire keywords.

TNBOWMQSCQFMFOBZVKYAVNUBJVKSLLKESDBGLJPVFNEFLHUGNKVRDO
QCVKNRKJFXWKIUDNVWBTBHPSESLTBJIVUHUIIAGGKMQCMINEOUAMYO
NMATPOJVSSLXLNOFJAVFDSDEXBGTUUENVNHDXILUDYXGFOJRNCHRJO
TVOZLBMCKJBUIUJRPNRGOPBTTCXIETUPBCJBWEWOVUAMVDAGEIKFZL
LPSJVHPSMLQSSSLNHKMKZSMLYACCKGPUZAEWKBBLLSXIXTPGMTCSCC
XEFQEXIPPGKJFSBCLKPFSWBTDXYMRIVPPSACLVPFSVFSGLICHFPHPS
ACLXLKGBFOBRVVEGDEBTACLKPRKGPXVMVPZSCAGPCMQSCEEGUPEHUU
PVNJBUETZWZGEIUPRTWDPREEYUPVYGEWAEUSKXNHZFFOMHWPUOYKDA
MFWNAKUEKSKFETZRZQTNJUWYBHNXNATUWHNOCPKOTFMTUMENTNJURX
UGUISOPMMZHHENVSDHMLVVENVWFCJTUUYSKCEFOMQOEXAEZXMKLVNF
SEHXKMQRFTWOBSOLHBRJFOMTRXIJPWAESFIGNHUIIETKMLHKXEGSBO
OIJREYIETKCGPIASEPFJALQSESFLHPEGHYLVYRPNWGLCSXAETKMUCS
DEJSKFXTZGPKTTXBAUHTPFVGPSIGPSXEIMBCIZLTFXKOKFZBYSLXXC
TBXIVQYXDEOUKMDODIDPUZACLUNKEOUCKELHZKIOQURXROCLFRIFIK
VVWGSBDOQLVAPJFGZVVZLFYIRTKTWFHBLMVGUPXNAQEGETPPVXVVEN
VDVQNHHFRWRSTKMALPMTRSUDB

madness's book on classical cryptography
unit 47: quagmire 2 cipher
last modified 2022-01-13
©2020 madness

Unit 47
Quagmire 2 cipher

The quagmire 2 cipher (also called polyalphabetic type 2) uses a mixed and shifted alphabet for the
ciphertext. The mixing is generated from a keyword. The shifts form another keyword, as they do in
the Vigenère cipher.

Here is an example. The keywords are QUAGMIRE and CIPHER. First, look at the table of key
alphabets. Notice that the shift keyword appears under the ‘A’ in the plaintext alphabet.

plaintext: abcdefghijklmnopqrstuvwxyz

 C CDFHJKLNOPSTVWXYZQUAGMIREB
 I IREBCDFHJKLNOPSTVWXYZQUAGM
 P PSTVWXYZQUAGMIREBCDFHJKLNO
 H HJKLNOPSTVWXYZQUAGMIREBCDF
 E EBCDFHJKLNOPSTVWXYZQUAGMIR
 R REBCDFHJKLNOPSTVWXYZQUAGMI

Now we encipher a short message with this key table. The center row indexes the key alphabet.

THIS MESSAGE IS ENCRYPTED WITH A QUAGMIRE CIPHER
CIPH ERCIPHE RC IPHERCIPH ERCI P HERCIPHE RCIPHE
AHQM SDUXPPF KU CIKYMYYWL GKAH P AURLOQGF BOTZNY

There are some special cases of the quagmire 2 cipher:

• period = 1: monoalphabetic substitution (keyword cipher)
• mixed alphabet = regular alphabet: Vigenère cipher
• mixed alphabet generated as in affine cipher: periodic affine cipher

The quagmire 2 cipher can be factored into a Vigenère cipher followed by a monoalphabetic
substitution cipher. The key for the monoalphabetic substitution is the same as the mixed alphabet
generated by the alphabet keyword of the quagmire, but the Vigenère key is the shift keyword of the
quagmire after it is encrypted by the inverse of the monoalphabetic substitution. Because the second
factor of the quagmire 2 is a substitution cipher, it is resistant to the attack in the previous unit.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XVIII.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/QuagmireII.pdf

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter XI, section II.

Programming tasks

1. Write a function that takes the keywords for a quagmire 2 cipher and outputs the key alphabets
for the periodic polyalphabetic substitution cipher.

2. Write a function or script to encipher a text with the quagmire 2 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

3. Write a function or script to decipher a text with the quagmire 2 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

4. Write a function or script to perform a dictionary attack on a ciphertext encrypted with a
quagmire 2 cipher.

5. Write a function that takes the two quagmire 2 keywords and outputs the keys for the Vigenère
and monoalphabetic substitution ciphers into which the quagmire can be factored.

Exercises

1. Factor the quagmire 2 cipher used in the example above, and find the keys of the two factor
ciphers.

2. Encipher this text with the keywords CHARLES (alphabet) and DICKENS (shifts).

IT WAS THE BEST OF TIMES IT WAS THE WORST OF TIMES IT
WAS THE AGE OF WISDOM IT WAS THE AGE OF FOOLISHNESS IT
WAS THE EPOCH OF BELIEF IT WAS THE EPOCH OF
INCREDULITY IT WAS THE SEASON OF LIGHT IT WAS THE
SEASON OF DARKNESS IT WAS THE SPRING OF HOPE IT WAS
THE WINTER OF DESPAIR

3. Decipher this ciphertext with the keywords PLANET (alphabet) and EARTH (shifts).

FAFSTXGTYRDWTCRESHFKTAUMCEVWWNRCHIMYMXTNHGBRHTJWFYCOXY
RDYWXEDSTXPISROHVKBGEHBYTWEZOOSDURXXEJNZYVBYTACBVNMMJB
LNYMBWIIVPRQXFPXHXAVJNXATCMRCFSTGFNNYIMWYFXYBQSMJPSYOG
NFNIURRTXVWWWAGTXSGMPGSBATYWIVHOMTJIFQVBWRPMATFEPFBXME
QWDMWEWRKDTNJODCBWXWAFFNRAETGIMYOFSSPQSXGJFEHAHYRDPGYS
MJHISQIVJQIVROCEVUIMWAFFHSSWYEAMWTEITWT

4. Break this ciphertext with a dictionary attack. Both keywords are common five-letter English
words.

CTXMSTARXSYRSWGOUKWBRPEHCNHCRNZDXJRDAAPSCUWGQTAPUJOLGX
DGPEJACUWJDZRIZPYOKHBCNSWBGDEPBCZTNCHDOMUKFRUOYODESYOI
EWZIGGBZHIICVIBGSJMTSSSLOHQGDTMSDAVFRZMMNNJNTNBTZPMIGD
TMXCQHGBNAZGSWTOOBHDEJZCNSMSWOBOBWAOBBMOGZSULMJTNHCKAV
BXOTVSRUECSDESQATKBTABPBGHQWZSZOOVVMTJAGOCKSCKRJAKPBJE
KSGUBGRMNGKDTMSCUWJGKVIBSWUUJAHRGCLVVDENGKTGEONVRIYRVG
RGLTDNUOUDLDHBOVGDOOQOBUGAZNEOTYOROVKTDWZSHIIILRIJKNHC
EIYTTNNYAPMSJITOCKSUJADACFQKTDENGUWGLCSTRNOSKFCNUWGWYB
TGQONVOVKZOMSGRHIVGUWGWYMOHNMAOHQGODENGAIZAOFTMBJAOMZA
DXMSJIHOWNHCXAVUWGAMRXHRVUWFRMVIZSYDXDORUVMIEUWRIYUWGJ
NHQEVOTOHWTRGNIUDXNQRNVEWSLCWAKRCDDHDPJDUFDJVOMONWDACF
QKTDEWZNEOVONVOVCUWGBVPGGRGHUPZSZVFHKTRGCNACJGKUWFRMUW
WCURDPAKCOQSTAWFBHOHHCKNOHPKTTGGZUEONQAUMITMTESSADNGKB
TGQEHDEVOTWFRJTPWAZMTOVKPGWPKOUWOYODESYRIZNZMHYVCTXHVO
MGFSZMXHSZMMISUUXCWGZKFCNMMGQREOOWVNDEWZHCFCCFODCNRDIA
OAJGBTAOHQGDTNEOSXOILMMRNGDTMJNHQEWGDXHYOTKFCNHIDSDAVF
RZUEDDGHIUNMRXHBGUWFBZABQWGVSGWEHGCRVLEHUKSTHQRSTFCGDE
PUNZTOWQNESRVXXNSYARGQADESCVRJJWJHD

madness's book on classical cryptography
unit 48: quagmire 3 cipher
last modified 2020-10-03
©2020 madness

Unit 48
Quagmire 3 cipher

The quagmire 3 cipher (also called polyalphabetic type 3) uses a mixed alphabet for both the plaintext
and the ciphertext. The mixing is generated from a keyword. The ciphertext alphabets are shifted
versions of the mixed alphabet, and the shifts form another keyword, as they do in the Vigenère cipher.

Here is an example. The keywords are QUAGMIRE and CIPHER. First, look at the table of key
alphabets. Notice that the shift keyword appears under the first letter of the alphabet key.

plaintext: quagmirebcdfhjklnopstvwxyz

 C CDFHJKLNOPSTVWXYZQUAGMIREB
 I IREBCDFHJKLNOPSTVWXYZQUAGM
 P PSTVWXYZQUAGMIREBCDFHJKLNO
 H HJKLNOPSTVWXYZQUAGMIREBCDF
 E EBCDFHJKLNOPSTVWXYZQUAGMIR
 R REBCDFHJKLNOPSTVWXYZQUAGMI

Now we encipher a short message with this key table. The center row indexes the key alphabet.

THIS MESSAGE IS ENCRYPTED WITH A QUAGMIRE CIPHER
CIPH ERCIPHE RC IPHERCIPH ERCI P HERCIPHE RCIPHE
GOXI FJAYTLK FA HBVJMUZZW GFGO T HBBHCXPK LKXMSJ

There are some special cases of the quagmire 3 cipher:

• period = 1: monoalphabetic substitution
• period = 1 and shift keyword = first letter of alphabet keyword: no encryption
• mixed alphabet = regular alphabet: Vigenère cipher
• mixed alphabet generated as in affine cipher: Vigenère cipher (whose key is a Caesar shift of

the quagmire’s shift keyword)

The quagmire 3 cipher can be factored into a Vigenère cipher sandwiched between two
monoalphabetic substitution ciphers. The keys for the monoalphabetic substitutions are inverses of
each other. The final substitution cipher uses the same keyword as the quagmire’s alphabet keyword,

while the first substitution is its inverse. The key of the Vigenère is the shift keyword of the quagmire
encrypted by first of the substitution ciphers.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XVIII.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/QuagmireIII.pdf

Programming tasks

 You may use the function from Exercise 1, but there are other ways to accomplish this.

1. Write a function that takes the keywords for a quagmire 3 cipher and generates the key
alphabets for the periodic polyalphabetic substitution cipher.

2. Write a function or script to encipher a text with the quagmire 3 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

3. Write a function or script to decipher a text with the quagmire 3 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

4. Write a function or script to perform a dictionary attack on a ciphertext encrypted with a
quagmire 3 cipher.

5. Write a function that takes the two quagmire 3 keywords and outputs the keys of the
substitution ciphers and Vigenère cipher into which the quagmire can be factored.

Exercises

1. Factor the quagmire 3 cipher in the example above, and find the keys of the factor ciphers.

2. Encipher this text with the keywords NURSERY (alphabet) and RHYME (shifts).

THE CAT AND HER KITTENS THEY PUT ON THEIR MITTENS, TO
EAT A CHRISTMAS PIE. THE POOR LITTLE KITTENS THEY LOST
THEIR MITTENS, AND THEN THEY BEGAN TO CRY.

3. Decipher this ciphertext with the keywords DOLPHINS (alphabet) and FISHBOWL (shifts).

UXDAPTKWHERHJUJPNESLUUHKUCGFKOKNQFDBZFKNXSFQGUAUGVDAUO
MBIPBBLUYGVMSEJOSHUVCJQVBNICDFLBWSYQRWUSKCRRBKQSWKJCDX
UTSLGEJIZFASRMKGOBPSGEJIKUDGYCJARLRHTFOWVBNGMMEKEOOVNA
KHXVPVQEUXGFHAZSRXCUDGJCUALBLLTZSHUSYDTGPJEFHUJPDAUGOA

XSIKKJJCSMSEGBZGTNTDCTWBTBKHCXSLGEDAUJYCTFDAUZPCQIJIEL
LKUESXGBLQT

4. Break this ciphertext with a dictionary attack. Both keywords are common five-letter English
words.

OHSRHJIURBYNPSWGTIMBOHFCMYNHECDEBJVUBPAAUNEJIOHFOCJLIM
TVEFKJORPKWYROCJGNAACELEFXFECRHRLPKWYR

madness's book on classical cryptography
unit 49: quagmire 4 cipher
last modified 2020-10-03
©2020 madness

Unit 49
Quagmire 4 cipher

The quagmire 4 cipher (also called polyalphabetic type 4) uses mixed alphabets for both the plaintext
and the ciphertext. The mixing is generated from two keywords. The ciphertext alphabets are shifted
versions of the mixed alphabet, and the shifts form another keyword, as they do in the Vigenère cipher.

Here is an example. The keywords are QUAGMIRE, KEYWORD, and CIPHER. First, look at the
table of key alphabets. Notice that the shift keyword appears under the first letter of the alphabet key.

plaintext: quagmirebcdfhjklnopstvwxyz

 C CFGHIJLMNPQSTUVXZKEYWORDAB
 I IJLMNPQSTUVXZKEYWORDABCFGH
 P PQSTUVXZKEYWORDABCFGHIJLMN
 H HIJLMNPQSTUVXZKEYWORDABCFG
 E EYWORDABCFGHIJLMNPQSTUVXZK
 R RDABCFGHIJLMNPQSTUVXZKEYWO

Now we encipher a short message with this key table. The center row indexes the key alphabet.

THIS MESSAGE IS ENCRYPTED WITH A QUAGMIRE CIPHER
CIPH ERCIPHE RC IPHERCIPH ERCI P HERCIPHE RCIPHE
WZVR RHYDSLB FY SBTAWEAZU VFWZ S HYAHNVPB JJROQA

There are some special cases of the quagmire 4 cipher:

• period = 1: monoalphabetic substitution
• unmixed ciphertext alphabet: quagmire 1
• unmixed plaintext alphabet: quagmire 2
• same keyword for plaintext and ciphertext alphabets: quagmire 3
• both alphabets unmixed: Vigenère cipher

The quagmire 4 cipher can be factored into a Vigenère cipher sandwiched between two
monoalphabetic substitution ciphers. The final substitution cipher uses the same keyword as the
quagmire’s ciphertext alphabet keyword, while the first substitution is the inverse of the key generated

from the quagmire’s plaintext alphabet keyword. The key of the Vigenère is the shift keyword of the
quagmire encrypted by the inverse of the second substitution cipher.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XVIII.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/QuagmireIV.pdf

Programming tasks

1. Write a function that takes the keywords for a quagmire 4 cipher and generates the key
alphabets for the periodic polyalphabetic substitution cipher.

2. Write a function or script to encipher a text with the quagmire 4 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

3. Write a function or script to decipher a text with the quagmire 4 cipher and given keywords.
You may use the function from Exercise 1, but there are other ways to accomplish this.

4. Write a function or script to perform a dictionary attack on a ciphertext encrypted with a
quagmire 4 cipher.

5. Write a function that takes the three quagmire 4 keywords and outputs the keys of the
substitution and Vigenère ciphers into which the quagmire can be factored.

Exercises

1. Factor the quagmire 4 cipher in the example above, and find the keys of the factor ciphers.

2. Encipher this text with keywords FOUR (plaintext alphabet), LETTER (ciphertext alphabet), and
WORD (shifts).

SEEMS LIKE ONLY YESTERDAY I LEFT MY MIND BEHIND DOWN
IN THE GYPSY CAFE WITH A FRIEND OF A FRIEND OF MINE
WHO SAT WITH A BABY HEAVY ON HER KNEE YET SPOKE OF
LIFE MOST FREE FROM SLAVERY WITH EYES THAT SHOWED NO
TRACE OF MISERY A PHRASE IN CONNECTION FIRST WITH SHE
OCCURRED THAT LOVE IS JUST A FOUR LETTER WORD

3. Decipher this text with keywords FOUR (plaintext alphabet), PIGMENT (ciphertext alphabet),
and COLOR (shifts).

MYCSWLPRQAJWJIFMPXASGCXCFUQNQRCQQSMZXXAPZXXTHLQMQVHYVY
CMQRCMZDZYPAYPTHQDRUYSSONWMIVQVRUNIFYCCPPLQMQVGASWPUCL

QUHXPNPZCPQBJEPTGFNSTFMPXZPZYLQVMPXSPOAPZAQTCIFDTCPPTW
ZSSYQBQAQCONPNQEYBSUDYHNQWIRCYRYBMFXSFUQNCSCDZUHRYNYWZ
XCPPHYLQVQPSFPCQQSVJDZYVMPSTHSSXYHAAXCSCWOESHSXWPPDOSF
DTXCULPFQAJTVQAPESIBQXCPWMCZYYDRMXBQFXSRUTWWTDDZYFMPSD
AJDVP

4. Break this ciphertext with a dictionary attack. All keywords are common five-letter English
words.

XZPRVLJINCQXKYWVKXJJQXPRVCARJTCQSJDQCRECDGGIXTKKYWDUWJ
XBKTZCAKJAHRKMZFNMNZLBLRXVAIRZGQXGIXTKPTFNCQJUCIPCDQCI
ZSLJINCQXSJDQCRECDGRHKWMPAANXKBTCQHRQLUMHCAOVCWXZOAANI
HJVOSNWCVTPLJNCQJTQYIOHBMVWHRIIPMNAGLGOUXLGJUXJJDUKWJN
QIPVAOIOJQYIAANJYHKFXKAVCQOJGNAKWJNXKACGUPFCLCQLKQOMJD
NAKACCZRHCALRHKXZOCCLTKMDNQSZFVAKECDG

madness's book on classical cryptography
unit 50: hill-climbing attack on periodic polyalphabetic substitution ciphers
last modified 2020-07-16
©2020 madness

Unit 50
Hill-climbing attack on periodic polyalphabetic substitution
ciphers

The main idea of this attack is an extension of the hill-climbing attack on the monoalphabetic
substitution cipher. We find the period m, and so must work with m key alphabets. In the earlier attack,
we swapped letters in the key alphabet and kept the new key only if the fitness of the deciphered text
improved. Here, however, the key space has more dimensions, and it is easy to get trapped in a local
maximum. To avoid this, we will take turns randomizing one of the key alphabets and climbing back up
the hill.

Here is the algorithm:

1. find the period m
2. set big counter equal to 0
3. set best fitness equal to the fitness of the undecrypted ciphertext
4. set the parent key equal to a set of m key alphabets

(best to choose key alphabets that maximize the monogram fitness of the plaintext)
5. while big counter is less than some large number

a. for each i in 0, ..., m−1
i. randomize the ith key alphabet
ii. find plaintext by deciphering the ciphertext with the parent key
iii. set the parent’s fitness as the fitness of the plaintext
iv. set little counter to 0
v. while little counter is less than about 1,000

- copy the parent key into a child key
- swap two randomly selected characters in the child’s ith key alphabet
- find plaintext by deciphering the ciphertext with the child key
- set the child’s fitness as the fitness of the plaintext
- if the child’s fitness is greater than the parent’s fitness

· copy the child key into the parent key
· copy the child’s fitness into the parent’s fitness
· set little counter to 0

- increment little counter

- if the child’s fitness is greater than the best fitness
· set the best fitness equal to the child’s fitness
· copy the child key into the best key
· set big counter to 0

- increment big counter
6. output the best key

The limit on the big counter that we like is about 1,000,000 times the period squared.

Reading and references

Thomas Kaeding, “Slippery hill-climbing technique for ciphertext-only cryptanalysis of periodic
polyalphabetic substitution ciphers,” Cryptologia 44:3 (2020) 205-222, DOI:
10.1080/01611194.2019.1655504

Programming tasks

1. Implement the attack. You will find that when written in Python, the attack takes a long time.
You may want to write another version in a lower-level language.

Exercises

1. Break this ciphertext. The keys have a hidden message for you.

PWNYPCGUUMYYUIAGGUGFEMWLRNYAHOGGHBAEWCXWPAQSXPAGNITNIX
WBQFKMLVIFHDTLSMADKMWWXXNYCQYBVWIKHWYARVTKXXAVGBGLVITN
WVNMKMUWRYQWRNEHYBCHUTNYQKYHIXWFWTQSLVYKRKZUHXZKVMQPHC
YALCRWHDKGJGTNOKSHXPAPHAGWQVGUHCXYUIAMXPKLXQRWKWNBXVTM
EMGGIXWYOMADHKGFWQQYQKYAHMHXRBYLRNYAHWRYXMZKFBEIXXIKWY
JWUCCARGTKNMNMLBGEHCXECDTVHLKIKMWQKWYSREOYOTYAHWWMLNAU
XVGPHBYAHTGLVTGMYCYYNMYALCTISXWMYVKMCVTQXXMKLVIHYBYQRY
GHSTGLXXIWXPGKWTQHAUGIOMALHDTXLBXMWYTEROKTHDJWWBYBIWOM
AWXIOWOWGXSMKMQNQWWLYBHYFMHYUDTHVXTGWCCWKWNYQDKULYAMHK
YAWDEHYGTNOKAUKQGPHCUYFMYKWFGEPEOAHWWELMWMKQXLKXZEGMDI
OWKGXPGYSYAKHVYYJMTXXPGYUDKXWLYYQKYAHLWNGMSWVCTXXPGEWV
INWOGQUQYMHVZIRVKMLDJYVCZXIMWWGDJWLUUYFDTXFXZGXTGLVUKU
UXRWXMTKVDJYXQRIWLYMKMQNQWWLYBHYFMOHQDKGYWQECNZKXPGKPX
WWXPGFHCXYJMCKLDYWQXSBXGALFXRIRCGVEIRSSBGVHLGLVXWLAPTQ
HBGEWBIWOIKZQXWYQDTXCXZKOWSZYWIWLUZLXWQLRWUHOXIBDMHHUD
JWGMQYCQSHYBKGXBTVYLYBRVXBQLGBXCUEWLGFHVYQKQQWWDYAWDYB
PMCWKWNIOWSGHKYHLVKMLWYWFXSMWLYBPUGVLWYWOIZIRVEHYBHBUC
YPLCKMXXEHYBUEWVGMVCAMHTQBXMKMKWNLLVOWXPAMXQRWEMGGGMOB
GMNMKWYQHCJHYTNGRDWWZMAEREWLHTBWVESMLTEHYBXHFQGMCPAVUM
AUKMNSHDAZUMAMHBQWZMQHIDGUKVTEROKUWTXHSPKLXQOYXQTGKXCW
ZMWSREWVLCOHZMWSRNYAHWWMLNAUXWSVGMOBSPGKPMSMRNKMKWXIUM

OBSQYYXMNMKQXBQDWHGEOMLXSBQDJWXQRWVQSUHDJWWBYBIWOMVLWW
WDKHQWSVSTAUHUGGXXSMKMQNQWWLYBHYFMCWKWBWEMGGAXWDLVIMRP
GESITNWLJBHFGMKWYMHLJGRTTZLLAEVXUALCYBFWYBRVTXAPKUKQXI
HWPBQBGUHVYVHLAVHCEHYBXHFQGMCPALHHUWUQGGFMNYQMDIRVGGXQ
AEJBTQXPKGXPGYUMALRNMBRLJWPQXMUIRWGQOBQMGGJQSWHBKGJYJS
VQOLWVNURUUNXWYBRVNNHQSEWBIWSWWMXXYAHQSCHLYBRVTXLKGYVW
SVXMOAQQVNHCKGXXEHYBXULMSMLNKUOQYWUWYNUMMSREWFHUMWUCYA
HCGYUMJHAMBWUUGKHTEMKMMWJQSGLVIHIGJYXGGUWVNHIXWSREWLRL
KWXIYHAQYQHPAPHWQLRAGWQWQOHQYLOXCECDTAHTUSRECBXPYAHQRI
UXBWPMSMRNTMKMWXWLGMVXHSREWLRLKWXIKMLCSHWLOBGMSMXPAMWK
BYQLGLLVYWFPSHOXISWBGYFLTFSWSBHKMSWKBYQLGLLVXNUFGBOTAG
FMKMLCCBXPXNFPAVZWSUHCYAWDCWKXUWXXJWOYEHYDTJYMQEXPGUKW
TLWVNNQYWWGQOMWAKELDEMKWYIOWINHCEHYBWYFMXMWAKELDEYQKOH
QDWHOWWWHCXWQDKYONTKYCJWUQSZEXYAREWIHXUEHCKGXXAGHGAZHX
HURXUWUWYBRVAGGYWHVYGKLDEYVQYLWIXHQDJWWBYBIWOMWVNYVGGQ
LTQYOGASVCASXXEHYGGURUGBQYGYFMCWRNHWUUAGCOKXXCYHCXZBQB
GMYBSQHXSECWXDCXZKRAGVLMSUH

Part IV
Transposition ciphers

madness's book on classical cryptography
unit 51: transposition ciphers
last modified 2020-10-03
©2020 madness

Unit 51
Transposition ciphers

A transposition cipher is a cipher that rearranges the letters of a text, but does no substitutions.

Detecting a transposition cipher can be done by looking for a high monogram fitness but a low
tetragram fitness. The index of coincidence should be close to that of English, since IoC does not
depend on the order of letters. Note that for short texts, we cannot rely too much on statistics.

There is a type of transposition cipher called a route transposition. It involves choosing some
special path through the text and adding letters to the ciphertext as we traverse that path. Since it does
not typically use a mathematical system for choosing that path, we will not be discussing it any further
in this book.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter III.

Programming tasks

1. Write a function to return a boolean value representing whether a given ciphertext is likely to
have been encrypted with a transposition cipher.

Exercises

1. Which of these are encrypted with transposition ciphers?

a. IENEEMEEMIENYNEICOEMHTCAGTIAYRBETHETFEIOOEHHRLELTLESGIMH
NEEOEEMIENIEEINMEMOY

b. EEISEHEEISEHSIEYHJENDQNUDQSOEMAYQUEQJESRUEUJFFEMPFEQUSHO
JEEISEHEEISEHSIEYHJE

c. JMSTUYTWIBCZLCBNHIPWIBPESIUNNIQDSRSZYLDDFITCLTULTCZDPIBG
DPCZLCBNHRWMNYIDSWLTUIWMBTCSWMQEMQHYIYRYTWIBCIDMQJDAJFCO
MEDMQWIHPHODPIBIDSLCSHSYSTTPIBCIDMQYMEBHISWOBMESIDSVYTRN
PHHDPIOPIYSTTLLTUTTUWFMNY

d. ITIOIIUIALBCTIOTANTSISYDTOEOHRMLESENYROZTRNHDOTENONYSIEE
DIELAYOSSDMAIRENRBHDLFDNPMGHEATVRHNYTVITFEGHIIRREMIRUOTN
HSUIFGREALHNTKISTSSIEERGUHAOEDAEONDUENEEYPEURARSOVTSHNTT
COEMRNOPEOACIGAENEMFATUAAHNIEIDSHTIPGDSGPHDUDUETNEEAEOER
EALEHEMMNNRSYRHFGDIOHRSOAATMRHNYORTWSRIOVEUNINSNLSNMSNOE
OGNRHVMTTSEMFARTLEOIABHTUREREHPTEPLSDSRURARSGSTNDBTLUCIS
NOTMNHEEFTALTHIRBNMRNYSIEMENETEDIOFSYOAFSSEHYGRGRISYDTNO
HECELRESST

madness's book on classical cryptography
unit 52: permutations
last modified 2020-07-09
©2020 madness

Unit 52
Permutations

Suppose we have an ordered collection of objects, such as [⌂, ○, ☼, ▲, ■, ♦]. A permutation of this
collection is a reordering of the objects. For example, we might want to reorder them to [▲, ⌂, ○, ♦, ☼,
■]. We have moved the 0th (because we start counting from zero) to the 1st position, the 1st to the 2nd
position, the 2nd to the 4th position, etc. We will write this permutation as (1 2 4 0 5 3).

We need a way of combining two permutations. Suppose we have permutations P and Q. The
composition of them P ◦ Q is the permutation that is equivalent to permuting the set of objects first with
Q and then with P. For example, (1 2 0) moves the 0th object to the 1st position and the 1st object to the
2nd position and the 2nd object to the 0th position, and (2 1 0) reverses the order of the three objects. The
composition of the two, (2 1 0) ◦ (1 2 0) takes the 0th object to the 1st position and then keeps it in the 1st

position. It takes the 1st object and moves it to the 2nd position and then to the 0th position. It takes the
2nd object and moves it to the 0th position then to the 2nd position. The overall rearrangement is the same
as (1 0 2).

The identity permutation is the permutation that doesn’t do anything. It is (0 1 2 3 ...). The
composition of any permutation P with the identity leaves P unchanged.

Every permutation has an inverse. The composition of a permutation with its inverse is the
identity permutation. In other words, the inverse permutation undoes what the permutation does.
Finding the inverse of a permutation is just like finding the inverse key for the monoalphabetic
substitution. For example, let’s find the inverse of (2 0 4 1 3). First, write the permutation under the
identity:

(0 1 2 3 4)
(2 0 4 1 3)

Then, reorder pairs (shown with the same color) so that the second row is the identity.

(1 3 0 4 2)
(0 1 2 3 4)

We read off the inverse from the top row. The inverse of (2 0 4 1 3) is therefore (1 3 0 4 2).

The advanced reader will notice that what we have been describing is a group. A group is a set
G and a binary operation ∙ such that G is closed under the operation, the operation is associative, G
contains an identity element, and every element of G has an inverse in G under the operation. The
permutation group is noncommutative/nonabelian, which means that if we compose two permutations
it matters in which order they are done.

We state without proof that any permutation of n objects can be generated by a series of
exchanges of two objects. This also means that any permutation of n objects turned into any other
permutation of n objects by composing it with permutations that each exchange two objects. We will
use this fact implicitly when we attack ciphers that are based on permutations. When we attacked the
monoalphabetic substitution cipher with a hill-climbing technique, we used exchanges to move from
one key alphabet to another. After all, a key alphabet is merely a permutation of the regular alphabet.

The number of all possible permutations of n objects is n!.

Python tips

The itertools module has a function permutations() that returns an object containing all
permutations of its argument. To make a list of all permutations of three objects, for example, we would
use

from itertools import permutations
list(permutations(range(3)))

Be warned, however, that Python grabs memory for storing them, so if you try to list all permutations
of more than around ten objects, it could cause problems for your computer.

We recommend that you use lists/arrays for permutations, rather than tuples, since tuples are
immutable. You might want to modify a permutation, which is not possible with tuples.

Reading and references

Wikipedia:
en.wikipedia.org/wiki/Permutation
en.wikipedia.org/wiki/Permutation_group

Programming tasks

1. Write a function to find the composition of two permutations.

2. Write a function to find the inverse of a permutation.

Exercises

1. Find the composition of (5 2 3 1 0 4 6) and (6 5 4 2 1 0 3). Take the composition so that (5 2 3 1
0 4 6) acts first.

2. Find the inverse of (7 1 3 0 5 2 8 4 6).

madness's book on classical cryptography
unit 53: permutation cipher
last modified 2020-10-03
©2020 madness

Unit 53
Permutation cipher

The permutation cipher (or block transposition cipher, or complete-unit transposition cipher) divides
the plaintext into blocks and applies the same permutation to each block. If the last block is too short, it
is usually padded with nulls to fill it out. A null is a character that carries no meaning and is used as a
filler. Often, ‘X’ is used, but other choices are underscore (‘_’) or random letters.

Let’s just do an example. Suppose we want to encipher this short message with the permutation
(4 2 5 1 3 0):

THIS MESSAGE IS ENCRYPTED WITH A TRANSPOSITION CIPHER

First, we should break it into blocks of six letters and pad it if necessary.

THISME SSAGEI SENCRY PTEDWI THATRA NSPOSI TIONCI PHERXX

Then we apply the permutation to each block to get the ciphertext:

ESHMTI IGSESA YCERSN IDTWPE ATHRTA IOSSNP INICTO XRHXPE

The key of a permutation cipher is the permutation itself. Its inverse permutation is the key
needed to decipher a text. Often, the permutation is written as a keyword. There are two ways to use a
keyword to convey a permutation: with or without repeated letters. The way it works is that numbers
are assigned to each letter of the keyword in alphabetical order. For example:

K E Y W O R D
2 1 6 5 3 4 0

If we are dropping repeated letters:

R E P E A T E D
4 2 3 0 5 1

If we keep repeated letters, we number them from left to right. So in this example, we number the ‘A,’
then the ‘D,’ and then the three ‘E’s:

R E P E A T E D
6 2 5 3 0 7 4 1

Breaking a permutation cipher by hand is done by “anagramming,” i.e., by rearranging letters
and looking for meaningful arrangements.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 9 and 64-65.

Programming tasks

1. Write a function to generate a permutation from a keyword. Allow for both ways of assigning
numbers to letters (with or without repeated letters).

2. Write a script to find possible keywords from a permutation. Allow for both ways of assigning
numbers to letters.

3. Write a function to pad a text given a block size.

4. Write a function or script to encipher a plaintext with a permutation cipher.

5. Write a function or script to decipher a ciphertext with a permutation cipher. Your function that
inverts a permutation could be useful.

Exercises

1. Find a possible keyword for the example encipherment above.

2. What is the permutation corresponding to the keyword PERMUTATION if we drop repeated
letters? What if we do not drop repeated letters?

3. Encipher this text with the permutation (2 3 0 1 4).

ROUND AND ROUND SHE GOES WHERE SHE STOPS NOBODY KNOWS

4. Encipher this text with the keyword POKER.

SHUFFLING A DECK OF CARDS CAN ON ONE HAND GUARANTEE
A FAIR GAME BUT ON THE OTHER HAND PROVIDE AN
OPPORTUNITY TO CHEAT THE DEALER CAN MANIPULATE THE
SHUFFLE TO POSITION FAVORABLE CARDS INTO HIS OWN
HAND THIS MUST BE DONE CAREFULLY AND QUICKLY TO
AVOID DETECTION BY THE OTHER PLAYERS

5. Decipher this text with the keyword REPETITION. We will not tell you whether repeated
letters have been dropped from the keyword.

LTRELAITNSIIAOHIETETLATCERRYNUOEIHQUNAGSFIEAETPREITAIN
DILTREELTNRSDWIO

6. Break this ciphertext by hand. What keyword was used?

MCEOWLETTHEOOLODWRSATNFRIIOTPSHINPOCWWREESEBLEILIOPRXL
WFGENACHFEOTCOMNOMSEPRIHLESLAWWFSEAAMONMUCSNNEOOLYHATE
OVHELANHEINTMCIOGNETOHMNFUSFYHLHEELTSETRETTHFEOTTBXUET
CEERNVTGAEHNRFEOHMLETROHSETRET

madness's book on classical cryptography
unit 54: heap’s algorithm
last modified 2020-07-09
©2020 madness

Unit 54
Heap’s algorithm

There are several ways to generate all permutations of a set of objects, and Heap’s algorithm is one of
them. It swaps two elements at a time in such a way as to run through all permutations without
repeating any.

Suppose we have n objects. The objects live in an array [Ai] where i runs from 0 to n−1. In the
following algorithm, the array [ci] holds a collection of n counters.

1. output A (the unmodified array)
2. set all ci equal to 0
3. set i to 0
4. while i is less than n

a. if ci is less than i
i. if i is even

- swap A0 and Ai

ii. if i is odd
- swap A c i

and Ai

iii. output A
iv. increment ci

v. set i to 0
b. if ci equals i

i. set ci to 0
ii. increment i

Python tips

Functions can be passed to functions. Here is a simple example:

def function1(x):
print(x)

def function2(n,f):
f(n) # call function f with argument n

for i in range(5):

function2(i,function1)

The result is to count from 0 to 4.

Reading and references

Wikipedia, en.wikipedia.org/wiki/Heap's_algorithm

Programming tasks

1. Write a function that takes an array and a pointer to another function. For each permutation of
the array, the other function should be called with the permuted array as an argument.

Exercises

1. Wrap a script around your function and add another function to print the array. Use it to print all
permutations of four objects. Check by hand that they are all present. There should be 4! = 24 of
them, and they should all be distinct. Now be happy I didn’t ask you to use an array of five
objects.

madness's book on classical cryptography
unit 55: factoradic numbers and permutations
last modified 2020-07-10
©2020 madness

Unit 55
Factoradic numbers and permutations

Factoradic numbers (factorial numbers) are numbers expressed in mixed-radix form where the radices
(bases) increase by one for each digit as we move to the left. Why this is related to factorials will
become clear. The radix for the rightmost digit is 1, so that the last digit of a factoradic number is
always 0. The radix of the digit to its left is 2, so that that digit can be 0 or 1. The radix of the digit to
its left is 3, so that digit can be 0, 1, or 2. This continues as far as we need to hold whatever number we
have.

Let’s look at an example of converting a decimal integer to a factoradic number. Suppose we
have 1234510 (the 10 subscript lets you know beyond all doubt that this is an integer in base 10). What
is this number modulo 1? Try it and see. The answer is 0. Hence the last digit is 0. So far, we have
1234510 = ... 01. Here we have placed a 1 subscript to indicate that the last digit is in base 1. We subtract
that 0 from 1234510 to get 1234510. This may sound ridiculous, by we are establishing a pattern. Now,
the next digit to the left will have base 2. Now 1234510 modulo 2 is 1, so that digit is 1. Our number is
shaping up: 1234510 = ... 1201. Subtract that 1 from 1234510 to get 1234410 and divide by the base to get
617210. The next digit to the left has base 3, and 617210 modulo 3 is 1, so that digit is a 1, and we have
1234510 = ... 131201. Subtract that 1 to get 617110 and divide by the base to get 205710. The next digit has
base 4, and 205710 modulo 4 is again 1, so now we have 1234510 = ... 14131201. Subtract that 1 and
divide by 4 to get 51410. The base of the next digit is 5, and 51410 modulo 5 is 4, so we now have
1234510 = ... 4514131201. Subtract that 4 and divide by that 5 to get 10210. The next digit has base 6 and
we get a 0, so 1234510 = ... 064514131201. For the next step we have 1710. The base of the next digit is 7,
and we get 1234510 = ... 37064514131201. Since that leaves 1410, when we divide by 7 we get 2. We can go
no further, and the result is that 1234510 = 2837064514131201. Some might write this as 2:3:0:4:1:1:1:0!.
There is another way to find the factoradic representation of an integer by working left to right; we save
its discovery for the reader. To convert our example back to a decimal integer, we use factorials:

2837064514131201 = 2 × 7! + 3 × 6! + 0 × 5! + 4 × 4! + 1 × 3! + 1 × 2! + 1 × 1! + 0 × 0!
 = 2 × 5040 + 3 × 720 + 0 × 120 + 4 × 24 + 1 × 6 + 1 × 2 + 1 × 1 + 0 × 1
 = 10080 + 2160 + 0 + 96 + 6 + 2 + 1
 = 1234510

Notice that

 1201 = 1!
 130201 = 2!

 14030201 = 3!
 1504030201 = 4!
160504030201 = 5!

etc.

Factoradic numbers are related to permutations in a natural way. Suppose we have n objects.
There are n ways to place the first object. The name of the box into which we put the first object is a
digit (as we call it, even if it is bigger than 9) from 0 to n−1. There are n−1 ways to place the second
object, and we can record that choice as a digit from 0 to n−2. By the time we get to the last object,
there is only one box in which to place it, so there are 0 choices, and the last digit is 0.

The mapping from factoradic numbers to permutations is called a Lehmer code. When the
integers 0 to n!−1 are converted to permutations of n objects, they come in lexicographical order, i.e.,
in order as if in a digital dictionary and the numbers in the permutations are their letters.

Python tips

The pop() function deletes the nth item from a list. The remove() function deletes an item based on its
value. For example, this sample code removes the letter ‘X’ from the list, because it is the third element
(counting from zero). Then it removes ‘B.’

letters = ['A','B','C','X','Y','Z']
letters.pop(3)
letters.remove('B')

Reading and references

Wikipedia, en.wikipedia.org/wiki/Factorial_number_system
and en.wikipedia.org/wiki/Lehmer_code

medium.com/@aiswaryamathur/find-the-n-th-permutation-of-an-ordered-string-using-factorial-
number-system-9c81e34ab0c8

stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms

2ality.com/2013/03/permutations.html

Programming tasks

1. Write a function to calculate the factorial of an nonnegative integer (maybe zero). Avoid using
recursion.

2. Write a function that converts a nonnegative integer to a factoradic number. We suggest that you
store factoradic numbers as arrays of integers.

3. Write a function that converts a factoradic number to an integer. Be careful that only one object
can be placed in any one box.

4. Write a function that takes a factoradic number and a length m and returns a permutation of m
objects. Be careful to add 0 digits to the left if the factoradic is too short. Be careful that each
factoradic digit x represents the xth empty box, which is not necessarily the xth box overall.

5. Write a function that takes a permutation and returns a factoradic number.

6. Write a function that uses your other functions to take numbers n and m and returns the nth
permutation of m objects.

7. Write a function that uses your other functions to take a permutation and returns an integer n to
indicate that the permutation is the nth permutation.

Exercises

1. Find 1000! How many zeroes are at the end of it?

2. Find the 101st permutation of seven objects.

3. Which permutation (zeroth, first, ...) is (4 9 2 1 6 8 6 7 0 3)?

madness's book on classical cryptography
unit 56: brute-force attack on the permutation cipher
last modified 2020-07-09
©2020 madness

Unit 56
Brute-force attack on the permutation cipher

To perform a brute-force attack on the permutation cipher, we need to be able to try every possible
permutation. At this point, you already have the tools that you need.

Programming tasks

1. Implement the attack. Use tetragram fitness.

Exercises

1. Use your attack to break this ciphertext from the 2006 British National Cipher Challenge:

rlboy itdvs tennc rmaid toafl ubhle cneda nmoam nrdie
ficeh shoif sjmea hstsy nsiap sedsv mseel eopyl tndda
meoeb eopyl hndti ieedm artre eanne cettc oceyt hruea
yeebr iqrue ndrae eidrd tecdt eaokt hetsh asinp ndmie
aetmh uirng yenrd orocu damnm rdaan moeet frbka etohr
tdmie nrear nneaa eodst toeuk edadn yrsot hetsh fsiop
retfh fcehn aelte lotut etohn rproe gftao atemn tirnt
ihoet dorrl sisph etohn rpiom entca tionf pceer nntgi
eoalp hsocn eeisn teang tshsa drier tegar encco tirnn
rwhoe todfs rfhie rlsot ahdet repap ocaen ibfra ssthi
raqdu tionn dmhee reirt neaan oaics iintd woonn tchhi
tfhae ufeeo mpreo taaty oshmi dnmte deenp ruyao toest
eirna nrvye aveer ymnad rciun incso brdae zhlae ndair
cfeef intgi eetrh rnoof ouyno onrya mofuy ifaay oslya
liulw esawn hortt toenc arrya rotuy lrpie odafn oords
hgitn asihs yblel rroou irdge nnvoe dabro ietvh yocrt
rstio trhao lnieo onsco oomdm etrhe unvga ydabr amcmo
tonfd mahde lailr tdosr envci xxnxt

madness's book on classical cryptography
unit 57: hill-climbing attack on the permutation cipher
last modified 2020-07-10
©2020 madness

Unit 57
Hill-climbing attack on the permutation cipher

When we developed the hill-climbing attack on the monoalphabetic substitution cipher, we took a
parent key, which was a permutation of the alphabet, and swapped two letters to form a child key. If the
child key resulted in a better fitness for the plaintext, then the parent was replaced with the child. We
will do something similar here.

We will make two important modifications to the algorithm. First, there are two ways in which
we will want to generate a child key from a parent. One is by swapping two randomly selected
elements in the key. The other is to roll the key a random number of steps. By this we mean to cut the
key somewhere between two elements, and then to swap the front and back pieces. So, for example, if
we cut (0 1 2 3 4 5) between the 1 and the 2, we would get (2 3 4 5 0 1); we have rolled the permutation
two steps to the left.

The second modification to the algorithm is to add a margin of error. With permutation ciphers,
it is easy to get trapped in a local maximum fitness. But we seek the global maximum. So we add a
little leeway to the hill-climbing and allow it to take small steps toward lower fitness once in a while. A
margin that works well for us is 0.15, and the probability of stepping downwards is taken to be 5%.

The algorithm does not find the length of the permutation. Usually, the key length divides the
length of the ciphertext evenly, but not always. The key length must be input to the algorithm.

The algorithm:

1. set the best fitness to the fitness of the unaltered ciphertext
2. set an initial random parent key
3. set counter to 0
4. while counter is less than about 100 times the key length

a. copy the parent key to a child key
b. flip a coin
c. if heads

i. swap two randomly selected elements of the child key
d. if tails

i. roll the child key a randomly chosen number of steps
e. find the plaintext by deciphering the ciphertext with the child key

f. calculate the new fitness of the plaintext
g. if either (new fitness exceeds best fitness) or ((new fitness exceeds best fitness minus
 the margin) and (we roll a 1 on a 20-sided die))

i. replace the parent key with the child
ii. replace the best fitness with the new fitness
iii. set counter to 0

h. increment the counter
5. output the parent key

Python tips

The shuffle() function from the random module does what it says. For example, this block of code
will fill an array with the integers 0, ..., 9 in random order:

from random import shuffle
x = list(range(10))
shuffle(x)

Programming tasks

1. Implement the attack. Use tetragram fitness. Experiment with changing the margin and the
probability of stepping downward with some ciphertexts of your own choosing or making.

Exercises

1. Use your new attack to break the exercise from the previous unit.

2. Break this ciphertext.

STIOTASDGUTNINEFILMISTGEMEINNSATDESETASKSILUTTOLBSNLCI
TESYLNOELFVOETORMHRLYUCGIOVNEROOEKGTTPNETECOLERMOIRBDE
OMERGEITNTHERIPMWAIIDNRNKHEGMTOSESOWMNTNEHBETHCELSAKNO
DSHWULMNIDTEAEITDHVOUBWEOLDLNCGALITOLTESDTEHWEIMPAAIRA
GTUNSISJJPTTAUMHEOFTELNHTEADTSPNTATEHIOGTERWHHYTITRNOD
UHANUSROYOPOHUISYIYBORNGKEUSRNETHITNIGTSBTUITPVHIEELHS
CTTRUAETAHTRYILVLDRYIENSOUNESTAELOESTDTHERIPMWAAXAXGIN

madness's book on classical cryptography
unit 58: matrix transposition
last modified 2020-10-09
©2020 madness

Unit 58
Matrix transposition

A matrix transposition is the simplest form of columnar transposition cipher; hence, it is also called the
simple columnar transposition. Encipherment is done by writing the plaintext into the rows of a matrix,
then reading the ciphertext from the columns. Typically, the plaintext fills the matrix; if not, then nulls
may be added. The key is the size of the matrix. Since we know the length of the text, we often only
need one number to specify the key.

This cipher is also called a scytale cipher. The scytale was a rod around which a ribbon was
wrapped. The message was written on the ribbon. When the ribbon was unwrapped, the letters on it
would be in the same order as after a matrix transposition.

For example, let’s encipher this short message with a 6×8 matrix:

THIS MESSAGE WAS ENCRYPTED WITH A TRANSPOSITION CIPHER

The message contains 47 letters, so we will add one null to the end. Written in the matrix, it looks like
this:

T H I S M E S S
A G E W A S E N
C R Y P T E D W
I T H A T R A N
S P O S I T I O
N C I P H E R X

We read off the columns to get the ciphertext:

TACISN HGRTPC IEYHOI SWPASP MATTIH ESERTE SEDAIR SNWNOX

Reading and references

Wikipedia, en.wikipedia.org/wiki/Scytale

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 82.

Programming tasks

1. Write a function or script to encipher a plaintext with a matrix transposition for a given size of
the matrix. Allow for the possibilities that nulls are or are not added to fill the matrix.

2. Write a function or script to decipher a ciphertext with a matrix transposition for a given size of
the matrix. Allow for the possibilities that nulls are or are not added to fill the matrix.

3. Write a function to find all factors of an integer. We are using small numbers, so it is not a
problem to do an exhaustive search over all numbers less or equal to the square root of the
integer.

4. Write a function or script to break a ciphertext that was encrypted with a matrix transposition. It
would be reasonable to check all factors of the length of the ciphertext first, and then to check
all other possible matrix sizes, in case nulls were not added. Be careful that you place the empty
parts of the matrix correctly.

Exercises

1. Encipher this text with a 12×15 matrix:

Call me Ishmael. Some years ago, never mind how long precisely, having little
or no money in my purse, and nothing particular to interest me on shore, I
thought I would sail around a little and see the watery parts of the world.

(from Moby Dick by Herman Melville)

2. Decipher this ciphertext with a 13×18 matrix. Is the matrix filled completely?

TDFHEGATRAGOUOEWAYLDLIRHLTMWHNEAEETDLLAAAIDDDEDTFIOBPL
TLTNPDHEFWUPKEEHEMOINEAREWWDESEWRCTNDAIABFSLNTEODERTSR
ELAUYNHENEHHUNENPYIIXDAASCFCOANMIOBNHETHNRESSNUDHAHOHD
FETTCAENILISEEEHKLSDMYSOEMNEEOUAASSFTECSTNRLNEPBHDEIOG
VLDTIOIHB

3. Break this ciphertext:

OONEOLDOSHEHMOSNKDDNISMTADIPFHEEHIHFEEIRRSAHEMFINITEDF
DEMRILORMTSEHAFLAAEMOROSOADINSYDNDWONMEARHSDEAYYWAKITL
HMIBDCBTLIVENRFOOSRITLOETEDGOTRUHOVIESGHDWWURRREWIOTLS
TAHHBAILANDNOIPHBAELNBIDBESCDIEOTNESLKAEDTOETSUSGDFEEL
LBHVOIITHRDOVBILYEEFFZHAERREATYABRFUEEPGEMRCTSREIALOLP
OAEMKLLCDTNLFPERMDIAEIHDAYYTLNSSINNHGEINMTHEEAHNHDEHSN

DOHESDMEHEICTIGSMIRSTSFILFOLNWEENELOAOSAHUYTAENCSYMWUB
YELDOSMTOTAE

Challenge

Think about triangles.

IAAUSNPOETOHAUNRGSXTGNTQDSRDERENLSILXROGTUOOEAAYTDAOAEIOLHA
FNWNSARTTFNEDEARTEEDHBIRITDSSTEHOLCOOAIOHTBIFIFLARULBAOUAON
YRNTTSRRTMRGOOWSTDYIJTPUURTTATUHEINIOBTSARSDTOUTTHMHURTKAIT
NOINTSOKROOIF

madness's book on classical cryptography
unit 59: twisted scytale
last modified 2020-08-07
©2020 madness

Unit 59
Twisted scytale

The twisted-scytale cipher was introduced in the 2011 British National Cipher Challenge. It is a
modification of the matrix transposition (simple columnar transposition). Here’s how it works. First,
write the message into a matrix, with padding if necessary:

0 T H I S M E S S
1 A G E W A S E N
2 C R Y P T E D W
3 I T H A T R A N
4 S P O S I T I O
5 N C I P H E R X

Then, we roll each row to the left a number of steps equal to its row number (starting from zero):

0 T H I S M E S S
1 G E W A S E N A
2 Y P T E D W C R
3 A T R A N I T H
4 I T I O S P O S
5 E R X N C I P H

Read off the ciphertext by columns:

TGYAIE HEPTTR IWTRIX SAEAON MSDNSC EEWIPI SNCTOP SARHSH

The key for such a cipher is the number of columns.

We can modify the cipher to “twist” the matrix by an arbitrary number.

Programming tasks

1. Write a function or script to encipher a plaintext with the twisted scytale. Allow for an option to
change the twist.

2. Write a function or script to encipher a plaintext with the twisted scytale. Allow for an option to
change the twist.

3. Implement a brute-force attack on the twisted scytale. Remember to allow for different twists.

Exercises

1. Encipher this text with key 6 and twist 1.

One morning the old Water-rat put his head out of his hole. He had bright beady
eyes and stiff grey whiskers and his tail was like a long bit of black india-rubber.
The little ducks were swimming about in the pond, looking just like a lot of
yellow canaries, and their mother, who was pure white with real red legs, was
trying to teach them how to stand on their heads in the water.

(from The Happy Prince by Oscar Wilde)

2. Decipher this ciphertext with key 7 and twist 2.

OHVYLLINEYKBHEBHVMSUAMLRAFNATLNSABDRTPKONEETILEDAPSEED
EEEITLDEYIGLTFELDATYEWHPDHERRHTOHSWTIFHDHWWTBRETINAYHR
ROHDTHRAEETENELETWIHATXOASIAIHEEDHNHSIEIAWOBRESIHDORIF
ECLSSAYOWRBTNSNTATHETEHNDVBMTEATLSASTXGTWIEWFDOEEEUADO
LHUIERASEGOEIYHECEETHTAXHTOTAARGNGESTYFROEOFHERPWSWRGE
ANODNTAOLT

3. This is the ciphertext from the 2011 British National Cipher Challenge. Decrypt it.

TsormynhemuitlThesynpddmrdtcryefclseanpinptbsslenednul
fteomatesdepaeestvsnysdsnmesirutnitgapsarmdxcdusrVerlr
nitestixpurhepobakmsiarieiyrettFGcpgalitdwideddihdeivp
otreesrtCFDdthaahthVaptetftddthrthapngteycitfehplceCra
ebinatektadrytioosorngoxihIecfgestnoeeIesphaaetoreeiec
aaabetvdrotliusiiWcrgmranhrnmuitiinongrvheenitiecrsicm
IhcohenhotiiTtrystdXcuyatehyfhtboseatoneietictysievenh
eraoomunnasctXsbyfafspelaeSxtiagsGwenepnefaanredsfwasl
eitenhotocoipscWiseemoncblsstetiniccsevrnstldtfwmomuoi
sTecinmwcTtirvrrheerneserrntchemofhooningiteoevecenaln
owncgsdraieddanesanysnalntrnasoymennhispiaADisssIltwor
hylsqnrsstnnhcaiTgsaeptelssrndsotndahrenairlaelinyoahc
amhfouodhdXatnbesioeryaeseysoybhtuftheoitsdtpesyeetees
sbgloianemachduimaertsrnonmocsyhaecoaetatimodeinsaseae
forieitontenhavntieiatcinorltttemcyevcgmgudpamufthypnt
garwtgetetnndFpuofclhorbesybudaitegfemlohuicdrineAtrei
ithealVeptmepatcyednfmemlealaltisVDctdXrenfdesltocotgr
uihrihelurhiehesphenomsecadsmmlsiatreerierisstdditpmat
sinmpncimoeruusnntasIluyhuetexafeelciserslontiocsnkuha
llsehaiustoietgesoreetderaeheleenegaaGhalaawekdosixiat

nsiptroudnedshbesgtDhesncessreanreorsnrtaptooplufnrptd
egrFTthecenloinaittufegatnesterfostmviTtiavaditarneane
linfiowvensx

madness's book on classical cryptography
unit 60: columnar transposition cipher
last modified 2022-01-13
©2020 madness

Unit 60
Columnar transposition cipher

The columnar transposition cipher generalizes the matrix-transposition cipher by permuting the
columns before reading off the ciphertext. The key is the permutation, which may be represented by a
keyword. Repeated letters in the keyword may or may not be dropped.

Let’s do a quick example. Suppose we want to encipher the following text with the keyword
KEYWORD.

THIS MESSAGE WAS ENCRYPTED WITH A TRANSPOSITION CIPHER

First, we arrange the message into rows with the same length as the keyword:

K E Y W O R D

T H I S M E S
S A G E W A S
E N C R Y P T
E D W I T H A
T R A N S P O
S I T I O N C
I P H E R

The columns are then permuted. The permutation corresponding to the keyword is (2 1 6 5 3 4 0).

D E K O R W Y

S H T M E S I
S A S W A E G
T N E Y P R C
A D E T H I W
O R T S P N A
C I S O N I T
 P I R E H

Notice that some columns are shorter than others. The ciphertext is then read off in columns.

SSTAOC HANDRIP TSEETSI MWYTSOR EAPHPN SERINIE IGCWATH

Of course, we remove the spaces to hide the column lengths from an eavesdropper.

SSTAOCHANDRIPTSEETSIMWYTSOREAPHPNSERINIEIGCWATH

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter VI.

Practical Cryptography, practicalcryptography.com/ciphers/columnar-transposition-cipher

Abraham Sinkov, Elementary Cryptanalysis: A Mathematical Approach, 2nd edition, revised by Todd
Feil, published by Mathematical Association of America, 2009; www.jstor.org/stable/10.4169/
j.ctt19b9krf; chapter 5.

William F. Friedman, Military Cryptanalysis, Part IV: Transposition and Fractionating Systems,
Washington D.C.: U.S. Government Printing Office.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/
CompleteColTransposition.pdf and www.cryptogram.org/downloads/aca.info/ciphers/
IncompleteColTransposition.pdf

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 152-153.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter V, sections III-IV.

Programming tasks

1. Write a function or script to encipher a plaintext with a columnar transposition cipher.

2. Write a function or script to decipher a ciphertext with a columnar transposition cipher. Be
careful of where to place empty spots in the matrix, if any.

3. Make a copy of your brute-force attack on the permutation cipher and adapt it for the columnar
transposition cipher.

4. Make a copy of your hill-climbing attack on the permutation cipher and adapt it for the
columnar transposition cipher.

Exercises

1. Encipher this text with the keyword PERMUTE.

“You are old, Father William,” the young man said,
 “And your hair has become very white;
And yet you incessantly stand on your head—
 Do you think, at your age, it is right?”
“In my youth,” Father William replied to his son,
 “I feared it might injure the brain;
But, now that I’m perfectly sure I have none,
 Why, I do it again and again.”

(from Alice’s Adventures in Wonderland by Lewis Carroll)

2. Decipher this ciphertext with the keyword COLUMNS.

WNIONOIENNANNACTTEITTAITWLWCAHOEEHANSOYKSGCLSKTHLCSYEO
EAEGEAAEEOBNMOAEBEWGATLPEISEFEUMANDBOSAWUPODTCREAONLDR
TTDDAETTNTIRQSTAYDDENOCELIUORAOTCWOIWOTSALIMSEANCADCNT
ASGLMIHHRNHYVNLHLIAYTSNMOGETNODHOIUCIISIECSFTWLNRFUSMA
KSRGHKLSJINOKECWAPODBEWEUICUFTPUCRSDFSLDEFNBANEEGHI

3. Brute-force this ciphertext.

OTENAYOSTAEPFLEUSEHKTFQEEIROGOSAEUCODWNREETFUTRYFOTGHT
AYETNANTELETCBMTMSEAAMINFHUSRCEAAEASLVALSNNASNUEUSTEBS
KPTLBEVAHHUTUOEUFHOEELNINSEETELUEEOIRLWEOHTRHHMSNYURAE
KYYTSPSOELOUDTRSISZRTEPETEEHOESITAEEHSNBSOENYEATSETVTO
MASHNMFEDONUTHFEEAIGISOEAUNMEMHEOOPOSEIDEEOEOEHHLNAADO
SMIHTTQEMORJETORSEOSEEUGIHNJNVMTEUTMYGEUDTRSIUYYDLOUEI
SLOLYCRPDENHYUYYGTOITHNCROVTIOSZYGITBEGIUHOIHROROTIDOA
YNHOEOSIESNREDG

4. Break this ciphertext with your hill-climbing attack.

UHOEIHSHIBMEWTRNWBETDHTOHSYSHTHNNBETWEROHTWAOTDDROTLCO
WHOWYETEIFWACTENEDEEIEQTSTRCDFMIESTLRSELITUIRTDRRETRLD
CAAETOBECDMATAOTWNTSGLIDVSKISAGTSCTEENHWNLESUEDBSTFEST
RHSESWLEWYYLEUULSSIRNHEEDYLDRRACTHTNGSAENIOEWEIHMEOAOP
HUTEDCDTHENARHUEAAKSLGICNWRFGAANINANAMESEABSHIDAEIHLET
NIUBEOHAOEEAHAIYFEHASUHSRYUSOACAEBEIRHRRLANAEWGATPANEU
IAHELASATNWFFDUTRDHLTIITPADETRBHSLAANRAAOONOHEESNEIIHH
DRTTLODTIDUAIFGMSNIAEHUOSTEEAOVDMIEETBARSUNABEUNYDFOAE
OTHUHEEKOAYITOCTOIWLRYESEPTHEOOWSACEEUACTSIEWDELTPNAHY
WOTTUVDHSSGSNTITHYOHOOBASDSSDTHOSGLUTTNTIORRYNEESDATCE
NEDCOCENDTNSLVDWBOESENRISNWKHSHIFFEYEINWVSIAAUSAATOTAB
IAEHTAAIEEWLTLEBETHHRETHAIHHWLGIETELMNHHOAWMOIEAIKCHGS

GUSHTDDSUIASWEDSEAODEDSOIKREGERNSTRTPWLLHELYTUNSDSNAAV
DSOPRYYPESHYGLOSENDBTESSPNAAKTNHNIEOINC

madness's book on classical cryptography
unit 61: double columnar transposition cipher
last modified 2020-10-14
©2020 madness

Unit 61
Double columnar transposition cipher

The double columnar transposition cipher is the application of two columnar transpositions in
sequence. Its key is two permutation, which can be represented by keywords. It was a popular cipher
during the two world wars.

A hill-climbing attack on the double columnar transposition can be constructed by modifying
our attack on the single transposition. There will be two parent keys (one for each transposition) and
two child keys. In each step in the key space, we randomly choose one of four options: swap two
elements of the first child key, roll the first child key a random number of positions, swap two elements
of the second child key, or roll the second key a random number of positions. Unfortunately, there is no
way to determine in advance what the two key lengths are, so we often have to try several before we
succeed.

Reading and references

NOVA Online, www.pbs.org/wgbh/nova/decoding/doubtrans.html

Wikipedia, en.wikipedia.org/wiki/Transposition_cipher#Double_transposition

Solomon Kullback, General Solution for the Double Transposition Cipher, Washington D.C.: U.S.
Government Printing Office, 1934, www.nsa.gov/Portals/70/documents/news-features/declassified-
documents/friedman-documents/publications/FOLDER_439/41751169079035.pdf

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 157-159.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 301-303.

Programming tasks

1. Write a function to encipher a plaintext when given the key.

2. Write a function to decipher a ciphertext when given the key. Keep in mind that the two
transpositions are done in opposite order when deciphering.

3. Implement the attack described above. Copy the attack that you made for the single
transposition and make the appropriate modifications. Experiment with the margin; can you
manage without it?

Exercises

1. Encipher this text with keywords SAMPLE and KEYWORD (in that order).

At the Carlton news stand West bought two morning papers, the Times
for study and the Mail for entertainment and then passed on into the
restaurant. His waiter, a tall soldierly Prussian, more blond than West
himself, saw him coming and, with a nod and a mechanical German smile,
set out for the plate of strawberries which he knew would be the first
thing desired by the American. West seated himself at his usual table
and, spreading out the Daily Mail, sought his favorite column.

(from The Agony Column by Earl Derr Biggers)

2. Decipher this text with keywords TOMATO and SOUP.

EOONPGAEPOGOCPEPCRWEUNNELMRDNIOOLFEIAOTTASCRCCATERWDGO
SNNSKNGIDOEIDFEELLPALIHNNTISYDNNRSHPFEANOINDOEIELVDERS
MLOIRRDROCSLYETEEWFRGEIEHWILIERNALNOSHCIHACEEBIUEBROPV
NNREDEOPRMPIROOEAMHUIOCAESIOJSSSOODNROTKONAESONAADWRIG
DOLPEERETOEERTAPHETADEOYRTFPKOLGDDHCTTDETVAAELLSCUAEDT
RRRUPAALSUOECDLTCDNPNCQNDARSAIUANEPSEOOSAKYYBIRRORRLHK
IFTDCEDNPGOCIRETROYTCOOOTYOGNODHTLOSUUGPPNBACONWSTBRHG
MPEETEDENIMSCGTAETAOOUAUNPDTEDEOR

3. Break this ciphertext. The key lengths are five and six.

VNRWGNCARTTNONRRWOODRLIOOSWPAEHTHUNDCTTIAHIRLASDIHNTHI
AHOHANMSNFTEUECSNDEKRROSFGNUEFSRFODGIHONNIEETHEROAOALB
REEUIGONFESINAMTOFLBETTWWNSNAFMTOECLEEAEAEHTYTNIGVETAR
RNILTOEAHENATHGLIDDJDADGHWTOTRSEOATTSLDHNHFWCOLEIWIEDI
DAAARSOBRATIHGFSEDAROCORAISYRLVTIEFTSAERERFNLRATVTSNTR
AIWNSESENVQTDODTSOOLLNGFAFIMBAARENEOMEIEWEUKUONLOSISAL
HOVINSTBEESLRETHBDISESGDAEVTORGHRAEDOOIGRHDSAOITITOEIA
THTATBHUALTAISHBTLTHDERAETTJKEDOELCEWETOSREYEEDGTGTSRW
THSLIWNWNADNOEOPOETOIIEONOAWCYNITITEOTBWEOAFRRIHEAFAHP
ETOIRTTIOSADAAOHOAHLIWETYNDEESIHICNCOOEFUAEATWFAETTKEH
ESOOOITUINTSIAJLDEHWUWEYS

4. Break this ciphertext.

TTFNOEINTDDRNTBEOSROHOYEIAEFAIEYFEOREECTTHSITEROTOPPTN
RPROCGHSNIFTJPOEEGHSCPUKENDDIHSIIGETILSEOETDIEOPHIHBIA
NDDENMUITMHNTEOLTCEAACSPTOUIETBHTOUAOOASOOHEUVRRHRNOTN
YRNMCIOOAEOGHEEMTTOSNDTENDIAORNSVOAESDNROTPLCHTTMRAHHO
SCNIMCFEMRLMNGIERETTEDTEMZBTMRHPNTVHESGSHEEEIVUEHEAYUI
PLHIEAITHRLHNNOWNEEEWTEDEPRTTRUBIIETOONOAAEITSEFSODDLM
CALWOERTHUTIYELDTOBWTTVDIATURTRRYIOYIOTEIFTPSTORTAWFOG
IEOSTESDOSBAIIIO

madness's book on classical cryptography
unit 62: nihilist transposition cipher
last modified 2022-01-13
©2020 madness

Unit 62
Nihilist transposition cipher

In the Nihilist transposition cipher, the plaintext is written into a square matrix, with padding if
necessary. Rows and columns are both reordered with the same permutation, which can be represented
by a keyword. It does not matter in which order the two operations are performed. The ciphertext is
read off either by row or by column. If the plaintext is too long to fit into a grid whose dimensions are
the length of the key, then it is broken up into blocks, each of which is enciphered separately.

Do not be confused and assume that this is a permutation cipher followed by a columnar
transposition. Both the permutation cipher and columnar transposition shuffle the columns when the
text is laid into a matrix. However, in the Nihilist transposition, rows and columns are both reordered.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter IV.

American Cryptogram Association,
www.cryptogram.org/downloads/aca.info/ciphers/NihilistTransposition.pdf

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter V, section VII.

Programming tasks

1. Implement an encryptor for the Nihilist transposition. Allow for both choices of how the
ciphertext is read from the matrix.

2. Implement a decryptor for the Nihilist transposition. Allow for both choices of how the
ciphertext is read from the matrix.

3. Implement a dictionary attack on the cipher.

4. Implement a hill-climbing attack on the cipher. Use parts of your attacks for the permutation
cipher and columnar transposition, and make the appropriate changes.

5. Now suppose the matrix is no longer square, and that rows and columns are reordered with
different permutations. Copy your hill-climbing attack on the double columnar transposition
cipher and modify it for this new cipher. Again, allow for both choices of how the ciphertext is
read from the matrix. Also remember that a long plaintext may have been enciphered in several
blocks.

Exercises

1. Encipher this text with the Nihilist transposition with the keyword BOYNIHILIST (do not drop
repeated letters). Use ‘X’ for padding. Read the ciphertext off by rows. You will need to
encipher it in two blocks.

But outside of his being an enthusiast and a lover of liberty, he was not known,
and had never taken any prominent part in any of the social or political
movements of the day, beyond sympathizing with the struggles of the working
men and women of the world in their struggles to better themselves.

(from The Boy Nihilist by Allan Arnold)

2. Decipher this ciphertext with the Nihilist transposition with the keyword SIBERIANGULAG
(do not drop repeated letters). The ciphertext was read off by columns.

RHFHLADAEXGTIHDCOFNCRDDMETSHHPHOIANXEDMOOERECSYDXRFEUE
DTUHAHTGNAHEHANFCOOEDANFIIEOLDHYEEEATOVEICWRGONIFRFUEI
DHMTIPORBNARMTTELDXMHMJAPWIEMUVIKDOESRMTNEWAYVNOTLSSIA
YHSAFIU

3. Break this ciphertext with your dictionary attack.

OIUDYOHENTTIAVAFMELLWIORILDWANDOOULYYOSTRUONEYUBRTBELI
ITANYCEOUSCAANUMFHLIHETTNDSAVEUKYOENHAWTNOUBDODAWHNDTA
NDNAMENDMEWOSOEDDRVERAFBRTBELIUNFHYOLLWITHWEUSYOSTRURT
AIDFANDUENEPOUNYPOSBERETNOGKURODYBERTPNSYIBETOAREVUETR
NEEALBATYMASANIXOWILTWDIINPRWSSTMACEMSHICHGTINEENDDAIN
OAPRAPORRFTEOFUTYOHTIGLRYOLLWISSPAURALRTPOOUTYHAYOVEHA
EIOPELHAISNHETACPLNVSEHIARWEUSTOMETONDHAORXXITLELSEEON
EEOSETLOALNDNONGWI

4. Break this ciphertext with your hill-climbing attack. What are possibilities for the keyword?

THTATEMMORAUBTILILKEOTYODVETRENUTRNOAHNTIHIILATSIHNNIS
ATNOISILOUTAASNDSSSASXSWXXSOHSETADLLFROTOOEFLL

5. Break this ciphertext which was encrypted with the cipher described in Programming Task 5.
What are possibilities for the keywords?

AMSAIBSOIHERQKOCNEISTATHTERDUSERFPAPMTETRWIOTERSIUATTS
UIEMCAITCUBUEPVIHWANONOEETCNEOCONTNASTHISTSHSEEBAYENIE
LTNULNUDLRUOFYOGOAMNOSIHNTYOPLANOGFNIIRTWREVRNITNMERSD
AOONADSGFFEIDNAYMYNAYMOASPYAAFCERNISDNTNWERFFEIDDNEETO
TTECERAEHISNIEDOURTIONTDRIIAETKHOOOFLTATRHEDEHBTHIHCWN
BTESUIARTAATCTASWMOLWTHUBEKNATMMOOCRLEACSNTOCISNEHROIT
SHOITNTSONOIREAGSOTTSTCIURVTACATSRBAEJSOTSSIERFOANOEIS
ROMIPEHOTTSTTDONAAHDTISDCAEROMTSECWNAONYNAHTETSCUTDOWN
HOITNIEITNRIFTROOSLKIOOLSIISHTAEKAHBCIEEDNSHTIEKAMNAHY
AWSOHSOOHIHCWTDNTIFHGTIMOTDEVESAUOONFOTHDALUATHARVIELE
EMSOSSKAOORRAAWLASOCDNBAHNODCELAWRETSSACADGNAESVTNROEF
RHTEAETNIAUTOKNOHWOONTAQERITDSUFODYTNAWMALEFSMAESLPCUH
SWHEIKADLMUOHEOHTAPRERROTFETTONAROPDATSEEMITOPEAODLAXX
XXXERCEHEXDIMSFOON

madness's book on classical cryptography
unit 63: railfence cipher
last modified 2020-10-03
©2020 madness

Unit 63
Railfence cipher

In the railfence cipher, we write the plaintext down in a zig-zag pattern that runs over a number of
rails. With no offset, we begin on the top rail. With an offset, we skip some positions before beginning
to write the text. The ciphertext is read off one rail at a time.

Let’s do two examples. We begin with the plaintext:

THIS MESSAGE WAS ENCRYPTED WITH A TRANSPOSITION CIPHER

The first example will not use an offset. Let us take four rails. We write the text onto the rails:

T-----S-----A-----Y-----I-----A-----I-----I----
-H---E-S---W-S---R-P---W-T---R-N---S-T---C-P---
--I-M---A-E---E-C---T-D---H-T---S-O---I-N---H-R
---S-----G-----N-----E-----A-----P-----O-----E-

The ciphertext is read off in rows, starting from the top rail.

TSAYIAIIHESWSRPWTRNSTCPIMAEECTDHTSOINHRSGNEAPOE

Now let’s repeat the process with an offset of five. We skip five positions when writing down the
plaintext.

•-----H-----S-----S-----P-----T-----N-----T-----P---
-•---T-I---S-A---A-E---Y-T---I-H---A-S---I-I---I-H--
--•-•---S-E---G-W---N-R---E-W---A-R---P-S---O-C---E-
---•-----M-----E-----C-----D-----T-----O-----N-----R

Read off the ciphertext to get

HSSPTNTPTISAAEYTIHASIIIHSEGWNREWARPSOCEMECDTONR

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; page 12.

Practical Cryptography, practicalcryptography.com/ciphers/rail-fence-cipher

Wikipedia, en.wikipedia.org/wiki/Rail_fence_cipher

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Railfence.pdf

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 139-141.

Programming tasks

1. Write a function or script to encipher a plaintext with the railfence cipher and a given key
consisting of the number of rails and an optional offset.

2. Write a function or script to decipher a ciphertext with the railfence cipher and a given key
consisting of the number of rails and an optional offset.

3. Implement a brute-force attack on the railfence cipher. Note that the number of rails needs to
run from one to the length of the text, and the offset needs to run from zero to twice the number
of rails minus two (with a maximum of the length of the text). Use tetragram fitness to
determine when you have found the correct plaintext.

Exercises

1. Encipher this text with four rails and no offset.

DO YOU SUPPOSE THERE IS ALSO A PICKET-FENCE CIPHER?

2. Encipher this text with five rails and offset seven.

HOW DO YOU SUPPOSE A PICKET-FENCE CIPHER WOULD WORK?
THE PICKETS ARE VERTICAL, AND THERE ARE A LOT OF THEM.

3. Decipher this ciphertext with three rails and offset two.

YEYITTIAAELSEEOIHAESEBERADUTOORALBLEEHTHSSHTRIFNEOKLKU
LSYUHNTELITXILKTEABDIERPEAONIDULEVAIWALCOINSTKPNTIHRWW
PRD

4. Break this ciphertext from the 2014 British National Cipher Challenge.

PRSAO EGERA UIADM WEHDN ISNRA SAWUA AESSR EFGDO SOGVO
RBEEE AARTE SCTDF MENUI BRTTL MEYTU MTMEU AIKWH UTKWE
RWAHM NPWRA EESON ONESE BATOI HACIN EETBR OTADA KTGFE
ESYIO FLTTL STIIA EOSVI EONSR RTAUP MNNOA ENCOC NUVRS
CLVDR GCTAI IHRIC IAIHR SDUOM RLEMC RNGLE OMARF HIUEW
HALCS ASRAC UFRAW WSMEH ULSTO AOHCE LETMT OILSE PDMUM
TPTRS LYRHH NTPAN WPMOA DPPDW BESEO ASSLT MLPES LETUN
CORER LCLIT AOSVS INIIF WSEAF ORTAA DUYEN ENONN SOPFH
ONTWK OERTC SLYVO EIOHL UFOEI OETST HTSBR ENEVE AOUEP
GIEES OBDUO RSFEE RCDYA DUTAE PEADR DIGSE EBFUO GGOPO
GALYF EWSOE EMDNT OHREB HAAES NEWOR GNFIA ULNLW ADUEO
DCOTR ARGVU ENEWH IERTL AUILM SONIO TMUIN EWAIU EWLOE
RSTTT ISDRS ASNUS SIESM ERDHE TRYRH PNLRT EREAD MREDE
BNNTR NENWM OUTRD OSANE OWOMC GIDCI ASAON TIIOI ASCES
ISSUP CRMOY BRINE YWEEL AYLEW TYRTI LHSTO

5. Break this ciphertext.

MICYRLHHTAHTLZHAENOHIEALEOBFGALETETOSAZGTAFHRAGATEFLVN
YATHTETARFRNDINIEDDNGSNCGPOTOEEPIGTFMLEWNIEOERGGTEESER
ILFTNBNEIKIASTSRVPZGPEOINIALPLGNOINWTTSWSMRAYIRSSZTNHD
AOEEIENRNWTTSODOAOSLCSRCTEFOESLYALIATRENISDHNKCFGOHUOR
ITLPEUHREAINEELTGEDORT

madness's book on classical cryptography
unit 64: redefence cipher
last modified 2020-08-07
©2020 madness

Unit 64 (optional)
Redefence cipher

The redefence cipher is a modification of the railfence cipher in which rows are read off in a different
order. The key for the redefence is the inverse permutation of the rows (we use the inverse so that it
lists the order in which they are read) and the offset with which the plaintext is written in.

Here is the example from the previous unit. We will take the key to be (1 2 0 3) and 5. The
plaintext is written down with the offset:

0 •-----H-----S-----S-----P-----T-----N-----T-----P---
1 -•---T-I---S-A---A-E---Y-T---I-H---A-S---I-I---I-H--
2 --•-•---S-E---G-W---N-R---E-W---A-R---P-S---O-C---E-
3 ---•-----M-----E-----C-----D-----T-----O-----N-----R

The rows are read off in the order 1, 2, 0, 3 to get the ciphertext.

TISAAEYTIHASIIIHSEGWNREWARPSOCEHSSPTNTPMECDTONR

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Redefence.pdf

Programming tasks

1. Write a function or script to encipher a plaintext with the redefence cipher and a given
permutation and offset.

2. Write a function or script to decipher a ciphertext with the redefence cipher and a given
permutation and offset.

3. Implement a brute-force attack on the redefence cipher.

Exercises

1. Encipher this text with the redefence cipher. Use offset 2 and permutation (3 2 0 1 4).

I have committed sins, of course; but I have not committed enough of
them to entitle me to the punishment of reduction to the bread and water
of ordinary literature during six years when I might have been living
on the fat diet spread for the righteous in Professor Dowden's Life of
Shelley, if I had been justly dealt with.

(from In Defense of Harriet Shelley by Mark Twain [Samuel Clemens])

2. Decipher this text with the redefence cipher. Use offset 3 and permutation (2 1 0 3).

HJCTIOIILRTRTUPAESFAFAIAYNPTOWODRTININWHASLCRLNNECSLYA
EGRYNPETPUEHRWIUTVTYAPNNHEIFHOFITDYEBTFSOSOUTEUTRRPDEO
WRMLTSAONSOWNCRNOTOHCYAYCEGDASCSUIVDYMNDOSNITOTUNCMIEA
LLUUOEVNOANADATOOBTSOEENROITIHUECIIEONCUFNBATECFIHNBLS
EGTRNTEHKLAUNRSRMRDTHEADSMIUABELDEARAREHSIFOTNTTSA

3. Break this ciphertext.

AITEENSTIMUTOOSEEEIYDEAATMAATWTNTTSDEIRAOESPSOIIFATRIC
UINHDSFATRAIFRRWITDAVLHYENLREANARGYLTHGEOPENDHYINUOQAI
CIOINFHMSNTANLMFCOEACOLDEMPPLESWRHTUANPUEOOHCSYSNHTILT
NJCISDUOSRGNIADOISUTHLVLYETSIEPINREEVOHIIIDHRFLFLYASOA
FGDMIAOALAENOUIKNSOTELRTOOCLTTSEARSNRCINTSRIBNIELTONCI
LTSTRWHOISOTTWBSTETSANTEBLHINNSPTDNAELEACUHNNVPTAOTSET
EDOWOTA

madness's book on classical cryptography
unit 65: amsco cipher
last modified 2020-10-03
©2020 madness

Unit 65
AMSCO cipher

The AMSCO cipher was invented by A. M. Scott. How it got its name is still a mystery.

To encipher a text with the AMSCO cipher, we are going to write the text into a matrix. We
must first decide whether the first box should contain one or two letters. After that, we fill in by rows in
such a way that when looking across a row or down a column, entries in the matrix alternate between
holding one and two letters (the box containing the last letter need not be padded to hold two letters).
The message is not padded, so some columns may remain incomplete. For example,

TH I SM E SS A
 G EW A SE N CR
YP T ED W IT H
 A TR A NS P OS
IT I ON C IP H
 E R

The key is the order in which the columns are read off to form the ciphertext. If our key is (2 5 0 1 4 3),
then the ciphertext for our example is

SMAEDAON ACRHOSH THGYPAITE IEWTTRIR SSNITPIP ESEWNSC

Notice that the key is the inverse of the permutation that acts on the columns. The key can also be
represented by a keyword.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; page 51.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Amsco.pdf

Programming tasks

1. Write a function or script to encipher a plaintext with the AMSCO cipher. Allow for the choice
of using one or two letters in the first place.

2. Write a function or script to decipher a ciphertext with the AMSCO cipher. Allow for the choice
of using one or two letters in the first place. Be careful how you handle incomplete columns.

3. Implement a brute-force attack on the AMSCO cipher.

Exercises

1. Encipher this text with keyword YACHT and two letters in the first box.

This unlikely story begins on a sea that was a blue dream, as colorful as blue-silk
stockings, and beneath a sky as blue as the irises of children’s eyes. From the
western half of the sky the sun was shying little golden disks at the sea—if you
gazed intently enough you could see them skip from wave tip to wave tip until
they joined a broad collar of golden coin that was collecting half a mile out and
would eventually be a dazzling sunset.

(from Flappers and Philosophers by F. Scott Fitzgerald)

2. Decipher this ciphertext with keyword PARADISE (drop repeated letters) and one letter in the
first box.

AMRAMEEOSSTPRORUNEELRYREDERRCANIHIGDAEEDETHIMOSORLDTME
OGAVIETDNGNIVEYRVGMUINGREASFYOOSANTLELAWCHSINOYNNEWEFY
OGOFE

3. Break this ciphertext. What might the keyword be?

EHEBWIASHITLONWWEDNEROEYEESENDETERIMPEETHSSAETSTEGNTTA
RYKZIHECSTHHSPIESUHEHHALTHDETESNAPPRCEEASMGAORORSTTNDN
DRTRAFEPRYBPASNMAINSYPIHHOUERORNEFITAKUCOAESSERFITEFSC
GHBREIMERICADSHHIGIPOGAHPBENSTIBSUCOLEINDAIPSJEPAGRFTF
INRSTAGTIIMIWITTOROKGSNRTATOEILHPAEUTEDURARARINCHTELCF
O

4. This ciphertext is from the 2015 British National Cipher Challenge. Break it. What is the
keyword?

UOCAD EDMMA EDAEC RRSOI COIPI IFEBO BDUSI SDSBE ENTTY
ANETA DCOUD KOOTT RBELE DRAOA USYYO HISNL EDDSR ISHRS
HEEOS ETROS TLSEU NRSCC OUWRI MOLHN STERS EDEEA RINTE
WPENN OMSFT AITOF TOILL CAPEC ESEPN DUETN DEEUS ESOMF
AKOGT INLGE LYARU ITSIC RIOIR SECOR ETNEU EATMT ALIHL
EICRV EASME NCIED ATHEO LKWHE OHNWO NFIMH THUBE AIBND

ATTHU EKTDO OECTW ITABA OULCA QWIUP IYPOC ODEEO ONSHI
TCIEE ATAIA CLTTA RCHGH OFHET DPAEC HMAHV EHLOL YARLE
IKEDR ODTEI DYSKE EYCFS HFOFE HTGEJ NDBBR YPHON IOSRO
LMREF RWFII GHYPH NMEHR ELASO NDEIV TDTIR HEROT URECH
ORHEG YNDED MEPYT WVIID OMOUT YAION AUFUC ATWOU OKTEF
LTHMU TGNEC TITAR AOWEN NGSST EFRRE SCLFS PSATO EHIHE
LASTV CHIFI IUTET EYEEC STNHE OILDS TNEPM ROSTT SRAFL
LRHED ISESS RETIE NASU

madness's book on classical cryptography
unit 66: myszkowsky cipher
last modified 2020-10-03
©2020 madness

Unit 66 (optional)
Myszkowsky cipher

The Myszkowsky cipher is a modification of the columnar transposition. It requires a keyword that has
repeated letters; otherwise, it degenerates to a regular columnar transposition. The plaintext is written
into a grid with the same number of columns as letter in the keyword. The columns are labeled by
numbers representing the alphabetical order of the letters of the keyword, where identical letters have
identical numbers. To read off the ciphertext, we start with the first row and read all letters in a column
labeled 0. Then all letters in the second row in a column labeled 0. When we have finished all rows, we
start again at the top with all columns labeled 1. Then 2, etc.

An example couldn’t hurt. Let’s encipher this short message with the keyword TATTOO.

THIS MESSAGE WAS ENCRYPTED WITH A TRANSPOSITION CIPHER

The keyword TATTOO is converted to numbers 2, 0, 2, 2, 1, 1, because ‘A’ is alphabetically first
(zeroeth), ‘O’ is next, and ‘T’ is last. We write the plaintext into a grid with those column headings.
There is no padding.

2 0 2 2 1 1

T H I S M E
S S A G E W
A S E N C R
Y P T E D W
I T H A T R
A N S P O S
I T I O N C
I P H E R

We read off all of the letters in 0 columns: HSSPTNTP. Then all 1 columns: ME EW CR DW TR OS
NC R. Pay close attention to the order of the letters. We take all 1 columns by rows. Now, all 2
columns: TIS SAG AEN YTE IHA ASP IIO IHE. The cipher text is

HSSPTNTPMEEWCRDWTROSNCRTISSAGAENYTEIHAASPIIOIHE

Reading and references

Émile Victor Théodore Myszkowski, Cryptographie Indéchiffrable basée sur de nouvelles
combinaisons rationnelles, Paris: Société Française d'Imprimerie et de Librairie, 1902, gallica.bnf.fr/
ark:/12148/bpt6k1265620p

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 50-51.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Myszkowski.pdf

Wikipedia, en.wikipedia.org/wiki/Transposition_cipher#Myszkowski_transposition

Merle E. Ohaver, “Solving Cipher Secrets,” Flynn’s, September 17 and 24, 1927,
toebes.com/Flynns/Flynns-19270917.htm,
toebes.com/Flynns/pdf/Flynns-19270917.pdf,
toebes.com/Flynns/Flynns-19270924.htm,
toebes.com/Flynns/pdf/Flynns-19270924.pdf

Programming tasks

1. Implement an encryptor for this cipher.

2. Implement a decryptor for this cipher. Be careful about incompletely filled columns.

3. Implement a dictionary attack for a ciphertext that was encrypted with the Myszkowsky cipher.

Exercises

1. Encipher this plaintext with the keyword ABRACADABRA.

Here began the experiences that quickly ripened Houdini into the World's
Handcuff King and Prison Breaker, which he is, has been and always will be. In
exploring his wits for exploits to amuse and entertain the audiences, Houdini hit
upon the feat of escaping from ropes tied round him in every conceivable way.

(from The Adventurous Life of a Versatile Artist: Houdini by Harry Houdini)

2. Decipher this ciphertext with the keyword DOLITTLE.

OAYOGHLIEOHALLMHAOKLNNGRTEHHDDWTODTSDDOEMAENSTRWONOOTE
HOOWOCOIAEAHUAARRTCDTEATNSEDTJDTMMSTARRTNEHLNTYWREILRC
ISEIDAPCNEUPEMRSNODFWELEENASRAAMLIHNLEANEWPERAAWT

3. Perform a dictionary attack on this ciphertext. The keyword is an English word between five
and ten letters in length.

WHUHWHTIBEPSIIIYOAHNDNTLHMTBRESOHATENESLYLAHNTNLRSAFBA
TOTATEIGIUESLOTEROLWTATWLDAYSEGTOGMWHGNMICDWBIVIONEOFA
WCCGIERAHKGTKBAYMESTRLROTOMIOHTAOBENOEEEUWBYFTBIOFRTTO
AEERDLVRAEEKNTSKTEOAOEDNCUALHEITUNBEHOFYFERERHTINEHLYB
DTHSSMSTOELIEHEENGFEIEHAIRNSBENMEAIEEIDYLVOATIWAREDHCL
CNTSANITORLTNY

madness's book on classical cryptography
unit 67: cadenus cipher
last modified 2020-08-07
©2020 madness

Unit 67
Cadenus cipher

The Cadenus cipher involves both a columnar transposition and a rotation of the columns. The key is
expressed as a keyword in which repeated letters are dropped. The plaintext must be a multiple of 25
times the length of the keyword after repeated letters are removed. These are the steps in encipherment:

1. Divide the plaintext into blocks that are 25 times the length of the keyword (after dropping
repeated letters in the key).

2. For each block:

a. Write the block into a matrix as though for a columnar transposition. Each column has a
corresponding letter from the key. Each column has 25 letters.

b. For each column, roll it downwards by an amount determined by its letter in the key. Use
‘A’ = 0, ‘B’ = 1, ..., ‘V’ = ‘W’ = 21, ..., ‘Z’ = 24 (‘V’ and ‘W’ take the same value so that
there are only 25 values).

c. Apply a columnar transposition using the keyword, without repeated letters.

d. Read off this block’s part of the ciphertext by rows.

An example seems necessary at this point. We begin with a plaintext that has 375 letters and the
keyword ORATIO (because Shakespeare did not pronounce his ‘H’s).

TO BE OR NOT TO BE THAT IS THE QUESTION WHETHER TIS NOBLER
IN THE MIND TO SUFFER THE SLINGS AND ARROWS OF OUTRAGEOUS
FORTUNE OR TO TAKE ARMS AGAINST A SEA OF TROUBLES AND BY
OPPOSING END THEM TO DIE TO SLEEP NO MORE AND BY A SLEEP TO
SAY WE END THE HEARTACHE AND THE THOUSAND NATURAL SHOCKS
THAT FLESH IS HEIR TO TIS A CONSUMMATION DEVOUTLY TO BE
WISHD TO DIE TO SLEEP TO SLEEP PERCHANCE TO DREAM AY THERES
THE RUB FOR IN THAT SLEEP OF DEATH WHAT DREAMS MAY COME
WUTEVUH

After removing repeated letters, our key is ORATI, which has five letters. So we break the plaintext
into three blocks of 25 × 5 = 125 letters. We lay the first block into a matrix of five columns under the
key (shown on the left below). The numbers of steps for rolling each column are ‘O’ = 14, ‘R’ = 17, ‘A’

= 0, ‘T’ = 19, ‘I’ = 8. The columns are rolled downwards (shown in the middle below). Then a
columnar transposition is performed (shown on the right).

O R A T I O R A T I A I O R T

T O B E O T O B T E B E T O T
R N O T T F I O I O O O F I I
O B E T H E M E L E E E E M L
A T I S T G O I T T I T G O T
H E Q U E A E Q N R Q R A E N
S T I O N S S I U A I A S S U
W H E T H T S E T A E A T S T
E R T I S O R T I F T F O R I
N O B L E R O B N O B O R O N
R I N T H O R N O T N T O R O
E M I N D A U I O H I H A U O
T O S U F M T S G T S T M T G
F E R T H I R R F E R E I R F
E S L I N S K L N N L N S K N
G S A N D T S A O H A H T S O
A R R O W R N R A S R S R N A
S O F O U O E F G E F E O E G
T R A G E A O A T H A H A O T
O U S F O H N S O D S D H N O
R T U N E S B U E F U F S B E
O R T O T W T T T H T H W T T
A K E A R E E E T N E N E E T
M S A G A N T A S D A D N T S
I N S T A R H S U W S W R H U
S E A O F E R A O U A U E R O

We read off the ciphertext by rows. The remaining blocks are processed in the same way, and in the end
we get this ciphertext:

BETOTOOFIIEEEMLITGOTQRAENIASSUEATSTTFORIBORONNTOROIHAUOSTMT
GREIRFLNSKNAHTSORSRNAFEOEGAHAOTSDHNOUFSBETHWTTENEETADNTSSWR
HUAUEROOSEOTSAAAEYLNAOSKHPDNTAYLMHNDOEITEEEIACHMBTDRNNSHESP
SNHTNFUUWTIHNTORTAAOTLCHPLSATRDTSOBPREDEGETRSHBUOEDOAHESEOE
TNEIHAEIDOEYLTCSAEDMOOLSOTMETOTENETMHDCICFAEOHTREOVLETPNFOS
EAHHURDDEICTSDTRBOWPYHARAEISMARLSMAROTTYAPEAWEHLUVETEIOHADV
MEHEYNATEWUEBSTOENPTS

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Cadenus.pdf

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement a dictionary attack.

Exercises

1. Encipher this text with the keyword INTERNET.

While my internet is down, I have to write my own plaintexts. It is very
frustrating, but this is the cost we bear when we steal internet from the store
down the street. I’m sure you don’t want to hear about that. Perhaps you would
like some historical bits of information about the Cadenus cipher? Unfortunately,
I don’t know any. Let me look some up online...

2. Decipher this text with the keyword HEART.

DARHNAIIRTNRAEIWEDTLOAWANJSERHHAHTNIACUIRPUHWIYVTBITSE
ESWAIEVOBODMGACNIRSHRPEFIESRSXHFOFESHHDNXDSEENCIHADNAG
ESTSAOSWELAMSCDFN

3. Break this ciphertext with a dictionary attack.

EWOIETEHTDOEINPEHAEAAERRRDNWIOTDHYHLEDONRPWTEPWSRFMNAE
HHHEHNLQAORRGECAXEUHLHREHRSATNRASEESRWSLITAMITAPIIEPSI
SAHWPWEWJOPEIDWUEDDSNATSSTTANTOARATEAAGLTISAIRNGENBUUI
NFSEEFOXIODWATGNOEAFESEHDEIITIRDYSGSOGRENCBNIRUDLCSNTO
AGBATTOITALNHNIGIIPLVDESHEHTTVIIHEUDTNTNPTAINSEPTPWEOS
HETLWESLEEWAMHWBSLIRNCRRUUTTCSGRHEEYTLLMROMERENCOTHATE
GNFHWAAIDGINUFYNRSNSAMORAUGSWBNTIFEREDILLTILEOEAERSHEY
NTDDNEVIRRNSBXSTXWHERDGVITISNAMEPSOSHBHWWBWDTERTEEATAE
DTSSLSTTRIATESUOEOSELOEENSNWEANEOAATASHAIRPPANWEOSIEHO
NLCHNNTUDTISEE

madness's book on classical cryptography
unit 68: hill-climbing attack on the cadenus cipher
last modified 2020-07-11
©2020 madness

Unit 68
Hill-climbing attack on the Cadenus cipher

In this attack we unlink the rolling and columnar transposition and vary the keys of the two operations
separately; at the end, we put them back together. Therefore, we need a decryptor that applies them
separately. Before we apply the attack, we have to determine the key length (or guess it). In the
exercises in Unit 9 we found a cutoff above which we are confident that we have English text; we will
use that cutoff in the algorithm. We will be using the usual technique of working with parent and child
keys. To avoid local maxima, we also need to use a margin of error. For this cipher, we will vary this
margin so that it vanishes when we reach the fitness cutoff.

0. set the alphabet to be ABCDERGHIJKLMNOPQRSTUVXYZ (no ‘W’)

1. initialize the parent shift key to an array of 0s
2. initialize the parent permutation key to (0 1 2 ...)
3. calculate the best fitness as the fitness of the unmodified ciphertext
4. set a counter to 0
5. while counter is less than 1,000

a. copy the parent shift key into a child shift key
b. copy the parent permutation to a child permutation
c. randomly choose one of these ways to modify the child keys:

i. change one member of the child shift key to a random number in 0, ..., 25
ii. swap two randomly selected members of the child permutation
iii.

- randomly choose a number n from 1 to the key length
- roll both keys leftward n of steps (with rollover)
- subtract 1 from each of the last n members of the child shift key

iv.
- randomly choose a number n from 1 to 25
- add n to each member of the child shift key, modulo 25

d. decipher the ciphertext with the child keys
e. calculate the new fitness of the new plaintext
f. set the margin to be

i. 0 if the new fitness exceeds the cutoff
ii. the square root of the cutoff minus the new fitness, all divided by 10,

 if the new fitness is less than the cutoff
g. if (the new fitness exceeds the best fitness) or
 ((the new fitness exceeds the best fitness minus the margin) and
 (we roll a 1 on a 20-sided die))

i. copy the child shift key into the parent shift key
ii. copy the child permutation into the parent permutation
iii. set the best fitness equal to the new fitness
iv. set the counter to 0

h. increment the counter
6. convert the parent shift key to a keyword; for each member of the shift key:

a. take n to be 25 minus the shift
b. the letter of the keyword is the nth letter of the alphabet (without ‘W’)

7. output the keyword

Programming tasks

1. Write a function that deciphers a ciphertext with separate keys for the shifts and for the
permutation.

2. Implement the attack. Use your function from Exercise 1, and use tetragram fitness.

Exercises

1. Use your attack to break the example from the previous unit.

2. Break this ciphertext from the 2014 British National Cipher Challenge. It may take several
attempts.

AFCAEUOTTACTHRIOLETCSERTHSHTRAHKYORPFRGEOADPPJNGLTERNE
FEOFIORTSDDOEEUMSCRUERNFETLAAFSTWIENTRVOONERHUAHRAVERE
ETSVSIELHLOSTDOALOYAESMNNDIGNNRHOHHTSNAOILNCNSSICREANN
EEIIIERWTANESRVOGIEIYWSSDGPVOIAISAOAEOAEDRNITRNXEIGRPS
SHADHDTOIPAATEXENNESAGROBTLESRNROIRYPBGEDCLLIWALALEENI
GRRNWYRLIMLPSTOLEFTRDMUARIEEEIIAOLNEWSAOHRTLSTOBETNSLV
FIVDOVTPOAEEISCIOHIPSEVEEDTEWFARNHEBLEAOTOHTTTEPNCKAON
HWETMVYPRREONNASGDEDOEEEOAAMTCICTTIFNADRESRTSEROSETRHC
ICTPSAAEHLDHSFXSOAOTCTBBSOEIRNSADLYTRRUNRCEPTTHREUHNKT
ACECEELRWNIREEEAESEEEIDISOGCEOMNRTEJHAGABSENITLWTRNBMI
ELSARETESRNGSNHEBIOSDIENAFLEISAHOCIFEVMFATANATRNIAGNHA
TNMIBNIUFENRTOTTRNYPAIDYIEGDNMERHHIOTRETCESSEILDRBCEPR
IGAESOADLTAHIEVEBRCENLEVASADNNTHNEITEIISAHUHHUAMONEFYH
LONWHAEEEEOSNEEYANEISETOGYITERLIHTCMIOIRARFDOETNIHTNEH
IIKAMRDMNADANAODSESEIYCLSIANTAOLTCIYMIDENTTHLTNDXTTTMA
SBLEAEETLISIRTWTURPFAILTEAOEFEISIIIYISIKVTWISPRBSINELP

HRMOHIAGNLSLVITODAISDPNYDDCAAOTAHCEHTUEIRREDAECTOSNRHV
NAODOIKOETCINENEURRISDCOURAGLVIMMUPPDITEANDITMAAIAIELE
ONNREEDAODBOIUMELROTNTTTGITNRLRIENNIKLYSOGSTCIFYPIPVID
VSSMNCEIASIITSNNEATITOMRHBNHNIDPRLREPOYNALSNVSDOSANESI
TFAENLTGODATTEEAISICROOTMSMFHAUENIRSGHYNWEINTEGODIILEE
DTARNOSRCAAENDTCUTTFDRBEHTMFITOORDRUIAOYAANOEELDOINHUS
GITEAORIECEVEMNTRATMTFPEUCUTAHAMTNEWONICDEEMRPAOLITOAF
ESOOSSPFNLNEEOOTACHLLIRSSXSOFPDFTFRNPRAEEAYLONAHAUTNTC
NTCBAWLONEFTOATECVOWDLWVNNEEDTIIOIGTEGMTAHEEATEFAAEPRR
CROSHEERRPALEDIENGIDRREOUHVESUROYTNSOSINUIUIOFPRDA

Part V
Grid-based ciphers

madness's book on classical cryptography
unit 69: polybius cipher
last modified 2020-10-09
©2020 madness

Unit 69
Polybius cipher

If we cram the alphabet into a 5×5 matrix, we have a Polybius square. Unfortunately, the English
alphabet has more than 52 letters, so we may have to jettison one of them. Usually, we will put ‘I’ and
‘J’ in the same spot.

Now, if we add labels to the rows and columns, we can use the Polybius square to make a
cipher, which we will call the Polybius cipher or Polybius-square cipher.

 │ 0 1 2 3 4
 ────┼────────────────
 0 │ A B C D E
 1 │ F G H IJ K
 2 │ L M N O P
 3 │ Q R S T U
 4 │ V W X Y Z

The application of the cipher is obvious: we replace a letter of the plaintext with the row and column
labels of its location in the grid. For example, with the matrix above, we can encipher this short
message:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER
33121332 21043232001104 410032 042202314324330403 41133312 00 11311303 021324120431

The ciphertext is

3312133221043232001104410032042202314324330403411333120011311303021324120431

We are not forced to use the digits 0, ..., 4 as our labels, and we are not constrained to use the
same labels for rows as for columns. The only constraint is that all row labels must be different, and all
column labels must be different.

The cipher can be keyed by using a mixed alphabet. In Unit 26 we saw several ways to
construct mixed alphabets from keywords. With this new cipher, we add a new dimension. There are
many ways to lay the mixed alphabet into the matrix. Here a just a few:

• by rows

→ → → → → ← ← ← ← ←
→ → → → → ← ← ← ← ←
→ → → → → ← ← ← ← ←
→ → → → → ← ← ← ← ←
→ → → → → ← ← ← ← ←

• by columns

↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑

• boustrophedon (by rows or columns in alternating directions)

→ → → → → ↓ ↑ ↓ ↑ ↓
← ← ← ← ← ↓ ↑ ↓ ↑ ↓
→ → → → → ↓ ↑ ↓ ↑ ↓
← ← ← ← ← ↓ ↑ ↓ ↑ ↓
→ → → → → ↓ ↑ ↓ ↑ ↓

• spiral, outside-in or inside-out, clockwise or counterclockwise

→ → → → ↘
↗ → → ↘ ↓
 ↑ → × ↓ ↓
 ↑ ↖ ← ↙ ↓
↖ ← ← ← ↙

At this point, you should realize that no matter how we mix the alphabet and no matter how we
place the mixed alphabet into the grid, all we have done is replace each letter with a two-character
string (a code word). By listing all two-character strings in the ciphertext and assigning a letter to each,
we convert the Polybius cipher to a monoalphabetic substitution cipher. In Unit 28 we saw a method for
solving monoalphabetic substitutions automatically.

Reading and references

Practical Cryptography, practicalcryptography.com/ciphers/polybius-square-cipher

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 190-191.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 83.

Programming tasks

1. Write a function to fill a Polybius square. Allow for many options on how to generate the mixed
alphabet and on how to fill the grid.

2. Write a function or script to encipher a plaintext with the Polybius cipher with a keyword, an
alphabet-mixing method, and a grid-filling method.

3. Write a function or script to decipher a ciphertext with the Polybius cipher with a keyword, an
alphabet-mixing method, and a grid-filling method.

4. Implement the attack mentioned above.

Exercises

1. Decipher this ciphertext with the keyword POLYBIUS. The mixed alphabet is constructed by
adding letters that come alphabetically after the last letter of the keyword (in this case, start with
‘T’). The grid is filled by columns. Labels are as in the example above.

241002314332310232212431211043324403023221013100102030
400111214201004313442132441313322130311042443242043220
203010112413130301213242010043134431131231314332310121
201024331324101133432310443010113110404413320431431314
102410322000433240133101422111402131013111310110244201
00431344

2. Break this ciphertext from the 2019 British National Cipher Challenge:

FBGAI AGCFE KEFEK CIAGC FCGAF CIBHD HEFCF AFBFA GDFCH
DFEKC IAKCI BGBGC IAHAF EKCFA KAIAG CFBFA GBFBI AFBHE
IAGCK CIAFC IBHDF EGAGA FCHDI AHEIA FCKDF CFAIA KCFBF
AIAGC FEHEF CICFB FEIAH EFDKA HBHDF CIEKA IDKCH DHEFB
HEKEF CFCHA FEKEK CHEHA KAGEF CKCIA GCFBF AGBFC GAIAG
CFEHE FCICF BFEIA FEHAH BFBHD FEIDK CHEHE IAFCG DFEKE
FDKAG CFBHE KEFEK CIAGC IAGCF EIBHE HEHDG AFEFE KEHEF
CFAIA GCFEK CFAGB FEHDI AGCKC IAIDF EHEIA FBHDI BHBID
FBIAG CFEKC KDGCI DKCHD IDFEG AFBGB GCIAF BFAFB IAHEH
BIBHB HBFEI AHEIA KCIAF EHEID FEGCK CICFE IAHDF BFEKE
IAFCK DFCFA IAKCF BFAFB IAFDI BIAFB FAFCI DHDFE KCGEF
BHEFE IAGCK CIAID FEKDK CFAFC FAGEK AKEFE GAFEK CIAFB
IAIAG CFEID KCKAI DFEGA FCIBG BGCIA GAKCH EKDFB HEHAF
DKAIA KCGDF BFAGB FCFAF BIAHE HAFBG BGCIA FBFAF CHBFE
FAIDK CHDFC IBHDH BFCGE FBIAF BKDFB KCFAH EGCKC ICFEH
EGCHD IBFAG DGAHD FCHAI AGCFE KDFCF AGAGE FBKDI AKCFA
KEIAG CFEKA FAFEF EKEKC HDFEK CHEFC FAIAF CKDFC FAGAH
DFCFA IAIAG CFEFE ICFBG E

Challenge

♥ ♥♥ ♥ ▲ ♥● ☺ ♥ ♥ ● ♥ ♥ ●☺♥ ♥ ●❄ ☮✤☮❄★ ❄✖ ✤ ✤ ❄☮ ✖ ❄ ✤ ❄☮✤ ★ ☮❄ ❄✖☮❄ ✤
☺☺ ♥● ♥ ●♥ ●☺ ♥ ♥ ● ♥ ♥ ● ☺♥ ●☘ ☮☮✖❄ ✤❄☮☘✖❄ ✖ ✤❄ ☮ ✖ ❄ ✤❄☮ ✤ ★ ✤☘ ❄ ✤
♥ ● ☺●♥ ♥ ● ▲ ♥ ●☺ ♥ ☺●♥ ♥ ♥ ♥▲❄☘✖ ✤ ✤★ ✤ ★ ✤ ✤ ☘☮❄ ★★☘ ❄✤☮❄☮★ ❄ ✖ ✤
▲♥ ♥ ♥ ● ☺ ●☺♥ ▲ ♥ ♥ ♥ ● ☺ ● ☺♥❄ ❄✖ ❄☮❄ ✤☮ ✖☮ ☮❄ ❄ ❄❄ ✖ ☮❄ ❄✤☮✖ ☮ ✤ ☘ ❄
● ♥ ♥ ●♥ ☺ ♥♥ ☺♥ ●▲ ♥ ▲ ♥ ● ▲ ☺☺●✤ ✖☘❄ ★ ✤ ❄☘✤☮ ✤ ★☮ ✤☘❄✤ ★ ✤ ❄❄ ✖ ✖ ☮
● ▲ ● ♥ ●● ▲ ♥ ● ●☺ ☺♥ ☺ ♥ ♥♥ ♥☺♥✤ ✤ ❄❄☮☘✖ ❄✖ ✖ ✤✖☘❄ ✖ ✖ ☮ ★☮ ☮✖ ✤ ❄★
♥ ♥☺ ♥ ♥ ● ♥ ▲ ☺ ♥♥ ☺♥ ♥ ●☺● ☺ ♥ ♥ ♥✤ ★ ☮✤ ✖ ✤ ✖ ✖ ☮ ❄ ★ ☘❄ ❄✖ ☮ ❄ ☮✤❄☮ ★❄
♥▲ ♥ ♥♥ ▲ ♥ ● ☺♥ ♥ ● ♥ ♥ ☺●♥✖ ✤☮✤❄☮ ★❄ ✖ ✤✤ ❄ ☮ ✖❄ ✤ ☮❄✤ ★ ☮❄ ❄☮✤❄☮
♥ ♥ ♥▲ ♥ ● ☺ ♥ ♥● ♥ ♥ ♥ ● ♥ ♥ ♥ ●★ ❄✖ ✤✤ ❄ ☮ ✖ ❄ ✤☮❄ ✤★ ❄ ☘✖ ✤❄☮★ ★☘ ✤ ★ ✤
▲ ♥ ♥ ♥ ♥▲ ▲ ♥ ♥ ♥ ●☺ ●☺ ● ☺ ☺♥ ☺★✤ ☮✤❄☮ ★❄ ✖ ✤ ❄ ❄ ✖☮❄❄ ✤☮✖ ☮ ✤ ☘ ☮ ✖☮
♥♥ ☺ ●☺ ▲☺● ☺ ☺ ♥● ♥ ☺●☺● ● ☺ ♥ ♥❄ ✖ ☮ ☮❄ ✤ ☮☮ ★ ❄ ✤ ❄☮☮✤ ✖ ☮☮✤❄☮ ★ ❄
♥ ▲ ♥ ♥ ♥▲ ♥ ●☺ ♥ ♥ ● ♥ ♥☺● ▲ ☺✖ ✤✤☮❄☮ ★❄ ✖ ✤ ✤❄ ☮ ✖❄ ✤ ❄☮ ✤★ ★ ☘ ☮❄☘✖
☺ ♥ ♥ ☺ ● ♥●☺☺● ☺ ♥☺ ▲● ☺ ☺☘ ☘✖ ❄★ ✤☮☮ ✖☘ ✖❄ ❄☮❄☘❄☮ ☮ ✤☮✤ ✤ ☘ ☮❄☘
♥ ▲ ♥▲ ♥ ●▲ ☺●☺ ☺♥ ☺♥ ☺ ● ▲ ♥ ♥☺● ♥☺●✤ ✖✖ ❄ ❄✖ ✖☮ ☮ ❄✖☘☘ ✖ ☮ ✤ ✖✖ ★ ❄
♥ ▲ ♥ ● ♥♥ ♥ ●☺ ☺ ♥ ▲ ♥ ●♥ ☺●☺●❄ ❄☘ ✖★ ✖☘✤ ❄☮✤ ★✤ ☘❄✤ ☘☮ ☘❄ ✤✖ ✖ ❄ ✤

● ☺ ♥ ●▲ ●●☺●☺♥ ☺ ♥ ♥♥ ▲☮❄✤☮ ✖☮ ❄☮ ★❄ ✖✤ ✤☮✖ ☮☮✤☮❄ ★❄ ✖✤ ✤☮❄☮
♥ ♥♥ ▲♥ ● ☺ ♥♥ ● ♥ ♥ ☺●● ☺ ♥ ● ♥♥ ☺★ ❄ ✖✤ ✤ ❄ ☮✖ ❄✤ ❄☮ ✤ ★ ✤ ☘ ❄✤ ❄ ✖☮ ❄☘
♥ ● ♥♥ ♥♥ ☺ ♥● ● ☺♥☺ ♥ ♥☺♥ ♥ ♥☺▲❄ ✖☮❄☮ ✖❄☮❄ ✖❄ ✖ ☮☘✖❄ ✖ ✖☮ ❄ ★ ✤ ✖
♥ ♥ ●☺ ♥ ☺ ● ☺●☺☺● ♥ ● ♥ ♥ ♥● ☺♥✤ ✖ ✤ ☮✖ ☮ ✖☮ ❄☘❄ ✖☮☮❄✖ ❄☮❄ ✖ ✤ ❄☮ ✖
♥ ● ♥ ♥☺●♥ ♥☺ ● ● ♥● ♥♥ ♥ ♥❄✤ ❄☮✤ ★ ❄✖ ☮❄☮✖☮❄ ✖ ☮❄☘✖❄ ✤☮❄✤ ★ ★ ✤
♥♥ ♥ ♥ ♥☺✖ ★ ❄ ★

madness's book on classical cryptography
unit 70: playfair cipher
last modified 2022-01-13
©2020 madness

Unit 70
Playfair cipher

The Playfair cipher was not invented by Lord Playfair, but rather by Charles Wheatstone. At any rate, it
is a digram substitution cipher, which means that it makes substitutions two letters at a time. It has little
tolerance for double letters, so before we can apply the cipher, we have to prepare the plaintext by
putting an ‘X’ between all adjacent pairs of identical letters. Since it works on pairs, we also need to
add an ‘X’ to the end of the plaintext if it has an odd number of characters. (We do not need to put an
‘X’ between letters if they are in different digrams.)

The main engine of the Playfair cipher is a Polybius square. We fill it with a mixed alphabet that
was generated in whatever way we like. Typically, ‘J’ is merged with ‘I,’ but some prefer to merge ‘Z’
in to ‘Y.’ The plaintext is processed two letters at a time, according to these rules:

• If the two letters appear in the same column of the Polybius square, then each is enciphered to
the letter below it. If the letter is on the bottom row, then we use the letter at the top of the
column.

• If the two letters appear in the same row of the square, then each is enciphered to the letter to its
right. If the letter is in the last column, then we use the first letter in the row.

• If neither of the previous two cases hold, then a rectangle is observed in the grid such that the
two letters are at two of its corners. They are enciphered to the letters in the other two corners.
Each is enciphered to the letter in the other corner in the same row.

(Mathematicians in the audience recognize a torus when they see one.)

Now for an example. Here is our plaintext:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

First, we prepare it with nulls, one between the two ‘S’s and one at the end.

TH IS ME SX SA GE WA SE NC RY PT ED WI TH AG RI DC IP HE RX

Let’s use the keyword POLYBIUS to mix our alphabet, and let’s not do anything fancy about how we
lay it into the square:

P O L Y B
I U S A C
D E F G H
K M N Q R
T V W X Z

The first two letters of the ciphertext, TH, are enciphered to ZD:

P O L Y B
I U S A C
D E F G H
K M N Q R
T V W X Z

The next two, IS, are enciphered to UA:

P O L Y B
I U S A C
D E F G H
K M N Q R
T V W X Z

This continues, and the ciphertext is

ZDUAVMAWACHFXSUFRSQBIPFETSZDGQKCHIDIDFQZ

To detect whether we have a ciphertext that has been encrypted with a grid-based digram
substitution cipher, we look to see if there are at most 25 different letters and whether the length of the
ciphertext is a multiple of two (to disguise the cipher, however, one might change some ‘I’s to ‘J’s, so
be careful). If there are any long repeated sequences of characters, then the starting character of each
needs to be an even number of letters apart. Furthermore, if we plot the index of coincidence as a
function of period, as we did in Unit 31, we often see a slight increase in the even periods over the odd
periods (do not take this to mean that the cipher is periodic, just that this is a differential tool).

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XXI.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Playfair.pdf

Wikipedia, en.wikipedia.org/wiki/Playfair_cipher

Practical Cryptography, practicalcryptography.com/ciphers/playfair-cipher

United States Army, Field Manual 34-40-2, chapter 7, “Solution to Polygraphic Substitution Systems,”
Basic Cryptanalysis, U.S. Department of Army, www.umich.edu/~umich/fm-34-40-2/ch7.pdf

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 217-219.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter XII, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 198-202.

Joseph O. Mauborgne, An Advanced Problem in Cryptography and Its Solution, Fort Leavenworth
(Kansas): Press of the Army Service Schools, 1914, www.marshallfoundation.org/library/digital-
archive/advanced-problem-cryptography-solution

W. W. Smith, “Solution of the Playfair Cipher,” in part IV of André Langie, Cryptography, translated
by James C. H. Macbeth, London: Constable & Company, 1922, HDL: 2027/uc1.32106002774104 and
2027/uc2.ark:/13960/t0tq62t29

Programming tasks

1. Write a function that returns a boolean value representing whether it is likely that a given
ciphertext has been encrypted with a grid-based digram substitution cipher.

2. Implement an encryptor for the Playfair cipher.

3. Implement a decryptor for the Playfair cipher.

4. Implement a dictionary attack. Remember to allow for many possibilities for the method of
mixing the alphabet from a keyword and for the method of laying the mixed alphabet into the
square.

Exercises

1. Encipher this text with the keyword TRENDING. Fill the square with whatever method you like.

The point I advance, if it need confirmation,
I'll prove by a witness that few will dispute,
A pink of perfection and truth in the nation
Where fashion and folly are all of a suit.

(from Nothing to Eat by Horatio Alger and Thomas Chandler Haliburton

2. Decipher this ciphertext with the keyword GROCERIES. The alphabet was mixed by starting at
the beginning of the standard alphabet after the keyword. The mixed alphabet was laid in by
rows from left to right.

MDSOASOGTGKCDRBZEQVSKYMHFVIBDSKYMHCOROCEGODGABUICQMROR
AOEAIHPEVFHPDMQCXCNDPUMRKBBPASZKGQPLABKENPNBVIQCASYQWB
GZGUAEKYKBSHIQBUFSCPVLEQOEGUPBBNEQRFQYQCKSZGDCGUQSSIDC
KGOGKRXZEQDKFVSAUCOCLNMRRCHWCMOBVFPDNBLVXCPEDRMHFVPDFV
OVRCEAHRFSRLXCZMGQUQBXKGGSOBPUNPMDSHQBUIFNSGDUDUDCOWGS
RFYTCYMRDSLTRDBXARZRQGKDQITVPLFVOIASDPQWQRDRXCPEGECRVF
EDPLCDSDMCBAIQDQPLCOBNVBOZURBYXCNURQBXNQWSEKQUTCIQAELT
FICZEQSHOGHWGENLTMTCPLEKBAUNAEOW

3. Apply a dictionary attack to break this ciphertext.

CQAHUBVNTIZNTODRBAFRCEAWRKKRNODRVTMCNZITVTUBKHQCXEPRBN
TZFRZHMBABNOXEQGBTWRTZPODRCUQZOPKVUFDWONTZDRNKFWFKDEDR
BANOPGVBIWMTAWRKXEPRVTLQPUDKOMKATZMXZIKDVTLUDARPTBISBA
QCTPMKCKDBZNBTYCGNRLXVBNRABHFRLZKRQFKHQFPDOPZNDKMOQRTZ
PVBLLHBFOTVRADTBZNVPYCDVTOMBADTBISCLOTEVILTODRBNRAVNMC
NZFRRAEARKNKTOELRKCQBVKRIQMHRQDKQKBLITETKBDBQCPQRKQFKH
ZNVPZBLFDBQCZNVPITZDABDEVQHASIAWQPOYBAOPUKKHRLGPZIVQFR
EHVQQERAKVTZ

madness's book on classical cryptography
unit 71: hill-climbing attack on the playfair cipher
last modified 2020-08-11
©2020 madness

Unit 71
Hill-climbing attack on the Playfair cipher

We are going to begin with Cowan’s attack (“simulated annealing”) and make some improvements. In
his method, fitness is measured as the sum of tetragram frequencies. A parent key (in the Polybius
square) is set, and from it a child key is generated by swapping individual letters, swapping two rows,
swapping two columns, or flipping the entire square. If the fitness of the decrypted plaintext from the
child key is greater than the parent, then the child becomes the parent. This is a step upwards. However,
it is easy with the Playfair cipher to become trapped in a local maximum fitness. To allow the algorithm
to escape such a fate, a “temperature” is added by allowing a step to go downwards in fitness if the
distance down is smaller than a random variable that drops off exponentially and which depends on
temperature. As the temperature is reduced, the jitter in the motion in key space gets smaller and the
distance downward that is allowed gets smaller. The temperature is allowed to slowly decrease to zero.
If the algorithm has not found the global maximum fitness at that point, then it starts over with a high
temperature. The algorithm actually does not know if it has found the global maximum, and requires
human interference to stop it.

The first improvement that we make on this algorithm is to use tetragram fitness as described in
Unit 9. Our definition of it is an average over all tetragrams in the decrypted text. As an average, it is
not dependent on the length of the text. Therefore, it can give the algorithm a clear indication that it has
found the maximum and can stop. A threshold above which we are confident that we have English text
was found in the exercises of Unit 9. For the Playfair cipher, we remove all ‘X’s before evaluating the
fitness, since they would have been added between any double letters.

Our second improvement is to use a constant margin of error for downward steps. In our
algorithm, a downward step is allowed if the distance downward is less than a fixed amount and if a
random variable is within a predetermined interval. That margin is 0.5, and downward steps are
allowed only if the random variable lands in 5% of its range. The global maximum will be steep
enough that the algorithm cannot walk downward out of it. So we can terminate if we have reached a
point from which we cannot step upwards within a large number of tries (around 10,000).

Here is the full algorithm:

1. set the parent key to a Polybius square with an unmixed alphabet
2. set the best fitness to the fitness of the unmodified ciphertext
3. set the counter to 0
4. while the counter is less than 10,000

a. copy the parent key into a child key
b. randomly choose one of these modifications to the child key:

i. swap two randomly selected elements
ii. swap two randomly selected rows
iii. swap two randomly selected columns
iv. flip the square around the diagonal that runs from upper left to lower right
v. flip the square vertically
vi. flip the square horizontally

c. decipher the ciphertext with the child key to find a new plaintext
d. calculate the new fitness of the new plaintext
e. if (the new fitness exceeds the best fitness) or
 ((the new fitness exceed the best fitness minus the margin) and
 (we roll a 1 on a 20-sided die))

i. copy the new fitness to the best fitness
ii. copy the child key into the parent key
iii. set the counter to 0

f. increment the counter
5. output the parent key

Reading and references

Michael J. Cowan, “Breaking Short Playfair Ciphers with the Simulated Annealing Algorithm,”
Cryptologia, 32:1 (2008) 71-83, DOI: 10.1080/01611190701743658

Programming tasks

1. Implement the attack. If you used a different logarithm base, you will want to experiment with
different values for the margin.

Exercises

1. Break this ciphertext. What is the keyword?

UDSDAEEPVFHPKNNMPILPBMNGDOOGHPGDVFHIVQRSURBETIREAFHPAV
KFREHRRMFANFPUDMRAAUPIAGPEXFTGRUODWRBNFNDOTGPWQGDMNLQV
WEUWHGLDFSAUNOQPUALZSDZDGUFABEZDRBDFDVVQRSGMBEIZTDFNOP
PLPUUVRBAUGTVEHRARFKDRBEODUDVEUCAWRBPRDSNEBXRSLTPWQGRA
FAKGLPUWHGLZBFREIEREZLRETZWGYNLPDUFPECPZZDMUGUUTICGUIA
RAODOQGDUGIZGHUALZMUBVZDDMZDRBGUFAEFBRDMARDFOPBRPRNLOM
SDSRXNOREBRADMGKANMHKIDZUMOAPLOAAFUNRZARSIGHUSMGZDRDEP
UWBEIFREOPLSFNBWAUMPTLMGNLRZARSIPIAUXGZDPR

2. This ciphertext is from the British National Cipher Challenge before it was national (2001).
Figure out how it was disguised. Break it. Make sure your decryption is a clean one; otherwise
you may have made a mistake with its disguise. Can you find the keyword?

NZTFM YKDID MYLCY NSGZK VXKMX ALZDP MYLCY NSGYK VXKMX
AGKOG LCYUR EGPNY TFMZK DMNGL HWCLL DKYAB IYYKV XKMXA
DYOSJ PCDHU GDKIK UVXKM XADYO SJPCD KUJAS DLBEU VTNZT
FMZKD ZIKMG JLCEU DAYNV XKMXA IYGKP EJGHL HMAII YYKVX
KMXAI ZQSNJ OLHKJ VIKVX KMXAL YNJYG PDHLI YMCBS YLKCE
GYOSX XANJD NLKDP LIQZD KHGJG XANJD NLKDP LIQZL YDSGK
DWDOE JANEB SDAVV GKDCT GIZLY LSDFG DOEJA NEBSD AVXAG
LXADS TFEKI MCDMX XAOSD SJELX KMPEH CQDKS GZKDQ SIZGI
VMDSJ EGXKC ZMGPG LKUYM JGKYK IMZFN XADPN YKIZK IMKZY
GELJN YMIDN JDMOK IKYOL HDPOL LEDPC LSDYJ EUAGK DQISO
QDMGJ ZGEGO SDGLH FGPMC SBPEJ GUGXE JKSII MXAKY KZCMG
FWKKN PHJSK DSMBS FKHMD GQYKD MGMZG JIKJT GIZGE BYNAG
KDSNB DEDGL AWKDJ NIGYG GIXAK OAGBQ XKGIM TGEKB ZKJTG
IYNGJ CHYGX RKYOL LEHQK IBGEW GJQOK THCBS XALKB SMZNH
PDJMG FWKKN SMGMB GSDYQ NZTFQ IZIBX NEAXJ QBJZN GWKDK
USMVX DPDET FXD

3. Break this ciphertext. What is the keyword (hint: it is a name)?

BIPAFKWLIFETHACPEGKWCKKPIUDQCWPMLKBIAMSFFSAFQDANHOBQTB
BOKOSCQBTBQCFWUHHACPATIRFYKWUBQOIRHOOKUPZPQVONLCPKWOMK
GRCRKQVIPUBICMHACPATNLHWHFPMHOIQQTQNKNWOIXSFRCCRKQPRHI
OQQTQNEHQOOBQBUQGICPKPAPBTBTQOWOBIKUEFKMRCCRKRQYQYUQKT
CBCPKPAFGYSLPKCMQEKPUHAUDAIFKQBIAQQMINQCBICUKUOKMROWGY
FSAFQDHORFPUPKKFAIXBCPGARUZCUHXBKIMKWOFHQTRABNWOARTAOB
OUINTGUCQYOKMRQBCPKPFEKLPKCMQEKPUHAUMIHACPTQAQNEQKPAKP
UKQHHOFXQALNQAPZPUHDKRUKOKVNBIKUAZBFFKFYKWYLAMQNVNHOFS
QDUCQYOKMRQY

Challenge

Not square.

G0IJVEFCDLZMDECBNAV4VIWGBRCEACKTVETFCKEWDBIZPMRFNETSZOVCJPL
KIEIPYCICKTDIZUHTNBUEFTGTCAFCNTIJTSGFCGATKLVFVE2FUY2FGAJTNZ
GZKTCIFVTFEXACKTJCUYUVNUTCRFRFKT2FJBENIVGLJEGDDLCTPOOBCACBV
GJCCKVIFCEAILFCUFNELFIEFCPL2FTQCENGIRFCUFNELFSFVNCEGNBGNAQC
TFGAFCCIKTEYSA2FCFBJFBGAFCFBETBFIVKLPHNGPLFATAG0NGPL2FTQCEF
RFBRKZFCKFVJZEXVIWCIVKLNGHRDTH3FYANGTF2HPECWNODBCFJVENGTCVJ
NZGONJTFANK0FBNEYFNBBCENRKFJKYFGAQGFNJCNNZOZ5JGTFSDLCIFVNBO
PVEXCLHEXTHHZZEVMTKGACEDBCAKTAYJCAVF2NSCRVCVILK5JK0FBNEVEJC
NVCICNNZOZ5JGTGFRJFSDLCIGFILJPLKIEFCPL2FTQCEJCUFVIFCEAPLNSC
GLIHLCQFREJNTLISTEBKZPMRFRCTNVUTFBKENTAHTCNNZOZE0CESTEQUFNE
CGCNEBVGFCWEFGOPIVKLCINAPHCINSCNEAIDMUVFTNEZJBTCNGIRJOCNECH

PXCIRPLCTOZ2FGZLPXCHQJ0VIICIJYFILJPLKIEFCPL2FTQCENGFPGBWGGN
OPBDIPVULHPGKTNAJPLKIEFCAVPJZEFSIVCKCECGIVGAFCNSACEGNBZJEBJ
QFCEXJBTCNGIRJOCNECECBCLNACIRILFCDTDBPDCEZFQCTCCILFE0CESTEA
FCZJEBFPKENAQCASIJHUECJGKTWEK0FBNEUYVEENGLCBZVEKGJOTJTERVCV
IFVKTECNBVIZUJOOBJHFTJRRKCICSRKCEGZKTCYTKGVPHCIBFTDGTJDNBDI
CGPOCGTJXEJZTBCNEBQGTSCNBCKQ

madness's book on classical cryptography
unit 72: vertical two-square cipher
last modified 2020-08-08
©2020 madness

Unit 72
Vertical two-square cipher

The vertical two-square cipher is a digram substitution cipher that uses two Polybius squares, one
above the other. The plaintext is padded to an even length and divided into digrams. The first letter in
each pair is found in the upper square, while the second is found in the lower square. The ciphertext
letters are taken according to the rules:

• If the plaintext letters are in the same column, then the ciphertext letters are the same as the
plaintext letters.

• If the plaintext letters are in different columns, then we find the rectangle that has them at two
of the corners. The ciphertext letters are at the other two corners. The first ciphertext letter of
the digram is taken from the upper square, the second from the lower.

An example couldn’t hurt. Take this plaintext:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

It has an even number of letters, so we do not need to pad it. Let’s use the keywords POLYBIUS and
KEYWORD, and fill the first square by rows and the second by columns.

P O L Y B
I U S A C
D E F G H
K M N Q R
T V W X Z

K R F M T
E D G N U
Y A H P V
W B I Q X
O C L S Z

The first plaintext digram is TH. It defines a rectangle and we find the ciphertext digram WY:

P O L Y B

I U S A C
D E F G H
K M N Q R
T V W X Z

K R F M T
E D G N U
Y A H P V
W B I Q X
O C L S Z

The last plaintext digram is ER. They appear in the same column, so the ciphertext digram is also ER.

P O L Y B
I U S A C
D E F G H
K M N Q R
T V W X Z

K R F M T
E D G N U
Y A H P V
W B I Q X
O C L S Z

The full ciphertext is

WYAOKDALSNDBASGDUTYPTEDWCKEVEMUESXLYER

Decipherment with the vertical two-square cipher is the same process as encipherment.

Reading and references

Félix Delastelle, Traité élémentaire de cryptographie, 1901.

Wikipedia, en.wikipedia.org/wiki/Two-square_cipher

Crypto Corner, crypto.interactive-maths.com/two-square-cipher.html

Warren Thomas McCready (“Machiavelli”), “The Twosquare Cipher,” The Cryptogram, Nov-Dec
1972, 152-153.

Programming tasks

1. Implement an encryptor. Remember that there are many ways to mix an alphabet with a
keyword and many ways to lay a mixed alphabet into a Polybius square.

2. Implement a decryptor. Remember that there are many ways to mix an alphabet with a keyword
and many ways to lay a mixed alphabet into a Polybius square.

3. Implement a dictionary attack. Remember that there are many ways to mix an alphabet with a
keyword and many ways to lay a mixed alphabet into a Polybius square.

Exercises

1. Encipher this text with keywords HUDSON and EXPLORE. Use the same methods for mixing
the alphabets and for laying them into the squares as in the example above.

I take for granted that you are tolerably well acquainted with the different modes
of life and traveling peculiar to European nations. I also presume that you know
something of the inhabitants of the East; and, it may be, a good deal of the
Americans in general.

(from Hudson Bay by R.M. Ballantyne)

2. Decipher this text with keywords MAPLE and LEAVES. Use the same methods for mixing the
alphabets and for laying them into the squares as in the example above.

XCSOKGSOMYHBMQBWSOLYEWLYMXPRHZSTNZQCMZLGMBMPWILWQQBPVG
ICHHVPPRQKIQMAMHMZXBHZAYHUHDBWVDTIMBAYNYVDNTIYUHHTKEHP
PGCNSCEVXCSOSMKXPWIRACTTHEQCVDSNNZELDBIYPGYTKEITKGSOLZ
OWHTMFLZHELOITDIITWRACTOSCMZSOLGFLRDLYAXSOLYHFLYSOAZTB
TWIYDBMXMKIQBXRXVTNLMNKZSOPYPCHTTRMWQQIQTBVGTWKZTBVGIY
YBIXPZNLQZMZMBPPBINTICMBKGBISIDZVDMOKGDWNTHEKEDUVDZQ

3. Perform a dictionary attack on this ciphertext. The keywords are short.

DUDAMXTENUICFGMPRLUBGGAMFQQIMXOLLWQQOMESITRSSGLQLIHMES
DAXQOIRXTMBDNHKDOUMODUWCRLFGGSBPILBOSXECTERWECNLVPNSMK
QDOFESQQLWHMESBALMQQBOSZDALOMNDOXGSPEGREFGECGXCBAFVUMI
DNNCGGQQSPKDATDBXDSPGSOUHCNXASHTFQSINITSFEKIASLISPGGBH
FFBPDZGCDGTLQXHTFQMNQNREMTDHHDRXOMLSAZQBFGIXGGSPEGREAT
LPECQDHMFQMNQNMISPHFLQSPMTSQMEDGSIPKBWSXFRCPEGLNWEDAVG
YTESELVETGMBQIELBPSPSPATESMOSPHEQQMLGGLWAEHEBZQEFEWTCB
FFGGTYHEDUECLAOXEDDQWEWCUDESLNRLBWMIBOSXECQBNSMCEOPQPI
BPFOLNLGNNDBLVDEAEFEYSGFGEBPQQAFTHREECIXTLLPGUHKSYGCED
GGQQSPKDATDBXDSPBPTXHTDUQPHEOUMIEDBSQDTLGUDABVOSRMQDOF
ESDIRETMNUFDSPDBBALM

madness's book on classical cryptography
unit 73: horizontal two-square cipher
last modified 2020-09-30
©2020 madness

Unit 73
Horizontal two-square cipher

The horizontal two-square cipher is a digram substitution cipher that uses two Polybius squares, one on
the left and one on the right. The plaintext is padded to an even length and divided into digrams. The
first letter in each pair is found in the left square, while the second is found in the right square. The
ciphertext letters are taken according to the rules:

• If the plaintext letters are in the same row, then the ciphertext letters are the same as the
plaintext letters but in reverse order

• If the plaintext letters are in different columns, then we find the rectangle that has them at two
of the corners. The ciphertext letters are at the other two corners. The first ciphertext letter of
the digram is taken from the right square, the second from the left.

An example couldn’t hurt. Take this plaintext:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

It has an even number of letters, so we do not need to pad it. Let’s use the keywords POLYBIUS and
KEYWORD, and fill the first square by rows and the second by columns.

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

The first plaintext digram is TH. It defines a rectangle and we find the ciphertext digram LD:

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

Then IS → NT, ME → WU, and SS → NW. But then AG is on a single row, so it is enciphered to GA.

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

The full ciphertext is

LDNTWUNWGAYMNXPUDBMGOIYKUPAHAYDIGRFDAO

Decipherment is the same process as encipherment, with the two squares swapped.

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/TwoSquare.pdf

Wikipedia, en.wikipedia.org/wiki/Two-square_cipher

Crypto Corner, crypto.interactive-maths.com/two-square-cipher.html
(Note: They reverse the order of each digram, compared to our method of encipherment.)

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 219-220.

Programming tasks

1. Implement an encryptor. Remember that there are many ways to mix an alphabet with a
keyword and many ways to lay a mixed alphabet into a Polybius square.

2. Implement a decryptor. Remember that there are many ways to mix an alphabet with a keyword
and many ways to lay a mixed alphabet into a Polybius square.

3. Implement a dictionary attack. Remember that there are many ways to mix an alphabet with a
keyword and many ways to lay a mixed alphabet into a Polybius square.

Exercises

1. Encipher this text with keywords BACON and CIPHER. Use the same methods for mixing the
alphabets and for laying them into the squares as in the example above.

For months and months the eye has been assailed by paragraphs and pages in the
literature of two worlds, contending for or against the existence in the
Shakespeare plays of a cipher that would assign the honor of their authorship to
Lord Bacon.

(from The Little Cryptogram by J. Gilfin Pyle)

2. Decipher this text with keywords POLYBIUS and SQUARE. Use the same methods for mixing
the alphabets and for laying them into the squares as in the example above.

FLHSHXESUORPOHLSVUAMYBIVMFQONAXPQYTDQVQFGHCELDBSEGMOSK
KHKLLIOOSOFTNYSEBLPMQTUOLSBDORDBBBCPUKDNLSBDICWYCUCOPW
CBUNTEQVNTOVCBDONFISQPTDKHNAQNDNDOQYQVNIOXCBYUNTOZCBQF
EPKHSVUXUMTIUONFUWMOOVCBDBQXCUNVLIDBOVURFKUOUVFOXOOUTD
EBNFNHPMQXCMNAOPUMQFDBUKDNLIXMQXOVCBBLLIOMUVHFNABWSVBG
UVRKNIELKLLIEVLDDOFLDBMDQLUOBLODUNUXUMFPPMQTUMDNODKEKF
MULIIVBGCMBYPEKFNAQNOWUVNHPWOUIDKLOFABNMDBAMWRNIUXCOBB
OFPBNAGYOUUVNXNDALLSOULIXMIDIPOVNTCBENNTLFLISEFKQPSDFP
OFDCQXIVMXFLVLXMUMABLIOOBGCMMUQKALEURKNICMODKEKFMUNIUE
PHEPUWMOLIIVNAUPMHDRUVNIOGPWCBBQKHNXBDTDLICMNABUUMDNVR
LICMUORTBELDMUEVLIOMUVHFNAOOGDDBLIXMBXFPYCQXUPBQCPOTMV
URTTCBODKEKFMUEVQYQKLIUVMONANHASBONWMULIOELIUVURDNRNNS
MVSKPZQKVF

3. Perform a dictionary attack on this ciphertext.

NIUGOTANORETOTQLWAQNLATSKAASARQNTHSARPQVLTCIEMXUNELTLA
NTPMQDLGKTDEBBDEESSHINKGADXSSEINKGMMLPTSKAASKCSFKBNDAO
DRLTHRRFZUSLXSRGBKUOUDNELSFHGOIBWFRGWAKZNPNOKARFLEONDN
STSASUUPPDBKTZNPEBHRLATSEMAENEUOSEGDGOLZNPIHNTKAWBLNUG
AETTDNQNTHSAUGONFORFUDNEUGBGPDSSOTZUSLROOELROTQFTHECNT
ARRGODNTKAVHQLSEHDKGFORGDKSURGNTGOLZMMRFFHHVNICNLZLEUD
NETSKUMLROAEAMVNNGHUBREOMPOOHHRBEMDESEUGANUHLUEOPOOMLP

madness's book on classical cryptography
unit 74: hill-climbing attack on the two-square ciphers
last modified 2020-08-11
©2020 madness

Unit 74
Hill-climbing attack on the two-square ciphers

A hill-climbing attack uses two mixed alphabets and the parent key/child key paradigm that we saw for
the Playfair cipher. When it comes time to modify the child key, we randomly choose to swap two
characters in the first or in the second alphabet. It is not necessary to flip squares or swap rows or
columns. To avoid being trapped in a local maximum, a margin of 0.2 works well.

Here is the algorithm:

1. set the two parent squares however you like
2. set the best fitness as the fitness of the unmodified ciphertext
3. set the counter to 0
4. while the counter is less than 10,000

a. copy the parent squares into two child squares
b. randomly choose which child square to modify
c. modify that child square by swapping two randomly chosen elements in it
d. decipher the ciphertext with the child squares to get a new plaintext
e. calculate the new fitness of the new plaintext
f. if (the new fitness exceeds the best fitness) or
 ((the new fitness exceeds the best fitness minus 0.2) and
 (we roll a 1 on a 20-sided die))

i. set the best fitness to be equal to the new fitness
ii. copy the child squares into the parent squares
iii. set the counter to 0

g. increment the counter
5. output the parent squares

Once a key is found with a hill-climbing attack, we can recover the keywords by swapping rows
and columns. For example, if we find this (half) key:

T P R Q O
E M S U A
N I L K H
G B F C D

Z W Y X V

then we can rearrange columns to make the last row more orderly.

O P Q R T
A M U S E
H I K L N
D B C F G
V W X Y Z

Now we can reorder the rows:

A M U S E
D B C F G
H I K L N
O P Q R T
V W X Y Z

It appears that one of the keywords is AMUSED.

Programming tasks

1. Increment the attack for the vertical two-square cipher. Remember that there are many ways to
mix an alphabet with a keyword and to lay the alphabet into a square.

2. Increment the attack for the horizontal two-square cipher. Remember that there are many ways
to mix an alphabet with a keyword and to lay the alphabet into a square.

Exercises

1. Break this ciphertext which was encrypted with a vertical two-square cipher. What are the
keywords?

MEXESAEPQHNPLAOKMGBSUNUTXTDCALPTOUERPTGHNVGHNBOQISPQFT
REFOIHREKLFAIHREGRDHQFOQISQXMEIBHUMQLHNAUNNACEIHMTIHRE
WEREALPQRDRESADCRDREPQNFMNHSDKKLEQNWHIBTPTFOUNRHCAREHS
CPDIFOSLYTHISLKLNXCQBSWHRENXMEHHDHPTGHEPTYFHOKDMIZGHKL
NXMEHBAERMGIVEICIVCQALREADWSTRPMGCONMESATRTNGCHQCWMGWT
LLIZKLGADBNEMEIHCEIHKHRDRRGKORPTEHDHPTGHHMDCDBPTEISNVT
DHPFTRPTEBTRQTCCHLFOPTOUERPMSTUTMCIAUNBSMFORSTAIDHDCLT
NAESCEIHAMTNTOMGUTNHSADCHQINDBHQGCOKDNXTDCREGRFHGSLLXT
QYLHPTADRHGIKLHNTXAHBBHLGCHLTTIAKHHUBGTRXEULIZADCWKLFQ
PSFWBTKLNELDFOGHQTNAWHECYTIHGAKDONDMIESX

2. Break this ciphertext which was encrypted with a horizontal two-square cipher. Can you
untangle the keywords?

QMHCPVUNGIPBYNTNDKCIXGCITHMBKNVLQMEBGITRBPKNTSSFGPAPIS
HPTSMFQMFNMVFNHCMDSNICHCOPFHMOESFCPETIRRHCQINGBATIESWH
SXNITQCNLPNAIMPBGDBPBOEDQPDGEWTIPPCRADLQPPWRKPPIDDCTOC
WHMBKNQMDHRPUAYPHPGDPSILWHBWESSNDHEDMEPBLIEHRIPSBHMDQA
QAEBICDFILGHCTOYDISOWNECESQMDHWYILWHADIHHPDGEYYSGNMDQA
DFGNSHCOOCPSBDEQPBGAXCBIMBESASUCTMDQTSQSPIBDEYZSQSMHID
QPSXIDCSMVFPEIEXEAESRBPEZEIHTICQVPAPCRKNFUFPTYRAPEHBPV
MCUPEHAPTSQMYNWYMFPIQEHPMBSTIADIAHPTCVRBBNADAPUSCIZEIH
AHEBLFDHKUHPSRXCOIPKQAHPWHMBQIDKFPFUUFZPEDUPAHQIDGTIER
MBSPETOYAKIVKCGPMNDAHCGUQMDHDFDYEHLCRMCIKNOCSNMIYPPIBD
ELVPHHQMFPAKIVKCGPPCWHUSRHPVQPUCQMDHQAQMFEEIDLQMYNDEHP
PSNMBOERURPEWNQMFNSOQIDRUCNAQMIHWHTSQMDHAHESWHPSMPCIEH
DIEHODHIADMFCSEISPHU

madness's book on classical cryptography
unit 75: four-square cipher
last modified 2020-09-30
©2020 madness

Unit 75
Four-square cipher

The four-square cipher uses four Polybius squares, arranged in a two-by-two layout. The upper left and
lower right are the plaintext squares; their alphabets are not mixed. The other two are the ciphertext
squares and contain mixed alphabets. The plaintext is padded to an even length and divided into
digrams. The first letter of a plaintext digram is located in the upper left square, the second in the lower
right. They form the corners of a rectangle. The other two corners hold the ciphertext letters, the first in
the upper right square and second in the lower left.

Let’s encipher this message:

this message is encrypted with a grid cipher

Its length is even, so no padding is needed. We will use the keywords POLYBIUS and KEYWORD, and
fill the ciphertext squares in an unimaginative manner:

a b c d e P O L Y B
f g h i k I U S A C
l m n o p D E F G H
q r s t u K M N Q R
v w x y z T V W X Z

K E Y W O a b c d e
R D A B C f g h i k
F G H I L l m n o p
M N P Q S q r s t u
T U V X Z v w x y z

The first digram th is enciphered to NB.

a b c d e P O L Y B
f g h i k I U S A C
l m n o p D E F G H
q r s t u K M N Q R
v w x y z T V W X Z

K E Y W O a b c d e
R D A B C f g h i k
F G H I L l m n o p
M N P Q S q r s t u
T U V X Z v w x y z

This continues, and the final ciphertext is

NBSQHENPOROZLMLLOPZIRWOXAQIYUNAWYAFCOS

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Foursquare.pdf

William Maxwell Bowers, Digraphic substitution: the Playfair cipher, the four square cipher,
American Cryptogram Association, 1959, page 25.

Wikipedia, en.wikipedia.org/wiki/Four-square_cipher

Practical Cryptography, practicalcryptography.com/ciphers/four-square-cipher

Crypto Corner, crypto.interactive-maths.com/four-square-cipher.html

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 221-222.

Programming tasks

1. Implement an encryptor. Remember that there are many ways to mix an alphabet with a
keyword and to lay an alphabet into a square.

2. Implement a decryptor. Remember that there are many ways to mix an alphabet with a keyword
and to lay an alphabet into a square.

3. Implement a dictionary attack. Remember that there are many ways to mix an alphabet with a
keyword and to lay an alphabet into a square.

4. Implement a hill-climbing attack. Except for the decryption routine and margin, it can be the
same as for the two-square ciphers. The margin should be about 0.2 when the fitness is lower
than a threshold, but near zero above the threshold. Experiment with it until you find a threshold
that works well for you.

Exercises

1. Encipher this text with keywords WINDY and WEATHER. Use the same methods for mixing the
alphabets and for laying them into the squares as in the example above.

We all held the string as fast as we could, and tried to pull down the Kite; but it
was impossible, for instead of bringing her down, we were all three dragged
along down the meadow slope.

(from Adventure of a Kite by Harriet Myrtle)

2. Decipher this text with keywords NUMERAL and CIPHER. Use the same methods for mixing
the alphabets and for laying them into the squares as in the example above.

CTBTLONUTEISIVRHSBOINKEUHTMNMMPNUUNGSBISDPEKEYFDMCDMDP
PKMUOPDITPZCOIHCDMDPQQXTTHHQGUMUUSLHEUAPOHFGKSKIOIHOBM
QDUEIHYMACKIQSURUNQUPHMUKEFGEEKTOHIPXAAMEUDPTIBTILEMPE
PHSUQDEOQDBTBMTSTIPBTIEOUUMCRSOIEXCTNGSLLQNEOMYDHPTIMO
MUQDNNMNCQCLBOQELLMUOPDIQX

3. Perform a dictionary attack on this ciphertext.

EQVOMWHHQSPEHMLWCGEINSBEPEILCQFDCDXCSBAIROTWTBPPPLQCRW
XCGLFHQPFTYTCDIPLARQROMWROQPOKBRMITABAFWSKGGUKHMGLHMNS
IZLAPNFHROPEGGHMFQAWQNUKGSPEGSILLHGGTWBEROFLRWPEGSLAVO
MIAELAPDTAQKAMFWMLHMSKUCBRPPIRROTZGFHRTOGLGZKAHPHATNQE
FWLFOBDWHLARZIGAMBQEDKEQOWGKFQHIKOQIPEIABBNKGLZOROCBFT
AOHQKQRWPEHFQHIMQPAWZQRWHQAWCVLLDTCYLZISSKQIKNGDPEHMPE
LLGGTBROFGCDTGKAIMHAFTAAIRKMLLSKHLFPAWEIQCYLFPAWCWGAIG
HSROKNFGPSGGHEFWSQQEDWMBFWETBWBGVYGGSQAWHEFPAWFCQPQIUG
CQFDCD

4. Perform a hill-climbing attack on this ciphertext. What are the keywords?

DSVNOOSGDPFOHMLETLEOLWSFFLMHSTCIAKNSMRSVACAILZRGGKUNAM
THTNGKCIENSFRMGSEOSAMHNOISACMSFOTFHKUORALTLZAPLCACLUCS
LMACUEMHVFGLFNLKNKKILZDHTOYFSNACLWTNGPBXAPAMNSCDSIFOPC
PZLTYINOXDKAGKUNAMCIFKGRGLYDRARAUMATSANKKOPLMOAPTRAGNO
XQYFOMLAMSBRNSCDRAPMACPWMOPZLTYINOYFOMGSPCELGFSTDSHNMX
YFOMLWPMFWZKHNMXYFOMGWNSGQUQQIACWYNSMKFNSIMRFOBSVNVWRR
MIHOTHKSSGPFGTKSULDTFOYDTOHNMRFOFONCLTFSSRMEFLRACSRACS
MVRAONMRBRNSCDRAPMACGSEOOAONBQACQIYSDHBEMSLCGPFOUQGWEO
RALZCSLMACHARAPBLCEIYICPUEVWFOMMRRATTOASMSFOUNMEPZLTRR
GEGSFODGCDATTWHHBADRAMNNMRFOTNNNINLTGLDGTHTNYENSOHEYAT
FOEOLSPLAGGLRAAMBSVKHOACAIPZLTTNTSRFGLCISIRAALXWNKVNRH
PZLTLEGEKRQLNNQDGLCIRALMQTDZSDZKSFFCDXSGPOHEISKQHNMXYF
MOLTFPHKMORMUNMEPZLKNKRACICQZNTNTNMMSQGLHADGKDABGKNLOD
ISNNLIBSAKNKRGGKHYLTGHNNRAGLPZEIEOASMMFLMRMSFODFASUQRA
CSAMLMFWOOMOGAQOPMFWZKRQOODWRACSDFOWHNVNOOVKCITOUSUORD
LZNSMKTHAMRACSPWXSCINPZRSVROISNOGSFOHAFKSDIGQXAPYDRANS
OIPLRFCIENMOCMLZNODSFOTNZORNCSATMHRQPMCKAPSAENSAKI

madness's book on classical cryptography
unit 76: phillips cipher
last modified 2020-10-03
©2020 madness

Unit 76
Phillips cipher

In the Phillips cipher, a Polybius square is filled, and from it, seven more squares are generated. Each
square is used to encipher five letters at a time. The second, third, fourth, and fifth squares are
generated from the first by shifting the top row downward one, two, three, or four rows. The sixth,
seventh, and eighth squares are generated by shifting the top row of the fifth square downward one,
two, or three rows. A square enciphers a letter by replacing it with the letter that is in the next column
and next row, with wrap-around.

An example is essential when the explanation is as poor as the one above. Let’s begin by filling
a Polybius square with the keyword POLYBIUS and generating the remaining seven squares.

 0 1 2 3
P O L Y B I U S A C I U S A C I U S A C
I U S A C P O L Y B D E F G H D E F G H
D E F G H D E F G H P O L Y B K M N Q R
K M N Q R K M N Q R K M N Q R P O L Y B
T V W X Z T V W X Z T V W X Z T V W X Z

 4 5 6 7
I U S A C D E F G H D E F G H D E F G H
D E F G H I U S A C K M N Q R K M N Q R
K M N Q R K M N Q R I U S A C T V W X Z
T V W X Z T V W X Z T V W X Z I U S A C
P O L Y B P O L Y B P O L Y B P O L Y B

Notice that squares 0 and 4 have the same effect, as do squares 1 and 7. Now let’s encipher a short
message. The first letter enciphered with each square is highlighted with pink in the square and below.
Notice the wrap-around used in enciphering ‘T’ to ‘O’ in square 0.

plaintext: THIS MESSAGE WAS ENCRYPTED WITH A PHILLIPS CIPHER
square: 0000 0111112 222 233333444 4455 5 55666667 777700
ciphertext: OKEG WNYYBRL AHG LYDPZVONM YEOI R EIVGGVEY POEKNT

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XIX.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Phillips.pdf

Programming tasks

1. Implement an encryptor for the Phillips cipher. Allow for several choices on how to mix the
alphabet and how to lay the mixed alphabet into the square.

2. Implement a decryptor for the Phillips cipher. Allow for several choices on how to mix the
alphabet and how to lay the mixed alphabet into the square.

3. Implement a dictionary attack.

Exercises

1. Encipher this text with the keyword EDGAR. Use the same method for mixing the alphabet and
for laying it into the square as in the example above.

Now the irony is this. In this walk, so many times repeated, the world’s greatest
master of the terrible and the bizarre was obliged to pass a particular house on
the eastern side of the street; a dingy, antiquated structure perched on the
abruptly rising side hill, with a great unkempt yard dating from a time when the
region was partly open country.

(from The Shunned House by Howard Phillips Lovecraft)

2. Decipher this text with the keyword RHYMES. Use the same method for mixing the alphabet
and for laying it into the square as in the example above.

UBSSOOWGUHWHTWFUVHVYDIVLSPGFOWPGFWSNKHAXSAQWAUWUIFKNGU
HQLRQYVGWOIAWGLFGWPFSIYUWNFMQYSHUYNFGIONVYRGYVSIFQNKUW
SFGWSFUYHUIFCMSASQVUQLNGXIGRCUEASGUQWVMIFUIFGWAKWVFQVU
BSGFRYKHGIBNIBUVXPAIYSIVUCZHWGKZBANRGFIFUMWEIYXUNOGWHR
WUZYAUSIAUIHGFMQSIBAUYKYMV

3. Use your dictionary attack to break this ciphertext.

RAPSZUHLHMRIXQGAPPHIZURAQKOHXLGHLYGOLKAUPSFALURHMSZUXN
KAESXZZBRAYHUBHIKCLYDCDOZUDKALSBSMHMNTUSZVBVZIXAIZARIB
UKXHFCAVPSHMIFLZAXBSIHLKHSTVUIZAGIBUCXHXUBSFGHWLUGKLDV
DPHKEIKAXZQKAEIZVWAZZIXQKLHYSTHYRHUHPHVRDFAZHXBSRQNUDI
MSZERAVCKYDIZSHFYSLUHXHZUZ

madness's book on classical cryptography
unit 77: hill-climbing attack on the phillips cipher
last modified 2020-08-11
©2020 madness

Unit 77
Hill-climbing attack on the Phillips cipher

Our hill-climbing attack on the Phillips cipher is similar to the one for the monoalphabetic substitution
in Unit 28. The parent and child keys will be mixed alphabets, not sets of filled squares. To avoid
getting stuck in a local maximum, we will use a margin, as we have done before. A good value for the
margin is 0.5. Here is the algorithm:

1. calculate the best fitness as the fitness of the unmodified ciphertext
2. set the parent key to the alphabet without ‘J’
3. set counter to 0
4. while counter is less than 10,000

a. copy the parent key to the child key
b. randomly swap two letters of the child key
c. generate the eight squares from the child key
d. decrypt a plaintext using the eight squares
e. calculate the new fitness of the plaintext
f. if (the new fitness exceeds the best fitness) or
 ((the new fitness exceeds the best fitness minus the margin) and
 (we roll a 1 on a 20-sided die))

i. copy the new fitness to the best fitness
ii. copy the child key into the parent key
iii. set the counter to 0

g. increment the counter
5. output the parent key

Once we have a key, we may not have the key. The reason for this is that if we roll the entire
square to the left or right, then the cipher has the same effect. For the example in the previous unit,
these versions of the first square (square 0) are equivalent. No matter which of these you choose, when
you generate the remaining seven squares and encipher a text, the ciphertext will be the same.

P O L Y B O L Y B P L Y B P O Y B P O L B P O L Y
I U S A C U S A C I S A C I U A C I U S C I U S A
D E F G H E F G H D F G H D E G H D E F H D E F G
K M N Q R M N Q R K N Q R K M Q R K M N R K M N Q

T V W X Z V W X Z T W X Z T V X Z T V W Z T V W X

If we find, for example, that the key is LYBPOSACIUFGHDENQRKMWXZTV, then we can lay it into a
square and roll it until it appears to be in order, and thereby recover the keyword.

Programming tasks

1. Implement the attack. Use tetragram fitness.

Exercises

1. Break this ciphertext. What is the keyword?

DWCFPHQAZAXMZZLZPLYARDZDMEHHDUUGLFGZPSKMFDWLHOIKIHRFOM
TLCQXCDZPCSLBREHQQZKDLNMAQLFEABIGVZHSMTNMWXBSASBZCWUKU
DGHSOZFHQAFQDHFLOAKRATQSLZLLZTZKMLQLFKAAIVBDFHULICCGZF
CBOAKFCATTILKVTALQLQDHIUULRIKUSLPZIQGKHCFQSZUGLZMZGMSO
WQVWQSZQLGDHCCGWPSOALCGFDFHMLTHQSWCLMAMZHZLYOCVZZICUDU
VHGDLHAWGHQCWLBICGHNRMGPLYWQLQSELHWULGLPHIHGUANGKACGBQ
LTGKWCRNTLRLWYVBLMLHGGKGRGAHIGDZHKGMSDBCOSZSHQNZKQVASZ
AVFHQDOUGBIIWKZFH

2. Break this ciphertext. What is the keyword?

BVGHUUWZKGDQLDDFZUFYVMUIVLNZKUXALMRWGHKWGHVABNNSNGHERZ
FYFOBFRBCBILBPNVMHPMUZIKSZFVMULFZZWOUWETFPXIFZAMZECGHM
MVFMRXEIFVHKFABURURHVQRQIPNOZYZUVMURHZPFVHKUGHMRURHVQC
XIKNHODARQVFRYVXNNZFGHBVIVLFAUHPBADNHOKICBVWKKZWGHQVRA
IZUIFMZEFZQVLCXEVFAEGHNNVMUPNFAZHKDQINZZFOHIERHZGFVOLF
AFMPNFAZHKRNHAHVLHAKUQLFPXNNIUUHUUHHVUCNHEUALKHPNSAHVE
BAKUHOFTNVNWHWWHBVURFHZNVLKMRUBWFXNWABNNKWAVSDWFUNGUBF
RHVEMZPFFUUCUGHKUISVURFZFPMZWPZSGFRDQYZFPXVBUBMVKUFZUQ
INXUWRHKCXFFLRSVLRQRRXFFLRWUZFQINQUNCHKXZMHFVKRWBCVFSW
ZZWOOWFRRXIRXYLRMBLNFAGFELK

madness's book on classical cryptography
unit 78: phillips-rc cipher
last modified 2020-08-12
©2020 madness

Unit 78 (optional)
Phillips-RC cipher

The Phillips-RC cipher is a modification of the Phillips cipher in which rows and columns are shifted
when generating the eight Polybius squares. The encipherment proceeds as in the Phillips.

Here is an example starting with the same first square as our example for the Phillips cipher:

 0 1 2 3
P O L Y B U I S A C U S I A C U S A I C
I U S A C O P L Y B E F D G H E F G D H
D E F G H E D F G H O L P Y B M N Q K R
K M N Q R M K N Q R M N K Q R O L Y P B
T V W X Z V T W X Z V W T X Z V W X T Z

 4 5 6 7
U S A C I F E G H D F G E H D F G H E D
E F G H D S U A C I N Q M R K N Q R M K
M N Q R K N M Q R K S A U C I W X Z V T
V W X Z T W V X Z T W X V Z T S A C U I
O L Y B P L O Y B P L Y O B P L Y B O P

If we can break a Phillips-RC ciphertext, then the keyword may not be obvious. We can roll the
square until it becomes apparent, as explained in the last unit, but for the Phillips-RC we must roll
horizontally and vertically.

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/PhillipsRC.pdf

Programming tasks

1. Implement an encryptor for the Phillips-RC cipher. Allow for several choices on how to mix the
alphabet and how to lay the mixed alphabet into the square. Feel free to copy and modify your
implementation of the Phillips cipher.

2. Implement a decryptor for the Phillips cipher. Allow for several choices on how to mix the
alphabet and how to lay the mixed alphabet into the square. Feel free to copy and modify your
implementation of the Phillips cipher.

3. Implement a dictionary attack.

Exercises

1. Encipher this text with the keyword STORY. Use the same method for mixing the alphabet and
for laying it into the square as in the example above.

Once upon a time there lived a cat of marvellous beauty, with a skin as soft and
shining as silk, and wise green eyes, that could see even in the dark. His name
was Gon, and he belonged to a music teacher, who was so fond and proud of him
that he would not have parted with him for anything in the world.

(from Japanische Marchen und Sagen by David Brauns)

2. Decipher this text with the keyword FRIENDS. Use the same method for mixing the alphabet
and for laying it into the square as in the example above.

ZQCUBXHDEFKYZOHTOVMLZZQCBQMPXKSUHOAWFMNMBDPLMUMZXOUNXI
OPFQLFQCUBSZMQVYULZCYDEHIUCZQBOQXFXPUZORULZFVXZQCUBXGE
PTVYDQUZLHEZALXLDIZOMOWPZUQKAQNMCKBACQZXOPMMRULPEULACZ
WZQMTLHQZOULIYPFNLZACCIBHCMZUHRNHHZLHFCLAGQXKEDEEEYPZN
HLXXNQBOWGHVTZSUHGSOMULZZUCOWWFMOEXXUPUMFNILKKMNLGQTMM
LGQSUMFEIVUBPQZLHDOLHIZIUOYNWALKICDZVYZXULOYGIFXXHPDLI
CIEDECZIUQYIVKFQLZMWVGQZBMTLGQAKZOMNCLKZK

3. Use your dictionary attack to break this ciphertext.

NGQFUQBVQLVAVWKHKTXAEPGFZETVMHMRUOVYQZZVSPZQOQMQZZRPOA
MAQDKWUSBUQAXVBZGNSRYRZVUBBCNUIQPRLWPRMFETEXDWQUSQIMVB
MUNSRGOTRVFTQZPRUELAZVUAMHRWPNTNQZGQVUUGBFOXUGVEXRVSQC
BFEZIEXRSRZRZUVOFYIBZBFINCEUGVPNNEWRZKAURPYXQHRYQVSRZY
VUTXFQBYUGYLMORNSRIFMMEWQZNFUSRFTTKMZKBXYYTNGQYQZMCBNR
RVPLMAZRRPPYOQFVBYFRZDKVVSTYVRUNFHPCUGBHSPMRMELAHEZCND
QVSRMFLVQMHQRQOTQFPYTNLZHMIRNPHEZSVSQTBCCEHED

madness's book on classical cryptography
unit 79: double playfair cipher
last modified 2020-08-12
©2020 madness

Unit 79
Double Playfair cipher

For the double Playfair cipher, two Polybius squares are used. Each is filled with a mixed alphabet
from its own keyword. The two squares are set next to each other. In addition, the key for the cipher
includes a period, which is simply an integer. The plaintext is first padded with an ‘X’ if its length is
odd, then divided into blocks that are twice the period in length. The last block is not padded to twice
the period. Each block is written in two equal-length rows; this is called seriation. Each pair of letters
formed by taking one from the top row and the one below it from the bottom row is enciphered
together. The method of encipherment is to identify the top letter in the first square and the bottom
letter in the second square. Then,

• if the two letters are in the same row, encipher them to the letter just left of the second plaintext
letter in the second square (with wrap-around) and the letter just to the left of the first plaintext
letter in the first square (with wrap-around)

• if the two letters are in different rows, form a rectangle with them at two corners; the ciphertext
letters are the letters at the other two corners, with the one from the second square first

The resulting pair is enciphered again with the same rules.

Time for an example. Take this plaintext:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

It has an even number of letters, so we do not need to pad it. Let’s use the keywords POLYBIUS and
KEYWORD, and fill the first square by rows and the second by columns.

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

Suppose our period is seven. Divide the plaintext into blocks and write them in rows:

THISMES ENCRYPT GRIDC

SAGEWAS EDWITHA IPHER

The first pair is TS. They are on the same row, so we take the letters to their left, with wrap-around, and
get LZ:

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

Repeat with LZ to get TW:

P O L Y B K R F M T
I U S A C E D G N U
D E F G H Y A H P V
K M N Q R W B I Q X
T V W X Z O C L S Z

This continues until we have the completed ciphertext:

TWFAATNIOYRAXMTAMZAOMRIVASEAPRIGAAFQAK

Reading and references

NOVA Online, “Decoding Nazi Secrets: The Double Playfair Cipher,” www.pbs.org/wgbh/nova/
decoding/doubplayfair.html

Noel Currer-Briggs, “Some of ultra's poor relations in Algeria, Tunisia, Sicily and Italy,” Intelligence
and National Security 2:2 (1987) 274-290, DOI: 10.1080/02684528708431890

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement a dictionary attack. Remember that there are many ways to mix an alphabet with a
keyword and many ways to fill a Polybius square. You will have to input the period or try
several periods in your attack.

Exercises

1. Encipher this text with keywords DOMESTIC and FOREIGN and period 5. Mix the alphabets
by adding letters after the keyword from the beginning of the standard alphabet. Lay the mixed
alphabets into the squares by rows.

Not being, at this moment, in the pay of any press, whether foreign or domestic,
I will not, at this my third landing in English country, be in haste to accomplish
the correspondent’s office of extroversion, and to expose all the inner processes
of thought and of nature to the gaze of an imaginary public, often, alas! a
delusory one, and difficult to be met with.

(from From the Oak to the Olive by Julia Ward Howe)

2. Decipher this ciphertext with keywords GRIDIRON and FOOTBALL and period 6. Mix the
alphabets by adding letters after the keyword from the beginning of the standard alphabet. Lay
the mixed alphabets into the squares by rows.

DTQFQAKMGIMEAEQHRVZDATAANIFOHUTMFIBXTTRFQMFIFIHDGURWTI
PSSBIKTEDFLAKVANUSOHIMQBVASSACONLDVEALAEHNGIGUELPEESGP
CBFNFIRFSIKVITNGQMDXQBXISIAHIASHAIGKLBECCQAFMMGUTTFDNK
EIDBSIHUCDNCOMKKGIMMGXTTTBRCBCRBDPBDSLZZLDQEDPBMSMRAFF
ELMESSBDOCEEREPELBIIPGQBTFTTKBTBXSKKGUQHFNUDQRDYLU

3. Perform a dictionary attack on this ciphertext from the 2004 British National Cipher Challenge.
The keywords are taken from this list:

ANSCHLUSS
BLITZKRIEG
DEUTSCHLAND
DIRSCHAU
FATHERLAND
FEUERZAUBER
LEBENSRAUM
NORDWEST
RHEINTOCHTER
SONDERAKTION
WASSERFALL

ZONOP UXRFO VMNUS VERUZ XPPLS VOHMZ XGZBK TTQWL LFWAC
FTKTA HULIP LYBUP DUURL FXHXW TOSTZ IBODK WYLFQ FWYNF
EDZVQ RBOME SFHGT AHUUV QBIZR GFZNE WXWMV FCXMF WBLST
DISQA NGTPM CHISA CLVWX IKLFM OZCKW XHRNW MELKB GSNSA
MECOL KWEYP TPZDI DWKCW VFWOI ZSCID GLMTT PNUIS TVMII
SEKMI WLZBT CXXLF ZADTT BFQAE UGWMM XRWME VLVVF ZTDNP
ICPIZ LLICO GIHDN UBIOI OHNGZ WLGWU QFMBT PEWBO CDZPU
TZBKS PXFFT GVYUG ZUVEV LCAAQ FMPSO OMBVE TLZEW ISAQL
CPKIH ZVDSU TLVEL FCQUV VIMFS WWYOZ ICTSZ MSVZN HBNOX
SQFTD LFMCQ AMMLI MXLLF ZCICO YGEFU TCABO WRAQQ IYXLI
PUHIS ACLWM UVDGH PZISR QIWQT AUFQF SLOWV XWTWQ VMNOA
HCFME ZKFRC WFAMF QWFQM ZUFUU TPMHA QHFFF CNGGS UKDWL
EIIIQ ITKQI KDIMB OVUXP FMSLC PYXZM UMLIS W

madness's book on classical cryptography
unit 80: nihilist substitution cipher
last modified 2020-10-20
©2020 madness

Unit 80
Nihilist substitution cipher

The Nihilist substitution cipher begins with an alphabet mixed by a keyword and laid into a Polybius
square. The row and column labels are 1, 2, 3, 4, 5. The letters of the plaintext are converted to two-
digit numbers by taking the row label followed by the column label. A second keyword is used in a
manner similar to the Vigenère cipher. Its letters are also converted to numbers with the same Polybius
square. Those new numbers are added to the plaintext numbers. Optionally, any sum that exceeds 100
is written without the leading 1; this does not lead to any ambiguities.

Your are probably expecting an example at this point. Let’s begin with the keywords
POLYBIUS and KEYWORD. If we fill the square in the least imaginative way, we have:

 1 2 3 4 5
1 P O L Y B
2 I U S A C
3 D E F G H
4 K M N Q R
5 T V W X Z

Our usual plaintext for this part of the book:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

And here are the gory details (at least some of them):

plaintext: T H I S M E S S A G E W A S ...
plaintext numbers: 51 35 21 23 42 32 23 23 24 34 32 53 24 23 ...
keyword: K E Y W O R D K E Y W O R D ...
keyword numbers: 41 32 14 53 12 45 31 41 32 14 53 12 45 31 ...
ciphertext: 92 67 35 76 54 77 54 64 56 48 85 65 69 54 ...

The full ciphertext:

92 67 35 76 54 77 54 64 56 48 85 65 69 54 73 75 39 98 26
56 82 73 63 67 74 63 80 55 75 77 35 84 37 66 42 76 64 59

Reading and references

Wikipedia, en.wikipedia.org/wiki/Nihilist_cipher

American Cryptogram Association,
www.cryptogram.org/downloads/aca.info/ciphers/NihilistSubstitution.pdf

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 619-621.

Programming tasks

1. Implement an encryptor. Remember that there are many ways to mix an alphabet and to lay it
into a square.

2. Implement a decryptor. Remember that there are many ways to mix an alphabet and to lay it
into a square.

3. Implement a dictionary attack.

4. Modify the two-stage attack on the quagmire 1 cipher to make an attack on the Nihilist
substitution cipher.

Exercises

1. Encipher this text with keywords RUSSIAN (in the square) and FREEDOM. Use the least
imaginative way of setting up the Polybius square.

O God, how easy it is for a king to kill his people by thousands, but we cannot
rid ourselves of one crowned man in Europe! What is there of awful majesty in
these men which makes the hand unsteady, the dagger treacherous, the pistol-hot
harmless? Are they not men of like passions with ourselves, vulnerable to the
same diseases, of flesh and blood not different from our own?

(from Vera, or The Nihilists by Oscar Wilde)

2. Decipher this text with keywords ANARCHY (in the square) and NIHILISM. Use the least
imaginative way of setting up the Polybius square.

44 77 59 47 45 66 78 57 36 53 56 83 47 76 89 76 44 83
38 63 58 67 65 79 53 44 26 76 66 47 55 87 36 76 60 43
79 56 67 80 53 53 56 83 45 77 67 67 37 57 39 45 58 44
89 80 44 67 39 76 66 85 55 79 34 56 60 45 45 53 68 58
34 53 50 43 78 77 85 88 44 86 68 64 79 47 97 50 53 67
47 85 45 76 68 47 43 43 46 56 57 85 76 80 27 73 60 47

58 45 88 67 24 43 57 66 75 77 55 66 23 64 27 76 79 44
76 49 27 73 49 43 78 46 99 46 25 73 40 45 85 76 88 67
23 64 68 43 78 85 85 48 57 47 26 67 66 66 78 67 53 44
56 57 47 83 66 69 36 76 26 44 57 77 59 59 65 47 56 66
58 73 69 67 57 64 57 66 58 55 75 59 35 77 56 77 49 56
58 46 63 76 39 73 59 47 95 70 23 44 49 64 56 56 57 80
33 64 27 45 85 76 88 67 23 67 26 76 79 73 97 67 66 65
27 56 87 77 59 67 56 43 27 55 49 56 55 69 56 73 48 44
58 85 89 50 23 77 56 77 49 56 57 70 36 67 37 56 47 76
85 60 57 47 39 76 75 46 76 59 57 53 30 43 57 66 55 48
43 56 59 83 69 76 89 50 63 76 57 66 58 55 75 59 35 43
40 77 58 45 55 88 27 64 49 56 66 47 55 69 37 76 66 76
76 56 58 80 36 55 30 64 69 43 56 58 56 73 59 56 48 45
68 80 36 55 50 53 65 73 78 58 44 44 26 74 68 43 58 59
45 44 56 85 46 73 56 69 33 77 56 67 55 76 68 69 37

3. Break this ciphertext with a dictionary attack. Both keywords end in -IST.

46 86 52 67 74 45 74 42 36 65 45 66 36 45 57 35 103 54
56 55 68 73 52 64 48 38 106 52 64 35 74 85 55 74 44 46
86 52 64 56 38 73 43 56 64 54 94 42 64 47 74 74 42 64
54 45 74 42 64 46 57 83 34 37 74 47 66 63 47 45 35 64
63 47 35 65 64 44 36 45 37 97 72 37 54 44 94 32 43 46
54 75 55 53 64 46 64 44 56 54 44 97 55 34 74 45 83 43
36 65 48 75 55 53 68 54 84 33 67 54 46 86 52 53 65 56
67 42 44 57 54 74 64 53 36 44 66 36 37 77 46 86 52 35
38 37 74 43 43 37 64 74 64 53 37 58 73 63 55 35 55 66
66 53 37 38 93 33 44 46 55 64 66 35 54 48 75 33 36 45
45 64 34 43 37 46 83 52 64 46 44 97 52 37 77 75 73 44
56 54 37 65 55 34 46 57 83 66 36 65 48 84 33 67 64 37
74 33 67 46 35 84 34 34 38 35 94 75 66 74 44 75 52 36
66 37 97 44 54 68 35 93 63 36 46 44 63 52 44 35 36 73
52 45 77 44 04 35 44 55 35 97 44 73 65 37 75 52 53 65
35 03 54 56 46 35 93 35 57 54 45 64 62 53 37 36 96 72
36 44 65 75 35 64 36 54 74 35 63 35 65 85 44 56 54 64
74 33 34 65 37 84 44 53 68 44 04 52 64 46 35 03 44 36
65 48 06 33 73 68 64 64 44 56 54 68 66 63 47 44 75 83
66 53 64 74 65 55 63 35 68 83 42 64 68 74 74 43 43 37
65 74 33 35 44 54 75 75 45 57 37 94 42 44 74 45 03 35
37 75 44 75 55 34 74 68 65 33 73 65 46 97 75 63 54 65
75 55 53 68 54 73 53 34 74 65 77 54 67 54 37 75 35 47
34 37 94 44 36 56 54 84 66 34 64 44 75 35 64 48 45 86
35 37 38 47 83 54 37 37 48 84 33 67 77 35 03 44 34 48
35 75 55 53 45 37 93 52 76 35 74 04 42 37 38 57 66 32
53 35 65 83 32 53 68 77 85 66 53 37 46 66 46 33 37 65
75 35 55 54 46 86 35 45 77 35 03 73 43 38 38 76 52 36
47 38 83 44 34 45 66 83 35 57 68 74 74 43 43 37 65 84
36 73 54 65 75 36 76 44 65 66 43 56 35 68 75 44 43 64
54

4. Break this ciphertext with the two-stage attack.

34 80 57 87 47 63 47 25 88 56 78 76 44 58 24 60 65 57
45 34 86 44 58 95 75 63 44 86 25 67 57 57 45 36 57 43
77 86 87 47 34 89 27 56 65 77 66 33 50 24 66 86 58 43
65 50 36 77 65 77 64 65 56 36 60 64 64 77 57 67 55 66
78 75 63 54 69 44 88 64 65 67 36 57 47 67 55 67 63 76
67 47 89 74 75 75 66 66 27 90 68 74 67 35 59 25 88 86
65 44 54 69 66 68 55 75 45 33 67 56 76 65 86 55 35 48
47 89 74 56 73 67 47 53 60 86 56 76 37 60 44 96 56 65
66 56 79 43 58 75 64 73 37 47 56 67 78 87 43 44 59 56
88 65 78 46 66 50 55 58 87 54 47 34 79 43 89 74 56 76
53 48 27 57 75 56 75 37 46 34 79 77 87 63 37 78 25 97
74 58 84 53 48 56 76 56 55 53 37 49 25 57 65 87 45 37
47 24 67 57 75 56 44 69 64 76 56 87 63 35 47 55 77 78
67 45 34 48 46 99 77 65 55 37 47 44 80 68 75 67 66 66
25 77 78 87 45 34 48 55 89 86 58 43 53 80 33 67 78 75
76 76 50 24 68 58 75 75 66 48 24 60 88 86 66 76 78 56
57 75 94 64 57 60 23 60 55 78 47 66 50 24 77 56 87 86
53 57 63 58 56 78 46 35 57 63 60 55 56 46 37 47 53 57
56 87 45 57 49 25 59 87 58 64 43 76 24 60 94 56 77 63
50 47 89 74 56 45 75 67 55 89 75 78 57 37 47 26 58 55
58 43 65 50 36 77 56 87 86 54 79 44 88 65 84 66 44 67
47 80 65 55 44 44 79 44 96 56 95 63 37 78 25 77 78 87
45 34 48 55 89 77 75 45 65 67 47 89 74 56 53 37 56 25
80 87 58 77 65 59 43 67 55 65 56 66 48 24 60 54 87 63
35 46 34 69 87 86 84 53 67 36 76 75 87 44 35 69 34 89
56 86 53 67 59 43 60 54 75 76 54 78 47 60 95 54 47 34
79 43 58 54 75 44 65 79 56 77 64 56 57 54 86 25 80 87
58 76 53 48 53 90 66 77 64 46 67 43 67 94 56 46 34 57
64 80 88 84 47 57 79 43 58 55 56 56 37 47 26 88 58 54
76 53 48 36 67 86 56 53 44 49 25 77 78 67 47 67 47 56
68 88 87 53 37 47 25 58 86 84 45 46 67 34 79 77 97 77
63 50 47 89 74 56 44 35 76 27 57 87 86 53 44 49 25 89
58 64 45 36 80 24 77 78 68 76 53 48 53 57 58 68 44 35
78 55 60 54 87 63 35 67 47 96 56 86 76 54 60 34 89 75
58 67 45 89 56 76 56 64 54 57 89 26 58 87 56 56 66 67
63 58 86 95 63 37 87 25 57 56 95 47 34 68 44 80 68 88
67 36 48 24 66 97 57 64 34 48 36 89 75 58 67

madness's book on classical cryptography
unit 81: bifid cipher
last modified 2020-10-13
©2020 madness

Unit 81
Bifid cipher

The bifid cipher is one of Félix Delastelle’s inventions. It uses a keyword to fill a Polybius square and a
period to determine how the plaintext is divided into units that are enciphered together. The only way to
adequately explain is through an example. Here is our short message:

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

We will use the keyword POLYBIUS and a period of seven. In the simplest way, we can fill the square
thusly:

 0 1 2 3 4
0 P O L Y B
1 I U S A C
2 D E F G H
3 K M N Q R
4 T V W X Z

Next, we divide the plaintext into blocks of length equal to the period seven. The last block is short, but
that’s OK. We can encipher it in the same way as a full block.

THISMES SAGEWAS ENCRYPT EDWITHA GRIDCIP HER

Now let’s encipher the first block. We write below each letter the row and column labels that address
that letter in the square:

T H I S M E S
4 2 1 1 3 2 1
0 4 0 2 1 1 2

Next, read off the coordinates from the upper row and follow it with the lower row. We divide it into
pairs, and remap those pairs back into letters by using the same square.

42 11 32 10 40 21 12
 W U N I T E S

The full ciphertext is

WUNITESUFVSQSNGAPVHXPFVWULPXGSUYTBPFRC

If the period is specified as zero, then the convention is that the entire plaintext in enciphered as
one block.

The breaking of letters into smaller parts (in this case two base-5 digits) and separating the parts
of each letter from each other is called fractionation. We will see this again.

If we are given a ciphertext and want to break it, the first thing we need to do is find its period.
One approach to this question is to graph the index of coincidence as a function of the period in the
same way as we did when examining the polyalphabetic substitution cipher in Unit 31. Here are three
examples from real ciphertexts that have periods four, twelve, and zero. As you can see, the peaks are
not as large as they were in our analysis of the polyalphabetic substitution, and it is not always easy to
find the correct period in the graph.

Once the period is known (or guessed), we can apply a hill-climbing attack that strongly resembles the
one we built for the Playfair cipher in Unit 71. We need to change the decryptor function, of course, but
the rest of the algorithm remains unchanged.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 210-211.

Félix-Marie Delastelle, Traité Élémentaire de Cryptographie. Paris: Gauthier-Villars, 1902,
archive.org/details/8VSUP3207b

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 243.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Bifid.pdf

Wikipedia, en.wikipedia.org/wiki/Bifid_cipher

Practical Cryptography,
practicalcryptography.com/ciphers/bifid-cipher

For other approaches to cryptanalysis, see:

Practical Cryptography,
practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-bifid-cipher

António Machiavelo and Rogério Reis, “Automated ciphertext-only cryptanalysis of the bifid
cipher,” Universidade do Porto technical report DCC-2006-1,
www.dcc.fc.up.pt/~nam/publica/dcc-2006-01.pdf

Programming tasks

1. Implement an encryptor for the bifid cipher. Remember that there are many ways to mix an
alphabet from a keyword and to lay it into a Polybius square.

2. Implement a decryptor. Remember that there are many ways to mix an alphabet from a keyword
and to lay it into a Polybius square.

3. Write a function to take a ciphertext and try to find the period. It will be similar to your function
for the polyalphabetic substitution, but you will need a new way to detect a peak.

4. Implement a dictionary attack.

5. Implement the hill-climbing attack by modifying a copy of your attack on the Playfair cipher.

Exercises

1. Encipher this text with keyword SOCIETY and period five. Fill the grid in the simplest way, as
we did in the example above.

How self-contradictory, in the first place, is the nature of man! How sociable he
is! also how unsociable! We have among animals the gregarious and the solitary.
But man is of all animals at once the most gregarious and the most solitary.

(from Modern Society by Julia Ward Howe)

2. Encipher the text in Exercise 1 with the same keyword but with period zero.

3. Decipher this ciphertext with keyword ROBERT and period 6.

RRHIKFERHMKSUFBPEVBETUFWEAOALEQERYMKHBTSLCRBANVTTRKNNP
VFBEHALCBFNVRSDNNTTFNPETERHMKSPPENBMRHBKSLTLGCAWFNBETV
ODKSTFVOAURLIVRVQUHQHEUGLAREWZHHPEARHRCYLASRHYUEHAOAVN
ORAZETAOOVNZOPCRBNBRPVNUOPCRBNBRWVNAPBCNLOLKBLWVFDGRME
RBBLVPBSEAEAPRBUGVBEDPRTROFQPTNEASAFCECTSTOISAVRDOHTQC
LICRRHNNNPBZRRHIKFERHMKSPINQDTABLYVFPHNRYSAPICBRPABBNG
FVORQDXORNUGHKLGOYBAOSQPFNHTSEWPCANNHSNWYFEEEA

4. Decipher this ciphertext with keyword SAMUEL and period zero.

FQAVKKIOQSEUWUKSURZICUSQINORBSRLYSILSPYUSSLRUYUSSLRGRS
UAVKUEOGCHOHATFDMQAWFBAERKQUSVRBILMZCVOTSQZUDTIYMVYUTN
HYBYUTNHYWFKZPOZYTOPDNYFN

5. Break this ciphertext with a dictionary attack.

REKTAXKSIIZVNCOGEOOMEKGUFQUKXMSPYBTBBRVYKGSOMSVHTOLDXP
AYODCNEHVDTCVYAKHPSBWXVKBBOVYICWOLVITUHTWEFTVPUUBDUPPL
RMFYUYCKUHVWWCQNETERWOZANOOPPTLDQTPOFCHSRCCTAHRCIKZVNG
WCWNEHUCQXQOWQKQNFYFDGVSVDBLSEEZHBONAIQWFBYUQYMDRLRZNY
HEEIEQXVMHTCEFTVPDWBFNDHPWVFEWSWLGNQEPAATVHROHCKOQSQHI
TFRIELFOUAPUTFABREUCOSBQLELFZEEKBSRTITEMWZVIACVEVKNSKM
PIPXBDCQGONFSHNOVFTVYPMGYUEPMQBMXLDCQGONBSHHZVFCGSZAK

6. Find the period of this ciphertext. Then break it with your hill-climbing attack. What is the
keyword?

GRRAVYGIOLRGTSCYNRTYWYHVYGUMLRRENOUVRVEERIYITRLVOACOTD
EYYGNMTVBECVEERSYWIRFRONCUCPARIYIVDNVCBKXGADXETDRYGOEG
TPGYFRRMOQCUSQBYDFVTGFMRROMCSDWEAIBGWTHFYAVBYCHTBAEXCU
MROOACIDIVIYIVVOGVRHRQADGGQRYOHAQXMEYNDDYSPQYYEYPVYGUM
DGRKYLDGIYIVIYIYIAIUVRMEOGZQPOEZDDUBYCAROAKOEGIMNGTMSS
UIDLEGTYTVEDVUIDIYXVKRFGNMRAAHTEFBNBEUCHAWCFMWAAQYPAXZ
OOGCOWVGVUCTGAMGDQGYNDUYYPPRANMWAFSHHYVUXOIVRMLYERNGHN
VBPCROUTRIPDRYASNYMNUUCGOZUIHIGQZVSCFKPBEUQYAPOARGGOAC
PCXFFTBRSOYCDURROTKSLKRBBAZYQRRIABVLYPUYCAFOOITICFFYOY
EYLRRALPORWIHLYGUMNGTMRAAHTKFYAAHXFOHZAOKVOGCAIYIVADXE
CRREPFYRDHZGRDEUICIFLFERPXETATSYGEMFPDWZDYYNPBDOVUCTGI
GIEDWERAEDBNTAIYIWSCYYAIUIAVUMNQTYSTNFBDWBNGHNLCREPAEX
CRMRNACVOYCYGNOUIAIURGOZCYRAKYGVUIHICTASQRZOTYTVAGXMRD
EYYGNMRYEDCQAZIDIZTARVM

madness's book on classical cryptography
unit 82: trifid cipher
last modified 2020-10-13
©2020 madness

Unit 82
Trifid cipher

The trifid cipher is a generalization of the bifid cipher to three dimensions. Yes, Félix Delastelle
invented it, too. Instead of the Polybius square, a mixed alphabet is placed in a 3×3×3 cube. Breaking
the plaintext into blocks of equal length is the same, and period zero means the whole text is one block,
but the fractionation is done with three base-3 coordinates. Since we have 27 spaces in the cube, we do
not need to drop any letters, and need to add one. The new character can be space or some item of
punctuation.

Here is an example. Suppose we want to encipher this message with keyword KEYWORD and
period eleven.

THIS MESSAGE WAS ENCRYPTED WITH A GRID CIPHER

The mixed alphabet can be KEYWORDABCFGHIJLMNPQSTUVXZ_, and we can put it in a cube so:

 0 1 2
 0 1 2 0 1 2 0 1 2
0 K E Y C F G P Q S
1 W O R H I J T U V
2 D A B L M N X Z _

The coordinates of a letter are the layer number, the row number, and the column number. So ‘G’ has
coordinates 1, 0, 2. We divide the plaintext into eleven-letter blocks, and write the coordinates under
each letter.

THISMESSAGE WASENCRYPTE DWITHAGRIDC IPHER
21121022010 00201100220 00121010101 12100
11102000200 12002010010 21111201120 10101
00121122121 01212022001 00100122100 10012

The coordinates under the first block are read out by rows and broken into sets of three. Each triplet is
remapped to a letter in the cube.

211 210 220 101 110 200 020 000 121 122 121
U T X F H P D K M N M

The full ciphertext is

UTXFHPDKMNMYOYQPQEEVBEETFRILJKCNCMEWHR

Reading and references

Félix-Marie Delastelle, Traité Élémentaire de Cryptographie. Paris: Gauthier-Villars, 1902,
archive.org/details/8VSUP3207b

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; pages 210-211.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 243.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Trifid.pdf

Wikipedia, en.wikipedia.org/wiki/Trifid_cipher

Practical Cryptography, practicalcryptography.com/ciphers/trifid-cipher

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Write a function to take a ciphertext and try to find the period. It can be the same as the function
you wrote for the bifid cipher.

4. Implement a dictionary attack. There are many ways to place a mixed alphabet into the cube;
just use the simplest one.

5. Implement a hill-climbing attack. The modifications to the cube that you need to consider are
swapping two element, swapping two planes in any of three directions, and flipping in any of
three directions (up-down, right-left, front-back). Feel free to make a modified copy of your
attack on the bifid cipher. For the fitness function, you may want to strip out any of the 27th
character in plaintext. The margin of error for stepping downward should be variable, and about
5% of the fitness.

Exercises

1. Encipher this text with keyword FAIRY and period 8.

The children who read fairy books, or have fairy books read to them, do not read
prefaces, and the parents, aunts, uncles, and cousins, who give fairy books to
their daughters, nieces, and cousines, leave prefaces unread. For whom, then, are
prefaces written?

(from The Orange Fairy Book by Andrew Lang)

2. Encipher the text from Exercise 1 with period zero.

3. Decipher this text with keyword VIRTUE and period 5.

TPHVXTTZXYSK_FAAGJVRIIDN_VRDVEVZJFPDFBIPIN_AYII_RIKEVW
BYKKVPDPFGDIONZITBSCOFRMQOHXIAFVDHCXSV_IQTBHLSVMEQDQIU
WAHXIAFVDHCXWTPPAAWDSGSBHDSVMEQDVRAKRUCOGTDTUEZBDALKRR

4. Decipher this text with keyword CIRCLE and period zero.

VEDGTIACIGQLVCCCYOAJGCRPCNVRLTDLYOAJPCFGBJVJMGCORGBJLL
SDCTBEWDOAHMZLQCKMGIGMLTSGIJICCIGKNIGMLTUINCEIGEC_QHKS
EIHQTJCKEEGVEOIFPHURNTSAIMPYZMAIHNHMWMJWNMPYZHKPNMMEPK
MJIZNMMFOXWPMK

5. Find the period (not so easy) of this ciphertext and break it with a dictionary attack.

NMINDWATDAOAEAPYHH_IMALEWTJUPNP_QUKFNUPAPGNERKEIK_KPEX
GWFLV_SGTHHN_CRGYGGZPMDPYKGDTBIUIMAGHNNJOFHVEEDIMKPNHN
N_CQTABYWQUJWMIWHJPTNVTCQGFPGDJCAQADEKLQIYFXLWFHPNLCGB
LPJJCENIRJPLVP_HPADLPGEFHMNBHANZLQUSIPCGIEAHCBKMPTNVTC
QGFSGPJCHAUKAGTGPNIEOVNIZBPIEQDDDVLCGADOOWLCDRSKDZNACE
YHQWGNYTDBTZISEOLJIRR_LXGBQRIZUPPDWASMZXPPEBEBZJAXIHUP
XPSHSBABNZFERLIJHCENBFJPLYGTYXYVOIZBYFPLNDCBTIMTUSKSLG
WONVAPTMGEFFUKBICSIHIFVPPRCHUWXBKHIEOOYQNISHS_JUKJPRDP
WVPYHPEDOIWLUUKEXASDUETZJPXINKJIBPBHIFVGPXCKAFIIPUXDHE
YABHNSKADTMPCQAYEJSPAPJ

6. Find the period of this ciphertext and break it with a hill-climbing attack. What is the keyword?

RUPHNRDTHBYKTTRTQUXCAKYINADHLHT_BXOQRLWZNBZHZOMSVAFYWR
SDFYEIEIRNHSSUGTXNMNAFHMQTETDBTYPMHDIJYKZHBKEQOFMYJ_TH
YUGQEXUAG_WYYUPYCANTFTFDF_DSKATHOPDNRKMPRICTOOFHIPAIRU
IAYIOYPFOQZ_S_RGFPEVUCSYAHAXWXPRNGMHQBKVACI_DBDCBJQATT
CUTODHIKMGQHQPQXAHA_TMEUJOIHNKT_HBYKTPRQRYYLJPEKEOUSZH
SWDOTIDMMDLAFTUXI_RFFPLCUTLPMDNNWCARHVMMAERURHMPDVVGHA
SDZRRVUKHDJDJOJQOVTSBMPFNUYHAZFKH_Z_EIASHXSSSAUGSXPSFI
ERENHZWYYYYXUDSAQXX_X_FEEDQDIQQOBMDENPODWJHHNJUTCOANXT
AZIVPIT_YDJTCNTPGYAXHZUSQRHVMMAERGBOIPILCDQPDPNXEQOQAH
K_CKNHRBTZYWPYPKNMCFYHNJM_DEPFSAKSCTCQAPXTHHRRVP_INRXP
RH_SSVFYHDNMDBGHQ_RSKKJHINI_AMQMAPDKLGOAYYWZJYKPFK_FQA

DUGIETADUGFBAXHQLXQY_TUEFIH_RLGEBIFQFLBHWNFLOXYSTLHUXI
CFVISOJKITNYYZTTYBHHSUQDRREBH__NQQFVKRPDPYBPQFKTCIJIPH
MWUTCYHDETFJQNOUBIPARJVOOTGACPKPUEBPHSHSRTOQBKXZZXSYKL
KDAPEYWYGRTEISIYMRSIILBAOQSYLUDYIYWMTBCJVDOAHTSXOKUDCC
YHY_WDQEOXSRXTVYIIEH__TDBQHMTDSHDPVKWAAOWVQORJKKOHDIIX
POCQCXTRDYQPFNIKKPARJTUOFOCRLUXESZXHADINCGYAZQZSBRHEPL
WISCAYYKRQNNPHPNQXEOFSIHFJVUOETL

madness's book on classical cryptography
unit 83: adfgx cipher
last modified 2020-10-15
©2020 madness

Unit 83
ADFGX cipher

The ADFGX cipher is a Polybius cipher with row and column labels A, D, F, G, X followed by a
columnar transposition which may be keyed with a keyword. Decipherment must be done in reverse
order. The choice of the labels A, D, F, G, X is due to their low likelihood of being mistaken when
transmitted in Morse code.

Some use a variation in which the transposition stage is a permutation cipher rather than a
columnar transposition.

One way to attack the ADFGX cipher is to modify the hill-climbing attack on the columnar
transposition cipher. However, since we do not know the contents of the Polybius square in advance,
we cannot use tetragram fitness. Therefore, we use the index of coincidence as the function that we
wish to maximize. For each permutation that we try, we decipher the ciphertext with a grid containing
ABCDEFGHIKLMNOPQRSTUVWXYZ and evaluate the IoC. If we can maximize the IoC at a value
resembling the IoC of English, then what remains is a monoalphabetic substitution, and we can use the
attack from Unit 28. For permutations of length greater than five, there is a complication: There may be
more than one permutation that gives the same maximum IoC. In that case, we will have to try several
candidate permutations until we find the right one.

Reading and references

Practical Cryptography, practicalcryptography.com/ciphers/adfgx-cipher

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 339-344.

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement the attack described above.

Exercises

1. Encipher this text with the keywords PINK for the square and FLOYD for the transposition.

It’s been three months of lockdown. Please, someone send vegan brownies to
Old Pink, in care of the Funny Farm, England.

2. Decipher this text with the keywords FRANCE for the square and PRUSSIA for the
transposition.

AFAAGAGGFGADFXFFGFAGFDAAFFFGAGAAXFXAFDXFAAAGFGAFGDXGFF
FXFAAGAGXXGAAXAAAFDXGXFFFGXXDDFGGFFXFDAAGFGDGXXFDADADA
ADGAGDGADADADAGGDDFAGGAAGDGDXDDADDDDFDDDDFXDGFGDAXAFFG
GADFXADDDAGFFAAGAFGDGDAFDGADAAAGXAAAGAGGGFGDDAFAAFDGDF
DADFFDAFADAGDFFDFDFDDXAGFFAAGGXAADFAADDFFAGDFFAFGGXAGG
XFGFXDGXGGFGGAADXDDGAFXADGAAGXFFFDGGAAXDXXFFAFGXAGDGGF
AGDDFFGXAAFFAGXAAAXXDFFGAFXDGXXXAAAAXFGGDDAGAXFGAXDXAG
FGAAFGFGXFFAGADFADDGAAFDFGXXGFAFDFGGDXGDDFFDAFDADAAAGF
DFDFDDFAGADDFGFGAADFXAFGGXXDGGDGGFDD

3. Break this ciphertext. What are the keywords?

DXGAGFDAAAXAAAADAFADAAGFDADGAAAGFAGADAGFDGAGFGAGAAADAA
GDAGADADFFADDDDAXDAFFGDDDXADAAGAGFXDADXFDAADAGDAFAAFAD
AGFFFDADADAGXAADDFAAAAGXGFDGDGGDAFDFXXDDGDFFDDDAFFDAGA
AGDXADAAXDADFDXDADGGFDFDAGGXGDGXGDDGXGDDAGDFFXFFDFXGDG
DFDXGDFFDAFGAFGFFXGDGDFFXGXFXFFFFFGXFDGXFFXGDDFFAXAGGX
DXDDGGFGGAGGADAXDGDXFDFFFDDGDAXFDXGXGDFXGGDFDGDXFFXGXX
DGGDDXGADFFDAGFXDGFDAXXDXDAGFFGXADGFGXXDFDGXDGFFDXGDFF
FXFFGAFDXXDGGGFADFFXFFDGFGXDGXXXFGDGGDDFGAGDFFFDDAXDFF
AGDAFXADGAGDXADGXFGGXDAXFFFXGAXGGDGGFGXXXGADGGFAAGAGFD
GGGDAXXXDDGXAGDDGDXXAGDFGGFGFDGXXXFDXAFGFFDDXFFFDGFGGG
XADFFXFXXGGGDXXFDGDDGFGFGXXFAAADDADFAXXGDADDAAGDDDXAAG
AFDAAADXGAGDADFDXAAADDFFGGAXDDDAGFDXDXXAGXFFAAGAGDADDA
GADADDDDDAAGFFADGFAAFAFDDDGFDDDDAAGADAGDDAGFDFADDXADDA
AAFDAAGAADDAAGAGDFGAAFDAADXGDGDAGAFFDAAADDAFXFGAAAAAGF
DADDXDXFXXFGDXDXFXDFAGXDXFFDDXXFGFGXGXGFXADGXGXXXDXDAX
FDAGXFFXFXGDFDDAXAFGADFGDGDFGDXDXDGDFFGDAGDFFGFGGDXFDX
FXDADGDFXXFFXDAXFFGGGFGXDDGDFFFDDFXDDADGDDGXGDXAFXXGFD
FGGGDFFXXDGFDDGAFFFDDXGXFFXADAGADAFXDFDDAAADFDAGADDADX
XGAAFXDDADDADFDDDAGDFGFAAADGAADDFAADADDDADGFDAAAADADAA
GXDGDAADAAFAXDXAADDDGAAAGDDDDGFGDDFAADXAAAADAADDXDAGAG
ADDAGDFAFGAAFFGXAAAAGXAAXGGXXGAAGGXDAAFFGADDDDDAAXADXA
AA

4. Break this ciphertext. What are the keywords?

AAAFXAFFGAAXDDGGAAAXDGGFGDAAGADAGGDFDDFGAFGDGADDDGAFXG
DAFXDAXDFADADAFFGGDFGAGFGADFAFFAXAFAXFAXFAGAXDAFFXXAGX
GFDFGDDDXAXXAXAXFAFXFXXGDXXAFFADFFFFAAFAXADXAXGGGAFXDF
FDFDDGGGDADDGGADAAADFFGGXAAAFGADFDXGDAGDADGFFFGAAGDGDF
DDFDXFGAGDADDGDGFDDAAAAGFFAGAFGDFGAXFGDDAGGFDAFDGDDAFA
DDGGAXFGDGGDXAADDGFFGDAGAGGAAGDAFFDGFGADDAGGAFGDDDFGAA
GGAGDFXGDFFDAXFDXAGFAXAXAXDAFXXADXDAXFADGXADDADGAGFXDX
XXXAXFXAXFFXFAGDXADGAAGFGAXXXGDGADGFAAGFADXGAXAGFDFAAF
AFXAADFGXAXGFXFDADGAAXDXFGXAADGGAGGDXFXAXFAXFADXFXXXDA
DGDFXDAGGGDDDXGAGAFGGDDGAXAXAAFGFAGDXADGGDXDFDXGXDFAGA
XFDGFXDADXXFDDAFAXXXDXAXFAGGGGFAFDDXDFGFAGDAFADDGXXDFA
AAADAGDAFGAFXDXGGFGGGFFDDADAAGFGGGAGDGAGFGFDAGFDADDADA

madness's book on classical cryptography
unit 84: adfgvx cipher
last modified 2020-12-10
©2020 madness

Unit 84
ADFGVX cipher

The ADFGVX cipher is the extension of the ADFGX cipher by using a 6×6 Polybius square. Because
the square has 36 places, it holds the full English alphabet and all ten digits. The choice of the labels A,
D, F, G, V, X is due to their low likelihood of being mistaken when transmitted in Morse code.

Some use a variation in which the transposition stage is a permutation cipher.

An approach to breaking the ADFGVX is to look for a columnar permutation that results in the
fewest distinct digrams. We are looking for a decryption with mostly letters and few or none of the
digits. After the transposition, the Polybius cipher is broken as usual, if possible.

Another approach to breaking the cipher is to extend the attack on the ADFGX to use 36-
character alphabets and a 6×6 Polybius square.

Reading and references

Practical Cryptography, practicalcryptography.com/ciphers/adfgvx-cipher

General Solution for the ADFGVX Cipher System, Washington D.C.: U.S. Government Printing
Office, 1934, www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-
documents/publications/FOLDER_269/41784769082379.pdf, archive.org/details/41784769082379

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 339-346.

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement the first attack described above. The length of the permutation is an input.

4. Implement the second attack described above. The length of the permutation is an input. As a
subproject, implement the attack from Unit 28 for an alphabet of 36 characters. In calculating
the fitness, it is acceptable to delete digits from the text.

Exercises

1. Encipher this text with the keywords WEATHER for the square and PICNIC for the
transposition (remove repeated letters in the keywords).

To give a picnic party a fair chance of success, it must be almost impromptu:
projected at twelve o’clock at night at the earliest, executed at twelve o’clock on
the following day at the latest; and even then the odds are fearfully against it.
The climate of England is not remarkable for knowing its own mind; nor is the
weather “so fixed in its resolve” but that a bright August moon, suspended in a
clear sky, may be lady-usher to a morn of fog, sleet, and drizzle.

from “The Picnic Party” by Horace Smith

2. Decipher this text with the keywords MUNCHKINS for the square and CYCLONE for the
transposition (remove repeated letters in the keywords).

DGDADVAADDDDDGGDFVDGDVFGDGDDFADDADGDDGDDDAGDADAGDDDDDD
GADFFGADGDDDGADAFFGDAAFAGGDAGAADAGDDFGDFDDADDGDAGFDGFG
GADGFFDDADGFAAFDAFDAFGFGFFGAFADAAFDDGGGDGDDFDDFDAFDADG
ADXDFFGDGVVFVGXFADVFVXGFFXAXVAFGXVFAFVFFVGGXDFFVXVVVXX
FVXVGVFXDFVAXVAVDGVVAFFFAVFVVXDFGDDDVXDXAFFAGXFVAVGVDX
FXVVXFDVGFVVFFDXDFVFFVDXFXDFFAFDXFGXFDXXADVDDDVDDFVVAD
VDDADGDDDFDADADGADFGAADADFAFDDAADDAGDGGFADGGADDDGDGGDF
ADGFGDFDFFDFGAAADDDVGADFDGDAGADDFFAFDGGFAGAAADAAGGDFFA
ADFFDDDFAGDDGFDDDDADDDDFADFDFDGFDAGDFDFAADDFADDADDGDAG
FFDDGDDDADDAFDADGDDFGADFDFAADFDADGGDAGDDADDAAADGGAFDAA
AFDAFFAADGDDAAFDDDDDFDFVGDADDDAFDDGGFGDDAGDDGADADDADFF
DFDGDFAFAGADDGAGGGDGDFAGDGDGDGDDVDVDDFADADDVFGFFGDFGGG
DFDADDVFVXVFVDDXFXDVAVFVFGFAVVVGDAVFGFDDVFFAXDFVGFFVVV
FVXFFFVFDGAGVAVDGFVXAFADVFXVFXVFVDFVVFVFFDVVDVDVXAFFVV
AVFVAGVDDFAADVVFVFXXDFVXVXVVAGADXDAFAFVVVVVVXDVFAXFAXF
XFDGDDXVDVFXXAVXDVFDXFFVVAVFXADFDFVXDVXXDFFDXDVXFVDXVV
FDFFFXVVFDAVGFFXFXFFVFVAGVFDDFVGFFXDVFAAFVAFAFGDDDFFAF
XFVVAFGFDAXDDVXXFAFVVVGFFXXVVFGFDGGGVAXFFVXGFDDXDAGDFG
DFVVXDAFVF

3. Break this ciphertext. The transposition has length nine. What are the keywords?

GFAADFVAGDXFVAAFADGDDFAADAXAVDAADAGAAADAXDAVGAVFDAGFVA
XDDDGDXGDAGAFAVDXAFAAGXDFDADFAVFFADAAGVDADXAXFAAVADAVD
XDDAFDDFXFFADFVADAAGAAAGAFGVFGVDAAAAGDAAXDFAAADAAGVGAG
AAADVFXDDFADGDAAAAGGDDFAAAAFVDXDAGXGDAAAVGAAVADDXDXAAF

VDGADDFGAGVFVDXAGDVDAAGGXAAAAFVDGFDFGFADGADDAFFDGGXAAG
FGGFDAAADFDAADGAAFDGGGXAFDGAAAFFFDGADAGGDFDGXAFAFADAAA
GAADXAVFXDGFVAGDDAVAXFAAXDXGDDVGGGVFXDADDAFDVFDDVDGDDA
GAXDVAGAAGVFAAVDVDDAVDAFGDFDXAAAAAAADAAAFADAGAFGADADDD
XGDDXAAGXADAXAAFAAXGDAVDGGAAFAFFDAAADAXFGFADXFDDAAGFXG
DFDGFFAGGAAGXAAGXAVADDGDXFGGAADDGAGDAGDAXAVDAGAADXDAAV
GVAADDFVAGDADXGXDAAXDAFADAAAAAAXGFFDDXAVAVFADADDAAADAA
AGAFDVGXFAFXGXFAGXAXADVADXFXAXAVDVGVFGAXGGGFFGAADXAVAA
AFDGGXDGVFDGDXDAAFAAFXFGAAAFAFDAAAAAFAAXAADGGXAXAAGVDA
AADADADVADAXDFGXAGGFDVFGGDAXAADXAXAAAGAVAGDGFXAXAADFFA
AVDADAGADAAVAXFFDADAAAAXFAFVAFDXFADVDGDGAADXAA

Part VI
Ciphers based on matrices

madness's book on classical cryptography
unit 85: matrices and vectors
last modified 2020-08-13
©2020 madness

Unit 85
Matrices and vectors

A vector is an ordered set (a list) of numbers. The length of that list is its dimension. The numbers in
the list are the components of the vector. In this section of the book, vectors will be written as column
vectors, i.e., as a column of numbers. The name of the vector is written either in bold face or with a
vector arrow over it; for example:

A=A⃗=(
2
3
5)

The components are written with a subscript. For the above example, A0 = 2, A1 = 3, and A2 = 5. Notice
that we strart counting with zero; this is not the usual convention, but we are programmers and we use
languages that index lists beginning from zero.

The set of all vectors with the same dimension is called a vector space; its dimension is the
same as the dimension of its vectors. The origin of the vector space is the vector all of whose
components are zero; This vector is called the zero vector, 0. In a vector space, we can add vectors by
adding their components. If C = A + B, then

Ci = Ai + Bi

for all i = 0, ..., d−1, where d is the dimension of the vectors. Since it does matter in which order we
add two numbers, it is also true that we can add vectors in either order; we say that addition is
commutative. Of course, if we add the zero vector to any other vector, then that vector remains
unchanged; for any vector A,

A + 0 = 0 + A = A

A scalar is a number that is not part of a vector. We can multiply a vector A by a scalar by multiplying
each component by that scalar. If B = cA, then

Bi = (cA)i = c Ai

Recall from Unit 7 that we saw how to multiply vectors (it’s not the only way, but it is the only way
that we will need) by defining the inner product (scalar product, dot product) as

U·V = ∑
i=0

d−1

U iV i

An m×n matrix is an two-dimensional array of numbers with m rows and n columns. For
example:

M=(37
4
9

2
5)

The numbers in a matrix M are its elements (or entries) Mij, where i labels the row, and j the column, in
which a component exists. For the example above, M01 = 4. The dimension of a matrix is the number of
rows by the number of columns. For our example, the dimension is 2×3. The set of all matrices with the
same dimension has algebraic properties similar to a vector space. We can add two matrices in the set
by adding their elements:

(M + N)ij = Mij + Nij

The matrix all of whose entries are zero acts as the additive identity. We can also perform scalar
multiplication:

(cM)ij = c Mij

Multiplying matrices is a little more complicated. We can only multiply two matrices A and B if
the number of columns in A matches the number of rows in B. The rule is that if C = AB, and A has
dimension m×n and B has dimension n×p, then C has dimension m×p, and

Cik = (AB)ik = ∑
j=0

n−1

Aij B jk

for all i = 0, ..., m−1 and j = 0, ..., p−1. Notice that if m and p are different, then we can multiply AB,
but not BA.

The set of all square matrices with the same dimension is special. A matrix is square if it has the
same number of rows as columns. In this set, it is possible to multiply in either order. In general,
however, the result will depend on the order, so matrix multiplication is noncommutative. In this set of
square matrices, the additive identity is the matrix all of whose entries are zero. Adding it to any other
matrix leaves the matrix unchanged. The multiplicative identity is the matrix I such that

Iij = {1 if i= j
0 if i≠ j

All of the entries on its diagonal are one; all other entries are zero. The multiplicative inverse of a
square matrix A is another matrix called A−1 such that

A A−1 = A−1 A = I

To find the inverse of a matrix we must go on a short detour.

Given a row number and a column number, the minor matrix of a matrix is formed by taking the
matrix and removing that row and that column. For example, the (1, 2) minor matrix of this matrix

A=(
4
7
8

3
6
2

9
8
1

4
5
3

3
7
2

2
0
5)

is found by deleting the second row (because the first is row 0) and the third column (because the first
is column 0):

M1,2=(48
3
2

4
3

3
2

2
5)

The determinant of a square matrix is a number derived from the matrix. We will define it in a
recursive manner. The determinant of a 1×1 matrix is the value of the only entry. The determinant of a
2×2 matrix A is

det A = A00 A11 − A01 A10

The determinant of a square matrix with arbitrary dimension is found from the determinants of its
minor matrices:

det A=∑
i=0

n−1

(−1)
i A0 i det M0 ,i

where M0,i is the (0, i) minor matrix of A. With this definition, we can find the determinant of any
square matrix by working our way down until we are working with determinants of 2×2 matrices. An
important thing to know is that a matrix is invertible in the set of matrices if and only if its determinant
is invertible in the set of numbers. In the realm of real numbers, all numbers are invertible except zero.
However, in modular arithmetic we know that not all numbers have inverses.

The combination of a power of −1 and the determinant of a minor matrix that we see in the
formula above is called a cofactor. In general, the cofactor of an element Aij is

Ci,j = (−1)i+j det Mi,j

The matrix C whose i, j entry is the cofactor of Aij is called the cofactor matrix of A. The transpose of a
matrix A is another matrix AT that is obtained by exchanging the rows with the columns of A:

(AT)ij = Aji

If we take the transpose of the cofactor matrix of A, what get is called the adjugate matrix of A.
Finally, we are able to say that the inverse of a square matrix A is the multiplicative inverse of the
determinant of A multiplied by the adjugate matrix of A.

Another way to invert a matrix is by using elementary row operations. There are three
elementary row operations:

• swap two rows
• multiply every element in a row by a scalar
• add one row to another (add elements that are in the same column)

To invert a square matrix, we first extend it with a copy of the identity matrix with the same
dimensions. Then we apply row operations until the identity matrix appears on the other side. The
matrix that is now where the identity used to be is the inverse matrix. As an example, consider this
matrix:

M =(
2
1
5

1
3
6

2
3
7)

Extend it with the 3×3 identity matrix:

(
2
1
5

1
3
6

2
3
7 |

1
0
0

0
1
0

0
0
1)

Swap the top and middle rows (R0 and R1, since we count from zero):

(
1
2
5

3
1
6

3
2
7 |

0
1
0

1
0
0

0
0
1)

Replace the middle row with R1 − 2R0, and the bottom row with R2 − 5R0:

(
1
0
0

3
−5
−9

3
−4
−8|

0
1
0

1
−2
−5

0
0
1)

Replace the bottom row with R2 − 2R1:

(
1
0
0

3
−5
1

3
−4
0 |

0
1

−2

1
−2
−1

0
0
1)

Swap the middle and bottom rows:

(
1
0
0

3
1

−5

3
0

−4 |
0

−2
1

1
−1
−2

0
1
0)

Replace the bottom row with −(R2 + 5R1)/4:

(
1
0
0

3
1
0

3
0
1 |

0
−2
9/ 4

1
−1
7 /4

0
1

−5/4)
Now that the leading entries of each row are all 1, we need to put zeroes in the off-diagonal entries on
the left side. Replace the top row with R0 − 3R1 − 3R2:

(
1
0
0

0
1
0

0
0
1 |

−3/ 4
−2
9/ 4

−5 /4
−1
7 /4

3/4
1

−5/4)
Now M−1 is the square matrix on the right-hand side.

Next we need to discuss the product of a matrix and a vector. We will only be concerned with
square matrices here. A n-dimensional vector is the same thing as a n×1 matrix, so we can handle
multiplication in the same way as we multiply matrices. The product of an n×n matrix A and an n-
dimensional vector V is another n-dimensional vector U whose components are

U i =∑
j=0

n−1

Aij V j

Reading and references

Wikipedia:
en.wikipedia.org/wiki/Matrix_(mathematics)
en.wikipedia.org/wiki/Square_matrix
en.wikipedia.org/wiki/Minor_(linear_algebra)
en.wikipedia.org/wiki/Determinant
en.wikipedia.org/wiki/Adjugate_matrix
en.wikipedia.org/wiki/Elementary_matrix

Programming tasks

1. Go back and find your function that evaluated the dot product of two vectors.

2. Write a function that adds two vectors.

3. Write a function that multiplies a vector by a scalar.

4. Write a function that adds two matrices. It is OK if you only consider square matrices.

5. Write a function that multiplies a matrix by a scalar.

6. Write a function that multiplies two matrices. It is OK if you only consider square matrices.

7. Write a function to multiply a square matrix by a vector. It should return another vector with the
same dimension.

8. Write a function that finds the minor matrix of a square matrix given a row number and a
column number.

9. Write a function to find the determinant of a square matrix.

10. Write a function to find a cofactor of an element in a square matrix.

11. Write a function to find the cofactor matrix of a square matrix.

12. Write a function to find the transpose of a matrix. It is OK if you only consider square matrices.

13. Write a function to find the adjugate of a square matrix.

14. Write a function to invert a matrix by using elementary row operations.

15. Write a function to determine whether a square matrix is invertible.

16. Write a function to find the inverse of a square matrix. It should first check whether the matrix
is invertible and have some way to alert the main program if it is not.

Exercises

1. Find these products:

a. (
6
4
1

6
9
5

7
7
5)(

6
5
9

6
0
7

4
8
6)

b. (4
7

3
2

2
9

6
1)(

7
5
3
1

0
4
8
5

)
c. (5

1
9
2)(4

7)

d. (
5
8
9

7
4
7

0
6
4)(

7
1
3)

2. Find the inverses of these matrices:

a. (
1
0
0

1
1
0

1
1
1)

b. (2
1

2
3)

c. (
17
10
16

19
12
18

15
13
17)

d. (
3
7
2
4

9
0
3
7

5
6
2
5

8
2
6
1

)

madness's book on classical cryptography
unit 86: matrices over the set of residues
last modified 2020-08-13
©2020 madness

Unit 86
Matrices over the set of residues

For use in ciphers, we need to work with numbers from the set of residues. Review Unit 14 if you have
forgotten what we mean. For the rest of this part of the book, we will be working with matrices and
vectors whose elements are taken from the set of residues, usually modulo 26. This means that every
number, whether it appears in a vector, in a matrix, or alone, is a member of ℤ26. All multiplications and
additions (and subtractions) must be done modulo 26. The inverse of any number must be found by the
algorithm in Unit 21.

In the last unit, we saw how to find the inverse of a square matrix as the inverse of the
determinant times the adjugate matrix. We now have to be careful that we handle our arithmetic
correctly, and that when we find the inverse of the determinant we find its inverse modulo 26. If that
inverse does not exist, then the matrix is not invertible.

Programming tasks

1. Find your function from Unit 21 to get the multiplicative inverse of a number in modular
arithmetic.

2. Make revisions of your functions from the previous unit so that you now have a function that
multiplies a square matrix by a vector. It should return a vector all of whose components are in
ℤ26. Allow for the option to change the modulus.

3. Make revisions of your functions from the previous unit so that you now have a function that
finds the determinant of a square matrix whose elements are in ℤ26. Allow for the option to
change the modulus.

4. Write a function to determine whether a square matrix over ℤ26 is invertible. Allow for the
option to change the modulus.

5. Make revisions of your functions from the previous unit so that you now have a function that
finds the inverse of a square matrix over ℤ26. Allow for the option to change the modulus.

Exercises

1. Find these products modulo 26:

a. (9 6 10)(
10
18
13)

b. (15
2

9
2)(8

24
4
25)

c. (
11
5
6

9
19
10

18
7

10)(
4

11
20)

d. (
25
14
8

23

18
19
4
8

19
24
1
24

18
15
7
6

)(
23
13
5
21

)

e. (
16
24
2
11
18

22
9
4
17
9

1
16
2
0

25

8
1
19
1
1

1
25
11
12
5

)(
13
4

16
7
6

)
2. Find the inverses of these matrices over ℤ26:

a. (8
21

19
18)

b. (
15
0
6

14
15
7

8
11
0)

c. (
21
8

13

3
8
2

0
19
4)

d. (
16
20
0
13

19
8
5
8

2
0
19
8

14
13
0
11

)

e. (
4
11
4
2
19

17
14
4
13
2

4
15
7
0
11

14
6
17
0
15

7
8
2
0
11

)

madness's book on classical cryptography
unit 87: hill cipher
last modified 2022-04-14
©2020-2022 madness

Unit 87
Hill cipher

The n×n Hill cipher is a block cipher that uses matrix multiplication to encipher each block of n letters.
(A block cipher is a cipher that acts on blocks of texts, rather than individual letters.) Each block is
written as a vector whose components are the numerical equivalents of its letters, where ‘A’ = 0, ‘B’ =
1, ..., ‘Z’ = 25. Encipherment is done by multiplying this vector by the key, which is a (square) n×n
matrix. Decipherment is done with the inverse matrix. All operations are done modulo 26 (or the length
of the alphabet, if we are using a different one).

Let’s work an example. Suppose we have this short message and that we want to encipher it
with the matrix that follows:

THIS MESSAGE WAS ENCRYPTED WITH A HILL CIPHER

M =(
7
11
15

8
2
7

11
8
4)

We first divide the plaintext into blocks of three letters, and pad with nulls if necessary:

THI SME SSA GEW ASE NCR YPT EDW ITH AHI LLC IPH ERX

The first block, THI, is expressed as this column vector:

V = (
19
7
8)

This block in enciphered to a new vector:

U = MV = (
7
11
15

8
2
7

11
8
4) (

19
7
8) = (

17
1
2)

This vector becomes the block RBC in the ciphertext. The full ciphertext is

RBC GUG KAG EQY GQM IXR DEV ISN ZAV OAD FDQ TST BCL

Decipherment uses the inverse matrix:

M−1
= (

12
20
11

5
5
5

22
13
12)

For the first block of the ciphertext:

V = M−1U = (
12
20
11

5
5
5

22
13
12) (

17
1
2) = (

19
7
8)

The matrix used in a Hill cipher can often be expressed as a keyword by using letters that are
equivalent to the entries of the matrix. For the example above, the keyword is HILLCIPHE(r).

Given a ciphertext whose blocksize is unknown, it is often possible to find it using the index of
coincidence. The same technique we used in Unit 31 to find the period of polyalphabetic substitution
cipher can help here. However, the height of the peaks in the graph of IoC versus blocksize is not
always above a predetermined threshold. Often it is even difficult to discern the peaks. These examples
are for 2×2, 3×3, and 4×4 Hill ciphers. As you can see, it is sometimes difficult to determine the block
size.

A more reliable way to find the block size is with the index of coincidence for digrams,
trigrams, etc., provided that it is not larger than five. In the exercises from Unit 10, you found ranges of
the values for IoC2, IoC3, ... for typical English text. A Hill cipher, since it enciphers each block always
in the same manner, will have the same IoCn as English when the block size is n.

Hill had another cipher, in which the plaintext was inserted into a matrix that was multiplied by
the key matrix. In this cipher, the key matrix was chosen so that it was its own inverse. An interested
reader can see his second paper in the references below.

Reading and references

Lester S. Hill, “Cryptography in the Algebraic Alphabet,” The American Mathematical Monthly 36:6
(1929) 306-312, DOI: 10.2307/2298294, www.jstor.org/stable/2298294, web.archive.org/web/
20110719235517/http://w08.middlebury.edu/INTD1065A/Lectures/Hill Cipher Folder/Hill1.pdf

Lester S. Hill, “Concerning Certain Linear Transformation Apparatus of Cryptography,” The American
Mathematical Monthly 38:3 (1931) 135-154, DOI: 10.1080/00029890.1931.11987161, www.jstor.org/
stable/2300969, www.cs.jhu.edu/~cgarman/files/Hill2.pdf

Abraham Sinkov, Elementary Cryptanalysis: A Mathematical Approach, 2nd edition, revised by Todd
Feil, published by Mathematical Association of America, 2009; www.jstor.org/stable/10.4169/
j.ctt19b9krf; chapter 4.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 404-409.

Wikipedia, en.wikipedia.org/wiki/Hill_cipher

Crypto Corner, crypto.interactive-maths.com/hill-cipher.html

Chris Christensen, “Lester Hill Revisited,” Cryptologia 38:4 (2014) 293-332, DOI:
10.1080/01611194.2014.915260

Programming tasks

1. Implement an encryptor. Allow for any block size. Verify that the matrix is invertible before
enciphering.

2. Implement a decryptor. Allow for any block size. Remember that the key is the matrix used to
encipher, so you must find its inverse.

3. Write a function to try to determine the block size. Perhaps it could return a value of zero if it is
unable to clearly determine the size.

4. Implement a brute-force attack. For an n×n matrix, there are n2 values to vary. You should
discard matrices that are not invertible.

5. Compile a list of four-letter words that can fill a square matrix so that it is invertible. Do the
same for nine- and sixteen-letter words.

6. Implement a dictionary attack. You should discard matrices that are not invertible.

Exercises

1. Encipher this text with keyword HILL.

This, and enough, premised, I go souse into my personal history. My maiden
name was Frances Hill. I was born at a small village near Liverpool, in
Lancashire, of parents extremely poor, and, I piously believe, extremely honest.

(from Memoirs of Fanny Hill by John Cleland)

2. Decipher this text with keyword PROFESSED.

SNSPTIRUZMCUZBWJZIJVGYIVSGJUUZYWDDWMDLPVWKTVYJPUGLPAGQ
LLYBVHLIPLXXIKKGKAOHSDCBDSKSKXTTTMERLNKQFBNDBPULJUSHQR
TWNSNSLWDPWGBAKKMZMOEPKGDGEABNTIARIAVQHMAZEKPGYKRXXXTT
EKNSNSYMOISTGYXSSRJAKUAYVKKKPCXGYRHKCARPVPOIAQNYGGLVRM
XJBUYLXVHSSRKIIRPAZVKVYJBKJFGSDYIGSCBDPBVRHCMTLIJXHJMK
RPOCNWRZMELXHWBRWVZWXTJFHTKDWMHVYPHHXLDEYYDJZREVWQDAZE
JOGHUXREVVGEDIZOTGELXOSJFUMVXCCPCZVJWMMKITKYZHIIXJMXRD
XSBDISSHTZOGYNOZOGBLZUSFSNSWPCQAFPGFRAIMKLHABVGGUZNTJS
HHRXSUVUUBZTYWDDCJVBTBKJEQDCQIHZNPPGSNSZDODCJPFICIAWHE
PFKHRWOTGXJMDIZFXPDQQISQZHERGXTSSZEWNGEQKHTYIXJMTOGDKN
LUN

3. Can you determine the block size for this ciphertext?

IPKGRGNLJUQQGFTQMMYKABOCFYRBGEWEOMYICYODZYLOMJGFXXZDYN
TOBIBZLTITEMDSQITHEDUUWUQJOJVAWIFKVXFUDCGFUTECOTWBSQLO
CVCSEBSSNKMBJFRGECMIERCGEVAXSBLVBZEAQNIHGHJZGBJMIJJQHN
MAKHJCBIOZRDTAZMJDSWORRBHXOOCFDBMWNYAPXZASTVSXIOFITERX
WVQMLAFSWXSTWKUVWSEFOIBKUQIHZAELVRPVUQQSGBPCZRKTVAKBLK
ZXZMAWMNUHBMOLUWNIMUMICASOLWHJVLEKONNGOFCDKKTQSGEEZELI
BCGDCBCIJLEOHEJODPHRISLZVAWZVJJZXJFHESLRYWDITGQUMERAFO
XEJUWGCSQYGGJYVAZPJVHMPGYBMKERBHCFJUUUUJGPGICASFJHWWCN
TEMAYXBUQZVDYDGHQQRMGBWBZKMRAIXDUYMTQXDRMQZVMTDZUYTRVK
WIMPVAREZPRLJIURMIDPAMSDRQZOZRIARCPJPLHWWICHDRQCWVILQK
AIMXMYWVEJRQZOZDUXOOGYXNNOMZXRMYJYHGRLFWJWPJHNADQCTXFR
EHIJDNXKZONJTWWCRYESVCGWGVUWALSSPQACCGEVAXSBLVIERGK

4. Use a brute-force attack to break this ciphertext. Is there a keyword?

TOPGRHYADTVKXXSQYQXZUBWLGFALFCMGEZUBEBHGQKWODTGFYUBIMO
WJFVKXEVFOVTRYCNXWOJYMSVZWPLANLUCCTOKEUIPVWVSOJWURXAFV
CUMPCUQJDEWJFVSNEVJQEFIWJHQTVHYASVFVSQZWFVSAMROUTOHBIG
WSFVCUQJHECURMNQEZFVIGPCMYURTOLQLBXWOYOFZSSAGBITRYAJSA
CRFIHEANLIANGMGPZWAHQWFCDIVGQWDTZWPYDTXWQAYWRMSSZWXWIK
KRZGGDJK

5. Use a dictionary attack to break this ciphertext.

RMYKUKRLHLXETRSMCYXFOUYMHHNOJAMEERFEDXQRXOWOSIEAPXFDOR
ZBCZZHLNBRMYRRGVTCNOZNYSOHYDORWPKRHPCEJEKOPGAJTDRPERMY
VZUCHCDORSWGAYJMJOVBULXRVXTGKOZNHAQDYZHKYRMNXKMCMIREMZ
ITKDDLYRYWGDJZUZNXCEJKALYRYCEEDMTBMAQYUHHNWJWCEEDMTHMK
REIZXYOCQEUHSMWJLYTTQDKSEUHZNHPXFWGDOVAVJSBROHYBYUCFOC
IKHXIKPSLUJYJWWAWUHQKSAGXXMHHNMJOOINZNHROZUMKMCYRBEMLK
VTCAJUJZUBRODKSFEBJZWPBUMJOYGNGGCNTZZBSJZUHYYVEBOWNZUL
TPRRLHJWWAWURYPKRKQSEAJUPUKITIYFYHYBQBEQBQQYUUUYUFCRLH
WFGVXCYKCBTRHRSAUEZNXKKYBTRRMYXISLBNSQJVNZPWGJLYKXMGVU
DPQRHPQAFXISRBXWOSIEAIHUHYBDGAZMZSMYBHXLGUSTSIKHCVOKKO
PYDDORZCVOLXYWBWGDRLUXLRYWNLWBZNHOSTZNXGWKZREYMTNDKOMA
FSIHRADORGHSOAFZWQMRMLSSWXWOFQZGCECLPAPROXSEIMLL

madness's book on classical cryptography
unit 88: attacking the hill cipher with cribs
last modified 2020-08-14
©2020 madness

Unit 88
Attacking the Hill cipher with cribs

An n×n Hill cipher has n2 parameters, and therefore we need n2 constraints to completely determine the
key matrix. These constraints take the form of equations that we get by matching a crib to a piece of
ciphertext. If the crib is too short, or some parts of it repeat, then there may be too few constraints; in
that case, we have to brute-force the remaining parameters.

When we are matching a crib to a piece of ciphertext, we must remember that we can only use
parts of the crib that cover complete blocks. Let’s return to the example from the previous unit. If our
crib is MESSAGE, then we move the crib over the plaintext and try each position until we can find a key
that gives a good plaintext.

MES SAG E
RBC│GUG│KAG│EQY│GQM│IXR│DEV│ISN│ZAV│OAD│FDQ│TST│BCL

In the above position, the constraints from the first block are (remember that the key is a matrix M, and
‘A’=0, ‘B’=1, ...)

17 = 12 M00 + 4 M01 + 18 M02

 1 = 12 M10 + 4 M11 + 18 M12

 2 = 12 M20 + 4 M21 + 18 M22

From the second block we get

 6 = 18 M00 + 6 M02

20 = 18 M10 + 6 M12

 6 = 18 M20 + 6 M22

From the third block we do not get any constraints, unless we brute-force the next two plaintext
characters. The equations we get, where x and y are the missing characters from the third block, are:

10 = 4 M00 + x M01 + y M02

 0 = 4 M10 + x M11 + y M12

 6 = 4 M20 + x M21 + y M22

Collect the equations for the top row:

17 = 12 M00 + 4 M01 + 18 M02

 6 = 18 M00 + 6 M02

10 = 4 M00 + x M01 + y M02

From these three equations, we can solve for M00, M01, and M02, for each choice of x and y. We then
collect the three equations for the middle row of the matrix, and the bottom row. For each of the 262 =
676 choices for x and y, we get a complete key matrix (unless some of the equations are not
independent and so cannot be solved). We invert each matrix and decipher the ciphertext.
Unfortunately, for this position of the crib, none of the plaintexts that we get are acceptable.

Next, we move the crib over by one position:

 ME SSA GE
RBC│GUG│KAG│EQY│GQM│IXR│DEV│ISN│ZAV│OAD│FDQ│TST│BCL

Now we must brute-force the first character of the first block and the last character of the third block.
The process is similar to the above, and again we do not find an acceptable plaintext. We can shift the
crib one space at a time. When we do find a good plaintext, it is in this position:

 ME SSA GE
RBC│GUG│KAG│EQY│GQM│IXR│DEV│ISN│ZAV│OAD│FDQ│TST│BCL

We need to check all possibilities for the first plaintext character in the second block and the last
plaintext character in the fourth block. For each of the 262 = 676 choices, we set up nine equations. The
equations form three sets of three. Each set allows us to solve for one row of the key matrix.

Programming tasks

1. Implement the attack. Build an attack for 2×2 and 3×3 Hill ciphers, at least. If you are very
clever, perhaps you can build an attack for any block size. Be careful in handling cribs of
various lengths. Use tetragram fitness to determine when you have found an acceptable
plaintext.

Exercises

1. Finish the example above by hand to find the key. Check that it matches the one we used in the
previous unit to encipher the message.

2. Break this ciphertext with the crib FOLLY. What might the keyword be?

GHTSYUESFCYMNNBGCGESCNGHAXDULTNVXOYRWPWTKPGUNKAWNPDVES
BBRFNTRNBGOWXLWTYNDPNSDLEYGUBBEHYQLAGOGJCNGIYUWTEULBBB
REYVZVBGCGESAEDNCQLHDLZZGRXOYKGUNKAWNNNSCNYBYCOLYRYWLI
AWNLXOGULXGBDNLGYTAEXWGJDLEXYQFBWDDLJHBFFXNNNSDLERDDLH
QGXREYWTKBWQDGGPGULNGJDNBBREEXWKMTOIZBTRMUDPYSWXYQNSUW

WLYDMOUUGSYJAMMLAYMOUUGHTCWTKVDNPDOLYUXRCILNGJESYVGVKE
FWDNEACILWLZNXTCGYWMEQNQWKZBCILULJUVDAOCWGEOGUNKAWNSGY
YNGIXWYOXLNSXRCXANFWGGYBGHTCWTKMYJLJUSGIDVUU

3. Break this ciphertext with the crib PITILESS.

GQTIRDBVCMCVUCJCPZFCSPEOFOPRBDTOQGQAHWBXNBWLEWJCNUBRMR
ETIEVCJSKZLCUDWHWBGESEPEVBRGXWCHDQSFAHWNRUJMHTRRPAAZGY
GEZTDGDLELCSEMNLOCGESEPMNRUAFKGQTUHGHSFCPEIYGHCRDCSIHW
RTIOJVKAXSRIGSFZMKNAZWMVIRDVUHYDBPEUPEVRBDOFSJVCHSFLCS
LWFRBDREQCRUKPMFDHAHOEMNZRJQLYYGHGFZSQHLAQBPQTQHGFSLQB
WKHOFNMACHRFGXEKUYYDBFYZVJGATEDYGGXERWCPPKGISLAALBOCST
CIYIVFMKPUSKCEGFYWUWSQMAYALQCEKMWWFSNSWMCVUCJBQDUWCKLS
YDBTUNDKPXMKEIZAFKIBRDXAGKE

madness's book on classical cryptography
unit 89: affine hill cipher
last modified 2020-08-14
©2020 madness

Unit 89
Affine Hill cipher

The affine Hill cipher is an extension of the Hill and affine ciphers. We take the Hill cipher and add a
constant term to the equation. Of course, since we are dealing with actions on vectors, the constant term
is also a vector. When the key is a matrix A and vector B, a block of plaintext in a vector P is
enciphered to a block of ciphertext in vector C with this equation:

C = AP + B

Decipherment is done by solving for the plaintext vector:

P = A−1 (C − B)

This cipher can be factored into a Hill cipher followed by a Vigenère cipher. This should be
obvious from the first equation above. Furthermore, if in that equation A = I (the identity matrix), then
the affine Hill degenerates to a simple Vigenère cipher.

Programming tasks

1. Implement an encryptor. Remember to check that the matrix is invertible.

2. Implement a decryptor. Remember that the key includes the matrix for encipherment and that
you must invert it.

3. Modify your brute-force attack on the Hill cipher to accommodate the affine Hill cipher.

4. Modify your dictionary attack on the Hill cipher to accommodate the affine Hill. Use one
keyword for the matrix and one for the added vector.

5. Modify your attack on the Hill cipher with cribs to accommodate the affine Hill cipher. Each
equation will now have a constant term on the right-hand side. There are n2+n parameters for
which to solve.

Exercises

1. Encipher this text with the given matrix and vector.

A=(
21
8

13

3
8
2

0
19
4) , B=(

5
7
9)

After marriage arrives a reaction, sometimes a big, sometimes a little one; but it
comes sooner or later, and must be tided over by both parties if they desire the
rest of their lives to go with the current.

(from “Three and—an Extra” in Plain Tales from the Hills by Rudyard Kipling)

2. Decipher this ciphertext that was enciphered with the given matrix and vector.

A=(8
21

19
18) , B=(23

11)

VSWEZMIFVTXDROVWQYJVVKQRZMVSWFWQXZJFFESTHETMQRQYXQHCID
BCTUNNOPNPKLNBJIIFRUQDVPVAGBEYDFUPWQWJNVWXTMHCWFXQXJIF
BLZSLZNUISVTXDROVWQYJVVKQRPINCFJHDXQGPBLDWONQNTUUCKLOO
FBWXHDMPRVDRCAGWBXDRCABRTMNBHICAUBQRMFOLZWBCLZZMNZHUMC
SLOLQNBVCYOLCLJWRJKLZMJGXUPONJGNPBKLVVMJDQHEGANJNAIDNA
HEKLOOMFOLKRWVBEWXUPQRTQAINTDWWDKGBXXQST

3. Break this ciphertext with a brute-force attack. What are the keywords?

HFPQQDGRZVKFKUEMZTGEUZSIUVNGRFBCWNHNGBGWUOZAGEGIWZGCPK
NZBHZRBKEJTZZFXXWNSDZCUKSQUKGUTXZRGOGWWIIHGEGIPQPXWZKM
OEJRPQWNXPGKZZHBUUBDHRZJSYMGPNTZKMZIGEAZCQBFZVTZKBZIGE
GMSVHCHNWTHPDAFPBRNPGTZGJRLZAZZYSYYAHNSVEKHPPQPXWZKMSC
HPCVZVZVTJJGKGZDGESIGTPZHBUZJOTHZVCNAFGVGSSMAMCBZGHNPD
WZGOJOHNGBWAHPSMDEFBDPHNUHUCNSGQHNKMIAUFNSKGSUUZGOOMQD
UXNGTJWG

4. Break this ciphertext with a dictionary attack.

QJCSKYUYIUASSRXELHDERHZYKTHNQMJDIHYIAKLZBCKYQXYMVNKILM
CFIRYOZZILKMCTRNDAONWVAUPAPJKDBYLWKQOLYHNSKYOUGDALEKJT
JNMQJJTFGJKDOWNXOAWLOGTXTEDSLLUNTQDZNNSGWLDQGQQTENQTTU
QCOVQULXROLPWCOUGDEJWZASZTOQYQOESIIWYXPPOAIWHQLZQHSLQR
CVYJDGMTMOGPIBRDYJFAVGWDTOAWJRSDATSAIEIHSEQDIXBHTDMTDA
IYKTLSVKAQGFYYWRNAYWYKTJQBSCQFJYGRATUGWLKLAUQ

5. Break this ciphertext with the crib AFTERNOON.

KGMJEIVFJJGJHCKOGBRDZRHBUETXPIWNHUVFEWPTHHDXODTKUCEWUO
CITNOLEYCEUOUNHFRFKIXNPXIGEYKOCLHUVFPLWMETRIVFXZDGUHCV

HYWKTGCOURTTPHEDHYDZPBVHWNNPELPUWFHYKOGJTLDXTQDLMHHYSX
XNNNSXHHTGCUWFHYMEKGCBDPICETHUVFEYWFDICUETRIVFVRDGEMPT
XZHHTGCTPXVTNDMLUVPLEFTGCKKNDIEDHYNDMWTGCNPVEFQYWXNSVT
TQUTCXTGCIUZCLRFTKCHTZVFHNTEUREPEIVSWFGGHFPAVCWWSTPM

6. Break this ciphertext from the 2013 British National Cipher Challenge with the crib
TELEGRAM.

HCHKK MEYXE YMEZW RLFMS RPJSU BPWHR PMDEY XWHRM IQKEC
JNBCM CJFHY HSELD JXTSH IGEXH BMBIB GJRCN VAQJX FJYHL
LQPAF DJHAO NUCJF LRXTS XKTNQ JATUU VBGSH OHKOC VXHRZ
WWHFY EEZIU DSJFJ IBGQK XSUIN IFDPI HRXVZ BGGYT SXTPV
NETDB QMZAT SXRDW HLXKT EIWAZ WRTSX JWHSH VSIGE YRKBZ
WJQYI UVPTU VFMPR SOTWI DTEXL NMKNB YYMTV JIJWR JQFLZ
WJDHM LCVXH RZWWH FYEQH XMIQK ECUZK PJSBF KXVAY NZSUY
AJRRJ QRDWG DHENG CMRNR RBOVU FDUAE PRGAU QTBWN PLOJV
RLSVP TNBPI KHOQL PFXOT FMCWM KIRFG YNVBZ AXRS

Part VII
Stream ciphers

madness's book on classical cryptography
unit 90: stream ciphers
last modified 2020-08-14
©2020 madness

Unit 90
Stream ciphers

A stream cipher enciphers characters of the plaintext one at a time. It generates a key stream, which is a
pseudorandom stream of characters. Each character of the key stream is combined with one character
of the plaintext to give one character of the ciphertext. To decipher, the same key stream is used to
recover each character of the plaintext from a character of the ciphertext. If the key stream is generated
independently from the text, then the cipher is called synchronous. If the key stream depends on
characters from the text, then it is called asynchronous. If that dependence is on the last few ciphertext
characters, then the cipher is self-synchronizing (or ciphertext-autokey), because the receiver of the
ciphertext can resynchronize after reading a few ciphertext characters.

There are three variations on how key-stream characters are combined with plaintext characters.
Each corresponds to one of the polyalphabetic ciphers that use unmixed key alphabets.

• Key-stream characters are added to plaintext characters, as in the Vigenère cipher. This is the
standard variation.

• Key-stream characters are subtracted from plaintext characters, as in the variant Beaufort.

• Plaintext characters are subtracted from key-stream characters. This is similar to the Beaufort
cipher.

Whatever information the encryptor of a stream cipher stores as is goes from one plaintext letter
to the next is its internal state. Typically, the key is used to generate the initial contents of the internal
state. The state changes as the encryptor advances through the plaintext. The key stream is generated
from the state.

In contrast to stream ciphers, ciphers which act on a block of text at a time are called block
ciphers. For example, periodic polyalphabetic substitution ciphers and permutation ciphers take blocks
of a fixed number of plaintext characters and encipher each block in the same way.

Reading and references

Wikipedia, en.wikipedia.org/wiki/Stream_cipher

Exercises

1. Decrypt this ciphertext which was encrypted with a synchronous stream cipher, and the key
stream is based on the Fibonacci sequence. (The Fibonacci sequence in modular arithmetic is
periodic, by the way.)

ZPWFFVUVDHXCQRRTYGDYHFWECMWAHGIUWVZBCDLXHTGZNLIVNSVQWM
UVGCTSFPSZOXPHMYKAAFVLJSYBTSIAUMGDUANILUFBRBHDCDCJPJGL
ADGFFSBVLJQWOKGOFSSNWLPSYQLETFJZSXWYQZTCZMLUQEHZLMWSQB
ZPVRUAZTUWNTYVVGWSSFKNFNJYHNSQHSCVUOIKGPFIIGEBLERBYKWW
CQSVTPXVHIBEADNBRQEFDNSQGBZDTSRBKSJSBTHUJAUVALQBNBZDSK
YULFDOSVWGIWIEWABZZ

madness's book on classical cryptography
unit 91: trithemius cipher
last modified 2022-01-13
©2020 madness

Unit 91
Trithemius cipher

The simplest stream cipher is the Trithemius cipher. It is synchronous. We can look at this cipher in
three ways. First, we can say that it starts with a shift of zero and adds one to the shift with each
character. Shifts are applied to plaintext characters modulo 26. Second, we can say that the cipher
generates the key stream ABC...XYZABC...XYZABC... which is added to the plaintext to get the
ciphertext. Third, we can view it as a Vigenère cipher with key ABCDEFGHIJKLMNOPQRSTUVWXYZ.

As explained above for general stream ciphers, the Trithemius cipher has three variations on
how key-stream characters are combined with plaintext characters. In addition, there is another
variation in which the initial shift is taken to be nonzero.

Like the atbash cipher, the Trithemius cipher has almost no security. Once the adversary knows
the cipher, s/he can decrypt any ciphertext.

The internal state S of the encryptor is a simple counter. As we have done before, we can think
of the plaintext P = {pi} and ciphertext C = {ci} as each a series of integers. In these terms, the action
of the encryptor for the standard version of the Trithemius cipher is

1. Set S = 0
2. For each pi in P

a. ci = pi + S modulo 26
b. S = S + 1

Reading and references

Wikipedia, en.wikipedia.org/wiki/Tabula_recta#Trithemius_cipher

Johannes Trithemius, Polygraphiae libri sex, Reichenau: Joannis Haselberg de Aia, 1518,
www.loc.gov/item/32017914, book 5.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 135-136.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter XI, section III.

Programming tasks

1. Write a function or script to encipher a plaintext with the Trithemius cipher. Give your function
some optional arguments to allow for the three variations on the method of combining key-
stream characters with plaintext characters, and for the possibility of a nonzero initial shift.

2. Write a function or script to decipher a ciphertext with the Trithemius cipher. Give your
function some optional arguments to allow for the three variations on the method of combining
key-stream characters with plaintext characters, and for the possibility of a nonzero initial shift.

3. Write a function or script to break a ciphertext that was encrypted with some variation of the
Trithemius cipher. Use tetragram fitness of the plaintext to determine when you have found the
right variation.

Exercises

1. Break this ciphertext:

PVPJXYQFHGYKZXGDQPUZSDCXKMZPVJCYAJGIEIEHHCEPUZYIQPIFTK
BXYVDRTJWVAGUWAKCCIDVLRJGIJNISQFHPOVVMBZNBYMDUCXKMZAPN
WZZXGWENLHJVNQWCOXPDRIMLBFSETGVTDLFLCICOYSIUWGIKUYPRCS
QYDLYKZFIMWICSHFAHPJIAMMRTYNPQEKLHIHQZFOASVBMSMSMJNEAU
WHTVSMBVJAFDWBUEYWOLLJDETROQRVQ

2. Break this ciphertext:

HSUFOWQFNYJLEJOTVJGDYNRPJITVKKLXSFFZIMKWMSCVVLZBRBLXAG
QKQVCPQXZLKAKUMUPZSSMFKIWNTJFRXTGCFLVGIZWWUHVQXDBXHRWF
CUCAKYWWGZZJCUBDPYELCGWIAMWEOPINSXZNKHJPPGCDEJKXMUFQSE
QNYGQYGUOXFFVBVXMWJXDGQEODQTATXBNWILAIEPNQNDAISXUPECGG
OWMYUVILISKSNRYMCMTRWFYDBPGXDWGCESDJQGCBRZFBORLTTVHQZN
YWKKLNRCEFSTSJPTHBKSDRHLZYQFKVOHKSQOSVRPGTVZWPHOQCKZYL
MTVHKWFDLBRKVXNGRTFRMBAYIEDUFHVVQPYEWSUICGRXDVNLPOMCSJ
MBXFQPYSWKGTPOXTTNCREWMYKKEYRCECMMKMYBNWHTJSQCKYICWJKR
TF

Challenge

TAEVZRVZLPSLZAERFZRVDQMMUNVIOPNGNRCKDWHLOCQHZNFMQMQDWXXZJCQ
JQUNNOZDKKVAHVKSFLDKOAIOVOTBORRESLSWNXBZNAIBPGGZZMKBBUYYZNB
LZEVPAEWBPGYFZSLTGMBFTITXRGRZJNGKVZRTHWASLSASLTFJBIMRFZMPPA
IBUFJKYRKVZNAIBXEMOVXBSLLTGRPLLDQEXEIZDEINBSWWJMDRLYBUBFSWY
IWBUBFGUNGRVRRJJYYNRITTUYJFNGNGNRNBSVNQHPCMYCDHHBUCHBMXVKBJ
WPTWKXFYGTEEVBFQUNGKBT

madness's book on classical cryptography
unit 92: autokey cipher
last modified 2022-01-13
©2020 madness

Unit 92
Autokey cipher

The autokey cipher (or autoclave cipher) uses a key stream that begins with a keyword which is
followed by the plaintext itself. Hence the name of the cipher. It is asynchronous. In the standard
version of this cipher, key-stream characters are added to plaintext characters, modulo 26.

An example will help to elucidate. Let us encipher this short text with the key AUTOKEY.

THIS TEXT WAS ENCRYPTED WITH AN AUTOKEY CIPHER

The key stream is written under the text, and the ciphertext under that is the sum of the two, modulo 26:

plaintext: THISTEXTWASENCRYPTEDWITHANAUTOKEYCIPHER
key stream: AUTOKEYTHISTEXTWASENCRYPTEDWITHANAUTOKE...
ciphertext: TBBGDIVMDIKXRZKUPLIQYZRWTRDQBHRELCCIVOV

If the length of the key is L, then the internal state S = (s0, s1, ..., sL−1) of the autokey cipher is the
last L characters encountered by the encryption routine. The state is initialized by filling it with the
letters of the key. For each letter in the plaintext, the character of the key stream is found by shifting the
state vector to the left. The leftmost character is popped off the left end of the state vector to become
the key-stream character. The current plaintext character is pushed into the vacancy at the right end of
the state vector.

Let’s rework our example in the language of state vectors, just to belabor the point. The state is
initialized by filling it with the key:

S = (‘A,’ ‘U,’ ‘T,’ ‘O,’ ‘K,’ ‘E,’ ‘Y’)

The first plaintext character is ‘T.’ We push it onto the right end of S and pop off the first key-stream
character, ‘A.’

S = (‘U,’ ‘T,’ ‘O,’ ‘K,’ ‘E,’ ‘Y,’ ‘T’)

k0 = ‘A’

The next plaintext character is ‘H,’ which we push onto the right, and pop off a ‘U.’

S = (‘T,’ ‘O,’ ‘K,’ ‘E,’ ‘Y,’ ‘T,’ ‘H’)

k1 = ‘U’

You get the idea. This continues until the full keystream is generated.

There are three variations of the cipher that correspond to the three variations of combining key-
stream characters with plaintext characters: Vigenère (standard), Beaufort, and variant Beaufort.

Reading and references

Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586,
HDL: 2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/
bpt6k94009991

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; chapter XVI.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter XI, section II.

Wikipedia, en.wikipedia.org/wiki/Autokey_cipher

Practical Cryptography, practicalcryptography.com/ciphers/autokey-cipher

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Autokey.pdf

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 147-148.

Programming tasks

1. Write a function or script to encipher a plaintext with an autokey cipher. Allow for the
possibility of choosing any of the three variations of the cipher.

2. Write a function or script to decipher a ciphertext with an autokey cipher. Allow for the
possibility of choosing any of the three variations of the cipher.

3. Implement a dictionary attack on the autokey cipher.

Exercises

1. Encipher the following text with the keyword STREAM,

a. with the standard autokey cipher (the Vigenère-like version),
b. with the Beaufort-like variation,
c. with the variant-Beaufort-like variation.

The deep hollows which separate the hills are thickly covered with fern and
heather, over which blocks of granite are scattered in all directions; and, as in all
similar districts, each valley has its own clear mountain stream, which receives
the innumerable waterfalls descending from the hill-sides.

(from Devon: Its Moorlands, Streams and Coasts by Rosalind Northcote)

2. Decipher this ciphertext with the keyword RIVERBED and the standard autokey cipher.

KPZWYFIUKVGCZEGIFGUDZEUKFWSFJYLHWJFDQGMVJQNXVFPLVPOXLR
WRUKXZQPIFLTXCBZVTIAQOEWACAAUNDKNSDFDASIOFUKTISHSBFUOM
CPVGCWQSSXKASGPVWRYARQFGEOIXGLWEXOYEUSIFSSDRJYLHZTQKIO
SSAGZXCPYGQCRFNSFVMCNOPWKYSIRFLSVTKVHLOEDPKQLGHXIPBANQ
ELWZNHNRRSBOGTDSGHRYGLGIRHWOOYJPGFWESFQXMQEYGZGXC

3. Decipher this ciphertext with the keyword FUTURE and the Beaufort-like variation of the
cipher.

MNPWKEQCQEUXKYKMWTPJLUYDAMVWADNOKYAQMFGIPNLAPFADSFZWBL
OVBRMAGATHOUBPJJHTPRDUSCZZVDASTVPLXYYMXWEGYHPWAJQWVWLA
INXQDAYLTZWMERQPBDRW

4. Decipher this ciphertext with the keyword ELECTRIC and the variant-Beaufort-like variation
of the cipher.

EPIGUCJSLHHZRZUGCXVYPPTMFOFZYDAMAVKWVVKTCRATCJNNWPELOA
LICUWOMROBYBKMICOVUIVOITZVJVSDAEALTPHTNWFUTSHGAOEFPCEK
OAVGSNIPZMWKLBOSDAEATQZDNGQQQPBGIBBA

5. Break this ciphertext with a dictionary attack.

IVIDVWYYSWAFNTVFDLJQVDAELSGSMSXEEMPWGRGWPQTPOFEACINUPH
QYEPXMZSVVHPYXBROOHKVWOXNYIXWWLASKMEYEWXLCUPBKAWSHTALF
WBMJGJXMDBZWYWDEMZMPAJDVTBQJTHNXQJTHVORWGUIYGKLHSPXKPI
MUFPNWNLPBYWUXXKXQPRGLGVWATPKGSOKEEROOXAAQQNRWSUZTRWSE
NRMVPASQHBDJSAFRJYHIEJCHDEEXTBOXFJQRKTGJQQHLWSAPPTWIWV

6. Break this ciphertext with a dictionary attack.

PVALSAXRIUTGBRNFNMPKKRATZLWEMOACVIFCJDVZNABCNIMLXYIAHS
OGPTEAGKLSKMWGSVBKYKTCSDPIRSSWKPJTFHCEXGSVQTBCHQJVZGEW

CVCICDXYBQLKRWLXJMKDWRKZVSKXOPVXQQCWKFAWDKHJTDNOULXXNM
GPVRQUZFBZRLMVGDNPBHTYWQNNAABKFLATGRIGQHTCHGDHDETMWSEP
SSAJZERDTHXWTMRUQ

madness's book on classical cryptography
unit 93: hill-climbing attack on the autokey cipher
last modified 2020-09-20
©2020 madness

Unit 93
Hill-climbing attack on the autokey cipher

This is a modification of the hill-climbing attack that we used against the Vigenère cipher. Given a key
length, we vary each character of a key in turn until we cannot increase the fitness of the decrypted
plaintext any further.

The algorithm follows. The purpose of the flag is to exit the loop if it has run through all
characters of the key but not improved the fitness.

1. set the best fitness equal to the fitness of the unaltered ciphertext
2. choose a random parent key with the given key length
3. set flag to FALSE
4. while the flag is not TRUE

b. set flag to TRUE
a. for i running from 0 to key length minus 1

i. copy the parent key into a child key
ii. for x running over A, B, ..., Z

- set the ith character of the child key to x
- decrypt the ciphertext with the child key to get a plaintext
- calculate a new fitness of the plaintext
- if the new fitness is greater than the best fitness

· set the best fitness equal to the new fitness
· replace the parent key with the child key
· set the flag to FALSE

5. output the parent key

Reading and references

Practical Cryptography, practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-
autokey-cipher

Programming tasks

1. Implement the attack. Allow for the possibility that the cipher is one of the three variations. Feel
free to copy and modify your code from the analogous attack on the Vigenère cipher.

Exercises

1. Break this ciphertext:

KPDWZTEEHVSSJGUUHVOTIWHZLALTAIEKBHSLRAEHFSEDRRRDIWTFWG
SNPKAAGSWGFZEFDQLTNSXZEGKIYRLALTAAJOETUDPJEOSLRLJKPKST
AWAWLVUNUCHOMBMYFSGLAWYVOEETZQSCYEDBRIBBPXSMSQSBLWALMQ
AFLRNRRSHFJZULBIPTSPINDUGWALMQAFQRRVYRZYWVMGYGKHLTODPC
KZDKCSTURCPLYOWWLMIVJHZTBOPMTRPGAHFWKZRYNFYWRONRJVREAJ
KERAGHRFYHBPKFEPRUYEKFEGKIYRLPRBAIYSGAGILWPXZSLTZACVYO
OXHGFYGVAVTJLWFWEEWALMQAFYROLIZPWJHCMRBXYYMPAJKMAHXGHW
HWELMLIHHVEVMNFZEFWSYIXVDNPTUVOPDKQOAGHDFKPHSTRUMACMGU
EVHNUTOCCTONWKAVOECAEDTUHRHHPCMOMBZZXYTAMIKJRZEGWDFCCH
IEKWOHECXJLCQKAAWLASBZOIHTSPRSSAMSSJILSUTWDFDPWKPMJAVP
EVXMETUHPHXFVAFWLALBXCJTOEPNMJVMQOIAWALQVLRQVMOEUPFSXK
VMLACCJKCELHBRMGHZXGGVMNF

2. Break this ciphertext:

OTDBPBEBOCNBUEMOEGMSNQNPNYUMXWKPPMDSDEHZMDMTRCNAYAMGUJ
UHBTNLMKPQIWJVEYNRMGWMUETBJPVLEQBHPZARJJYUXWZQQYXSAOTP
RZPVEYOAUAXXYDIBZNMDXEPPTJGFLGOFZSCCMETIPZZTTDHHICGDNQ
FSOCYNIWKEHWSTDVMKZMYWGNMLNYLCFSQLCCKDCWRGYKHOHZEJBTQJ
RWUKBODTYIYDTSMNUSHSNLPKFNQCCUVBQORDZSTEVJXZAWOALSILAI
UEDF

madness's book on classical cryptography
unit 94: attacking the autokey cipher with monogram frequencies
last modified 2020-08-15
©2020 madness

Unit 94
Attacking the autokey cipher with monogram frequencies

This attack is a modification of the attack on the Vigenère as collection of Caesar shift ciphers. For the
autokey cipher, we are unable to find the key length from the index of coincidence, so we will have to
try various lengths until we find an acceptable plaintext. We will partition the ciphertext into slices,
each of which (if we have the correct key length) has been encrypted as an autokey cipher with a key
comprised of a single character. For each slice, we try the 26 letters of the alphabet as the key and
choose the one that results in the closest fit between the monogram frequencies of the decrypted slice
and the monogram frequencies of English.

Programming tasks

1. Implement the attack. Allow for the possibility that the cipher is one of the three variations. Use
the cosine of the angle between the vectors of monogram frequencies. Feel free to copy and
modify your code from the analogous attack on the Vigenère cipher.

Exercises

1. Use this new attack to break the ciphertexts in the exercises of the previous unit.

2. Break this ciphertext:

PLEKLARLUSGSOSAOWAWLQWGBLSBLUFPAVSGNAPDLIPLHTGBCARDAQE
IVVJGVQHVMQOVGKIPHISELWDWHWFFTWJFRHIPYIGNGOSGFZABUKNIK
FQAIFXBFVRTXKMPBPUPPRVSCZEVQAEUXZBXNHWXZHBOAVHWNKALQDC
GEJWOFRMSRMNFRPVNMGJOIMAKMYAMNHXMOEKTOKWVSISRXUQWJITEJ
PWOSQTGSHDSKNSXMPSDCASLOZNLKFAZTNHJJZEQXIYPFYOGEOVGRYL
ENSSPDNSPKHTWJMNHAMCYMOSLHIRORSMOKSMHBUDMVQGKMAGNLQAQQ
AZOSDEEGPPPZGDMSQEPTPILMWMVVVTVVFVQZSVK

3. Break this ciphertext:

MZHPWWXIFYIIOPPVGLADUZNZRQWWVJDBJRRNIWAYAKRXRULWRCZLUY
CKLLOWLMLAWNUOECNAKGZMONJAQZEJAQEOOGFZEHEDZPIRGLLACCYZ

KVZLUYXUAIKLPFXEKKOHZVBDRJUVIPVWEZDCLGOULRRYQIUAWARYME
HWKLWOTAYFOQWJPGYTLQIEFRTOSSWGUVNNGODRTGGJMKPMASCXAWYI
BAQEJXJCBGORUWRDUBPWCGWNKBNPXNEKKRRVRJRDWXRUPLLOWLYQEU
QXVRWFSABAMQFKGBACPMDIVTCHGRXWHMPXASWDLWIZXAXOQZMZARMS
AIXFXQUPHJOTKUFKGVKEXKWMQUWYBDDYXPW

4. Break this ciphertext:

MEKXVYDNJQTQFAFWUXIUNNLJTADQMAGWBDTNVGONJNOAHNMRDZCEUS
SCSELQTZAETCPALNSBNPLZMYMKXDHZYNBYCOXFBOLFIUZPVWMWNAAP
PKHLOCSFPNHRHIEWAVPJUYEDNIHXMJUQKDTK

madness's book on classical cryptography
unit 95: running-key cipher
last modified 2020-10-15
©2020 madness

Unit 95
Running-key cipher

In the running-key cipher, the key stream is another piece of text, usually taken from literature.
Sometimes, it is a plaintext that you have seen before.

Reading and references

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 236-238.

Auguste Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires IX (1883) 5-39 and
161-191, www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf, www.petitcolas.net/kerckhoffs/
crypto_militaire_2.pdf, part III.

William F. Friedman, Methods for the Solution of Running-Key Ciphers, Riverbank Laboratories
Department of Ciphers Publication 16, Geneva, Illinois, 1918, www.marshallfoundation.org/library/
methods-solution-ciphers

Programming tasks

1. We would ask you to implement the cipher, but you can just use your Vigenère functions with a
really long keyword.

Exercises

1. This ciphertext was enciphered with a key that is also meaningful English text. Recover the
plaintext and the key.

SULTFZHWTFUQRFTVMXCZOAAUARHGPACVPRPOXZEVBNUHANEHMWGKVU
DMCSTUHYVVEVFMNWZMJVJKLMLPALXPRLOFLNWGGYLHGLRXGGNAVTCU
NEMDAEPZRBZAAIBXIPSBUZHRJKYHSXBFWPQPXKAVTCTTBDHTQYUKKM
KOIWXXUHAZPGXYRMJKARNNWPDFJDIIPXBEVMDOWVEWGZBUXNPJZPUN
CMACRDNILMCANTHIAWALGFRBEVRRUZLGTJGOXBCSMLXYEPQRRCEUCA

INXSEWXSWTRCJQEZAHXZRWHPOKXLXMEIVVZMBGZJPLWLAWSIIPHKZA
GIMGGLRXKUTGKICNIEBXYSIMML

madness's book on classical cryptography
unit 96: progressive vigenère cipher
last modified 2020-08-12
©2020 madness

Unit 96
Progressive Vigenère cipher

The progressive Vigenère cipher (also known as progressive-key cipher) is a synchronous stream
cipher. It is a modification of the Vigenère cipher in which the keyword is shifted by an amount each
time it is used, as with a Caesar cipher. The shift is called the progression index.

An example will clarify things. Start with our usual plaintext and encipher it with keyword
KEYWORD and progression index 3. Shifted by 3, the keyword becomes NHBZRUG. Shifted by another
3 it becomes QKECUXJ. You get the idea.

plaintext: THISMES SAGEWAS ENCRYPT EDWITHA STREAMC IPHER
keyword: KEYWORD KEYWORD KEYWORD KEYWORD KEYWORD KEYWO
shifted key: KEYWORD NHBZRUG QKECUXJ TNHFXAM WQKIADP ZTNLD
ciphertext: DLGOAVV FHHDNUY UXGTSMC XQDNQHM OJBMAPR HIUPU

We can attack the progressive Vigenère if we know the length of the keyword and the
progression index (or we can try values until we find them). With these two numbers, we can remove
the progression. What remains is a Vigenère cipher, which we can break using the techniques of Units
34-38. For the example above, once we know the key length is seven and the progression index is
three, we can subtract the progression as follows:

ciphertext: DLGOAVV FHHDNUY UXGTSMC XQDNQHM OJBMAPR HIUPU
progression: AAAAAAA DDDDDDD GGGGGGG JJJJJJJ MMMMMMM PPPPP
new ciphertext: DLGOAVV CEEAKRV ORANMGW OHUEHYD CXPAODF STFAF

Some special cases:

• progression index = 0: Vigenère cipher
• key length = 1, progression index = 1: Trithemius cipher

Reading and references

American Cryptogram Association,
www.cryptogram.org/downloads/aca.info/ciphers/ProgressiveKey.pdf

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement the attack described above. You will need to try all possible key lengths and
progression indices, until you find a good plaintext.

Exercises

1. Encipher this text with keyword TARGET and progression index 25.

We now take it so much for granted, we are so conscious of constantly
progressing in knowledge, arts, organising capacity, utilities of all sorts, that it is
easy to look upon Progress as an aim, like liberty or a world-federation, which it
only depends on our own efforts and good-will to achieve.

(from The Idea of Progress by J. B. Bury)

2. Decipher this text with keyword REASON and progression index 2.

ZRHMANGVTIWGZAWPZVOOLMLXQQISKIJGXQRXFQEYAKNFGZTVTYDBLD
EEFQOYDQIXMCNLQSSWXVQIQCMMCWHBLKPMUHPKLWTVQDKPGXMFQNOZ
OHSGLZHMAYLCSGHHGQYIWZIVBQFVKXDGNIMYRALFYPGGQIUYIIAKCA
TTFNXTDVGNWRPSTEJEDMAUNZSSFGYIHTESMDTTXKEUABQBGRDHVZRJ
LQYRWYJIPVYDICNYOELVEGTGAKUCJJVBMKFWOYSUBBBTIHADHVDGLB
GLUXAKNLMSKHONVTSZCDWSSUCMPQULATYCEUSDCDQTKLEJFRFKOVUG
ZLRKJDBKYSLXCZWRZZTWBGB

3. Break this ciphertext.

HKOTUMFYIJMSACEODTFEMRQHXNHOCXUARPBHNCZFIHLFDGCFHFAXBJ
WYIAEJNQSFGDGUWKZNMXPMOQPPAITGTPJKJSGAYZZIQREBSTEFKIMW
SWNSCNTRRKXKYORQWGXRVGJUNYYOIMAGFZTFIWSUUOWXGTQFHZMJYQ
WCQEWACGGASQGHOXMBXCQGVGFVOHRISHXQYYJCDMBQASRAIRQZZZWM
MAYFHJDBMDGUTCHOETWCKIOPUZAOAFUOOBZNDGZJXQWBVKYQQTLBEQ
UPUJIUWVGRTCAZQBDZSVDSLVXQKJIXWLZYFMCPXELOYEOWYENKVASN
AKMOEGPVCGTKFEKBBUHVQRDARSDEJHLVRVMRBMSQQJWCSRXKAEHSUF
IOUJGMPOSTXCZCEPTEKFXHNALWZVMMXEXNQSUVCXAUIILZUJTXAABI
XOMHNONIVUZONHYUJECRLJPQJUYTFPVEMDLRVAXACNXVITBOWNENNV
GREKCDYCSFZPZMCIUDMCKHUUYMBRKIQOESQWUNTVSIVDYGWEDCYORQ
WUJSVLEKHSJFAVDAGERCJYEJVYXCYWUOWAXDYQSPVTGHXGJNZYLHAO
OUQPSJIPHKULHDQALOVVMVORRDQMGVCZHYIIKMFPLEDJQQGFKYORKU

WZUVOGLKJYLEXZMDFQFXUGZEBOKOANKNRTLTXCBOGYQUKMRRIZWQOZ
TLGXARDHYJ

madness's book on classical cryptography
unit 97: solitaire cipher
last modified 2020-08-21
©2020 madness

Unit 97
Solitaire cipher

The solitaire cipher is a synchronous stream cipher in which the key stream is generated with a deck of
playing cards. It was invented by Bruce Schneier for the spy novel Cryptonomicon by Neal
Stephenson.

Solitaire uses a standard deck of poker cards with two jokers. Usually, one of them is black-and-
white and the other is colored. We will call one of them “joker A” and the other “joker B.” We also
assign a number to each card in the deck. The clubs (♣) are numbered 1 (ace) to 13 (king), the
diamonds (♦) 14 to 26, the hearts (♥) 27 to 39, and the spades (♠) 40 to 52. Both jokers are numbered
53.

We begin with the deck in numberical order, clubs followed by diamonds followed by hearts
followed by spades followed by joker A and joker B. To key the deck from a keyword or phrase, we
perform these steps for each letter in the keyword:

1. If joker A is on the bottom (the last card) of the deck, put it just after the top card. Otherwise,
swap joker A with the card below it.

2. If joker B is on the bottom of the deck, put it just after the second card. If joker B is the second-
to-last card, put it just after the top card. If neither of these is the case, move joker B down by
two cards.

3. Do a triple cut by swapping the stack of cards above the first joker with the stack of cards below
the second joker. The first joker is whichever is closer to the top of the deck. The second is
closer to the bottom.

4. Look at the bottom card. If it is a joker, do nothing for this step. Otherwise, take the number
corresponding to that card and do a count cut by taking a stack of that many card off the top of
the deck and putting that stack just above the bottom card.

5. Convert the letter of the keyword to a number, where ‘A’ = 1, ‘B’ = 2, ‘C’ = 3, ..., ‘Z’ = 26, and
do another count cut by taking a stack of that many card off the top of the deck and putting that
stack just above the bottom card.

The keyed deck is the initial internal state of the cipher, and from it we generate the key stream.
We repeat the following process until we have enough key-stream letters to encipher our plaintext:

1. Same as step 1 above.

2. Same as step 2 above.

3. Same as step 3 above.

4. Same as step 4 above.

5. Look at the top card and take its corresponding number. Take a stack of that many cards off the
top of the deck. Look at the new top card and record its number. Put the stack back onto the top
of the deck.

6. If the number you recorded in step 5 is 53, throw it away and go back to step 1. Otherwise, if
the number is greater than 26, then subtract 26 from it. Convert the number to a letter, where ‘A’
= 1, ‘B’ = 2, ‘C’ = 3, ..., ‘Z’ = 26.

The key stream is combined with the plaintext in a Vigenère-like manner, i.e., with addition
modulo 26. However, it is not exactly the same; there is an offset of one. The cipher uses ‘A’ = 1, ..., ‘Z’
= 26 for this process as well. To combine a plaintext letter with a keystream letter, convert both to
numbers in this way. Add them. If the sum exceeds 26, then subtract 26. Convert back to a letter.

The solitaire cipher is difficult to break unless we know more than half of the keyed deck.

The official instructions say that the plaintext should be padded to a multiple of five letters, but
we are not strict about that.

Reading and references

Bruce Schneier, “The Solitaire Encryption Algorithm,” Schneier on Security, www.schneier.com/
academic/solitaire

Wikipedia, en.wikipedia.org/wiki/Solitaire_(cipher)

Programming tasks

1. Write a function to generate a keyed deck of cards from a keyword or key phrase. Do not use
the optional step in Schneier’s description of the keying method on his web page.

2. Write a function to generate a key stream given a keyed deck of cards.

3. Write a function or script to encipher a plaintext with the solitaire cipher and a given key
phrase.

4. Write a function or script to decipher a ciphertext with the solitaire cipher and a given key
phrase.

5. Study what happens to the deck as it is keyed with a keyword or key phrase. Can you devise a
method of recovering the keyword from the state of the deck? If so, implement your idea.

Exercises

1. Encipher this text with the key phrase LUCKY YOU DO NOT HAVE TO DO IT BY
HAND.

The best poker hand is the royal flush, followed by a nonroyal straight flush.
Then comes four of a kind, followed by a full house. Then comes a flush,
followed by a straight, then three of a kind, then two pairs, then one pair, then
nothing. You don’t want to have nothing.

2. Decipher this ciphertext from the 2010 British National Cipher Challenge. It was encrypted
with the key phrase DIE ALCHEMISTEN RISE AGAIN.

AGXJE SSFKM MJMHX ZGJWB CPCVX EBNDK UQOCE DUTIC NPARQ
PEDIX ZAVYM WZSVT BBVMT HJIGW XZAPJ HJMYN MXRGO RXOWE
ULMJS AAENC WVUYI FQUTR XEDEJ BLWAA DFPBW ZAXJD DZOTM
GSEZG NQWJY MFNWL SLTQD URZVQ RKOTS VDNHY EIITY RRWGC
CSLKS UKHDR LDBZE DXSGV UGMTB NZQJT CBZTT IBWKQ PXUTQ
MZDIH HKWZK SJEEH FBFYP GYSIH OKKOB JFJSN XSIKS NBMTN
IADVT CXYZZ AOKQY WXNIZ JWOFZ VSPQQ GASYU MJDEL MDDHV
ZTNFH MOOLN XAFPE VBHGS TJFMC IFNHZ YCYGG WAQYB UNNHD
WHSLP IBFAP PDNQN DOCNU RXEAI RZNLR XAKVX XAMPU ZOPOK
TJVQK IZDSC NC

3. Decipher this text with the deck 5♦, 6♦, 7♦, 8♦, 9♦, 10♦, J♦, Q♦, K♦, 9♣, joker A, 7♣, 5♣, J♣,
Q♣, J♥, Q♥, joker B, A♥, 2♥, 3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥, 10♣, K♥, A♠, 2♠, 3♠, 4♠, 5♠, 6♠,
7♠, 8♠, 9♠, 10♠, J♠, Q♠, 3♣, 4♣, A♣, 8♣, 2♣, K♠, K♣, A♦, 2♦, 3♦, 4♦, 6♣. Can you also
reconstruct the keyword?

SCYWLWXCACDWWIFZSXIMHVMBRIWHCLNLMZIHHWWCHVOZNJCKPPALVN
MGFNJRLCQFHDKNHZHKRAGIFXGKQQSLNEDGKOTOFRFNZAJOWWVZAPGG
MLURKZGQDMHEHKYEBLRUPMRPKFHFFMCIDKGYLOFLQQLSOMYAEGCPDY
RWWJLTXRKQLOLXGCHCSCQMDUKZWMLMKNTHMJQNVORTTIDRHQZBEIJC
JNTMRTHYNVGAID

madness's book on classical cryptography
unit 98: hill-climbing attack on the solitaire cipher with partially known key
last modified 2020-08-15
©2020 madness

Unit 98
Hill-climbing attack on the solitaire cipher
with partially known key

The approach of this attack is to fix the known keys and shuffle the remainder until the fitness of the
first few (between fifty and one hundred) deciphered characters exceeds a threshold; then we begin
again with the key we have at that point and try to maximize the fitness of a longer part of the
deciphered text. For the maximization, we use a hill-climbing technique with the parent/child key
paradigm. To generate a child key from the parent, we randomly swap two of the unfixed cards, or do a
three-way swap of three unfixed cards. This is a difficult attack, and it may take a long time or need to
be restarted many times. It is

Programming tasks

1. Implement the attack. Use tetragram fitness to rate plaintexts. Experiment with the fitness
threshold and the length of text to use in the first stage.

Exercises

1. Break the ciphertext from Exercise 2 of the previous unit. The deck is 8♦, 9♦, 3♥, K♦, A♥, J♣,
5♥, 6♥, 7♥, 8♥, 9♥, 10♥, 6♣, K♥, 4♦, Q♦, 2♠, 10♣, A♦, 5♠, 10♠, joker A, K♣, 4♠, 7♠, K♠, Q♣,
9♠, J♥, Q♥, 2♥, 7♣, 3♠, 6♠, 8♣, ?, ?, ?, ?, ?, ?, ?, ?, joker B, ?, ?, ?, ?, ?, ?, J♦, ?, 7♦, ?.

2. Can you break this ciphertext? The deck is 9♦, 3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥, 2♣, K♥, A♠, 2♠,
3♠, 4♠, 8♦, 7♠, 8♠, 9♠, Q♥, Q♠, 6♠, 2♥, 2♦, 4♣, joker A, 3♣, 6♣, 3♦, 9♣, 10♣, 7♦, A♣, 10♠, J♠,
K♣, A♦, A♥, ?, joker B, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ? Can you also recover the keyword?

BHSJKOZKSQZBKVJLAICTFVGPJQJKMJCWBKTGMKUXWWIAPSCHXWUIPG
HSPRDSVSADSBHIAMWWRQCGWPSNIMKZXOXYKGCRHKWCSMGZICJYCJCW
XTBKLTAMPCFAQIIJTIWDLCPXFZKIRSVJSCKQATFLPZYCWJECXZYKID
BINPIFQJHWRECYODKTTYKHDYYULKEQFCGPGVGPQZHQAWFRMYUESBID
PSCIIGUJXXOKRSCEOLCHIDXEQCGKBVNRLNNGIXIYKYGFYUITKKHFVC

Part VIII
Codes

madness's book on classical cryptography
unit 99: codes
last modified 2020-07-16
©2020 madness

Unit 99
Codes

Historically, a code is a way of hiding the meaning of a message by replacing whole words and phrases
with code words. But a newer meaning of code is a way of converting information from one format to
another. Codes can be used as ciphers. The symbols of the plaintext are encoded in the ciphertext
symbols. Decoding is the inverse operation. For example, the ciphertext symbols of Morse code are the
dot, dash, and space. The encoding of a single plaintext symbol is a code word.

Two main categories of codes are fixed-width codes and variable-length codes. In a fixed-width
code, all code words have the same length. In a variable-length code, this is not true. For example,
Morse code is a variable-length code, and the Polybius cipher is a fixed-width code (in base 5).

Breaking a ciphertext that is encoded with a fixed-width code is easy for us. Once we know the
length of each code word, we can build a table of them and assign a plaintext symbol to each. Then
what we have is a monoalphabetic substitution cipher.

Variable-length codes have two subcategories: prefix-free codes and non-prefix-free codes. In a
prefix-free code (also called simply a prefix code), no code word is a prefix of another. That means that
no code word looks like the beginning of another code word. Therefore, if one knows all of the possible
code words, decoding is unambiguous. In a non-prefix-free code (or non-prefix code), this is not true,
and decoding is difficult, even with knowledge of all code words.

Reading and references

Wikipedia, en.wikipedia.org/wiki/Code and en.wikipedia.org/wiki/Prefix_code

Programming tasks

1. Implement the attack described above for fixed-width codes. The length of code words may
have to be an input.

Exercises

1. Break this ciphertext that was encoded with a fixed-width code.

ADGJBDGJAEGJBEGJADHJBDHLADGJBDGLBDHJADHJADGKAEGJADHKAD
HKAEGJADHKADGKAEGLBDHKADGKADHJAEGLADHLADHJADGLBEHLAEGL
AEGJADGLADHJAEHJBDHKBEHJBDGLAEGJAEGLAEGLAEGJADHKADGKBD
HJBEHLBDGKADHJADGLBDGLAEGJBDGLAEGLADHJADGLBDHKADHKAEGL
BDGKADHJBDHJADGJADHKAEGKADGJADHKAEHJBDHKBEHJBDGKADGJAD
HLAEGJADHKADGKADHKBDHKAEGLBDGKAEGJADHKADGKAEGLBDHKAEHJ
BDHKBDHKADHKBEGJADHJBDHKADGLAEGLBDHLAEGJBEGJADHJBDGLBD
GKADHJBDGKADGJAEHJAEHKADHJADHJAEHKADHJAEHJAEGJADHKAEGL
BDHKAEGLBDGKADHJBDHJBDHKBDHKAEGKBDGKADHJADGLBDGLAEGJBD
GLAEGLADHJADGLBDHLADGJBDGLADGLADHJADGJAEHJAEGJADHKADGK
BDHJBEGLAEGLAEGJAEGLBDGKADGJAEHJADHKBDHKAEHKAEGJBEGJAE
GLBEGLADGLADHJBDGLBDHKADGLBEGJBDHKADHKADHLADHJADGLBDGL
ADGJAEGLAEGJBDHKADHKBDGLAEGJADHKAEGJAEGLADGJADHKAEHJBD
HLBDGKADGJAEGLAEGJBDGLAEGLBDGKADHJBEGLBDGLADHJBDHKBEHJ
ADGJBDHJBDHKBDHKAEGKAEGLBDGKBDHKBEGLADGKBDGKAEGLADGJBD
GJAEGJBEGJADHJBDHLAEGJAEGLBDGKBDHKBEGLAEGLAEHKAEGJBEGJ
AEGLBEGLADGLADHJBDGLBDHKADGLBEGJBDHKADHKADHLADHJADGLBD
GLADGJAEGLAEGJBDHKADHKBDGLBDGLBDHKBDGLBDGKADHJBDHLADGJ
BDGLBEGJBDHKADHKBDGLAEGJAEHJADHJADGLAEGJADHKADGKAEGJAD
HKBDGKADHJADGLBDHKBDHLADHKBEGKAEGJADHKAEHJADGJBDGLBDHL
ADHJBDGJBDGJADGJBDGLBDGLBDGKADHJBEGJBDHKBEGLBDGJAEHJBE
HJBDHKADGLAEGLBDGKADHJBDGKBDHKAEGLAEHJADGJBEHLBEGKADGJ
AEHJADHJBDGKADHJADGLBEHJADHJADHJBDGJADHLADHJADGLBEHLBD
GLBDGJADHJADHJAEHKBEHLADGJADHKAEHJBDGLAEGLBEGLAEHKAEGJ
AEHJBDHLBDGKADHJAEGLBDGKADHJADGLAEGLBDGKADHJAEHKBDGJAD
HJADGJBDGLBEGLADGLADHJBDHKBEHJBEGKADGJAEGKAEGJADHKADGK
ADGJAEHJADGJAEGJBDGLBEHLBEGJBDGKADGJAEGJADHKBDHLBDHKBE
GLBDGJAEHJBDHJADHJBDHLBDHKADGLAEGLBDGKAEGLBDGKADHJAEGL
ADGLBDHKBEGLBDHJBDGJADHJBDHKBEHJADGKADHJAEGLAEGLAEGJAD
HKADGKBEGLAEHKADGJADHKAEHJAEHKAEGJBEGJAEGKAEGJADHKADGK
AEGLBDGKADHJAEHJADGJAEGJBDGLAEGJADHJBDGLBDHLBDGKADHJAD
HKBDGLBEGLAEHJAEHJADHJADHKBDGJBEHLADGJBDHLBDGKAEGJAEGL
ADHJADGLADGJBDHJBDHJAEGJAEGLBDHLAEGJAEGLBDGKAEHKAEGJAD
HKAEGKADHJBEHLADHJBDGLADGLADGJADHKBEGJBDGJBDHKBDGLADHJ
BDHJBEHLBDGKADHJADGLAEGLBDGKADHJADGLADHJBDHLADGJBDGLAD
HKBDHKAEGLBDGKAEGJADHKADGKBDGLBDHKADHLADHJADGLBEHLADGL
ADHJBEGKADGJADGLAEGKADGJBDHJBDGJADHJAEGJADHKAEGLBDGKAD
GJAEGLADHKBDHKADGLAEHJAEGJAEHJADGJBDGJAEGJBEGJADHJAEGL
BDGKAEGJADHKAEGKAEGJAEGLBDGLBDHKADHLADHJADGLBEHLBEGKBE
GLBEGJBDGKBDHKBEGLAEGLBDHKBEHJAEGLBDGKADHJBDHLADGJBEHL
AEGLBDHKBDGKADHJADGJADGLAEGLBDGKADHJADGLADGJBDHJBDHJAE
GJAEGLBDGLADGJBEHLAEGLBDHKAEGJAEGLBDGLADHJBDGJBEHJBDHK
BDGKAEHJADHJADGJADGLBDHKBDGKAEHJADHJADGJADGLAEGJBDGLBD
GKADGJBDGJBDGJBDHJADHJAEGLBDHKBDHKBDGJADGJAEGLADHJBDHL
BDGKADHJADHKBDGLBDGKADHJAEGLBDGKBDHKBEGLADGKBDGKAEGLAE
GJAEGLBDHKADHLADHJADGLADGJBEHJAEGLADHJADGLBDHLADGJADGL
AEHJBDGLAEGJAEGLBDHKBEGJBEGJBEGLADGLADGLADHJAEHJAEGLBD

HKBDGKADHJADGLAEGLBDGKADGJAEGLBDGLBDGKADHJBDHKBEGLADGK
BDGKAEGLAEGLBDHKBDGKADGJADHLADHJBDHLBDHKADHKAEHJADHJAD
GLADHJAEHJADGJAEGLAEGLBDGKAEGJBDGLBDHJBEGLAEGLADGJAEGL
AEGLBDGKADHJAEGLAEGJBEGKADHJAEGJAEGLADGJBDGJBDGJBDGLAD
HJADHJBEGKADHJAEHJBEHKBEGLAEGJAEGLADHJADHKADGJAEGLBEGL
ADGLADGJBDGJBDHJBEGLAEGLBDHLBDGKADHJADHKAEGLBDGKADHJAD
GLADGJBDHJBDHJAEGJAEGLADGJBEGJAEGLBEGLADGJBDGJBDGJBEHL
AEGLBDHKBDHKAEGKADGJBDHLADGJAEGLBEGJBDGKBDHKBEGLAEGLBD
HKBEHJAEGJAEGLBDGLBDHLADGJAEGJBDGLAEGLBEGJBDHKADGJAEGL
AEHKBDHKBEGJAEGKADHJAEGLADGJADHKAEHJBDGJBDHKBDHKAEGKAD
HJAEHJADGJAEGLAEGJAEGLADGJADHKAEHJAEGLBDGKADHJADHKBDGK
BEGLADGLADGLAEGJADHJAEHJBDHKADHKADGJBDGJAEGJBEGJADHJBD
GLAEGLADGJADGLAEGLADHJAEHJAEGLBDHKBDGKADHJADGLBEHJADHJ
ADHJAEGLBEHJBDHKADGLAEGJAEGLBEHJBDGJADGJBDGLBDGKADHJAE
HJADGJBEGJADGLBDHKBDGLBDGLBDGKADHJADGLBEGKAEGJADHKAEHJ
AEGLBDGKADGJAEGLBDGLBDGKADHJBDGKADGJAEHJADHKADHJADHLAD
HJADGLBDHJADHJBEHJBDHKADGLADHJBDGLADHJADHJADHKADGJADGL
ADGJBDHJBDHJAEGJAEGLBDHLAEGJAEGLBDGKADHJAEGJAEGLBDGKAD
HJADGLADGJBDHLADGJAEGJBDGLAEGLBEGJBDHKADGJAEGLAEHKBDHK
BEGJAEGKADHJAEGLBDHKADGLADGJBDHLADGJAEGLBEGJBDGKAEGLBD
HKAEGLADGJAEGKADHJBDHKBEGLAEGLBDHKBEHJAEGJAEGLADGJADHK
AEHJBDHJBEGLADGLADHKAEGJADHKADGKBDHLAEGJAEGLBDGKBEGJBE
GLADGLAEGJBDHKBDGLAEGJAEGLBEHLBDGLBDGKADHJADGLADGJADHK
ADGJBEGJADGLBDHKBDGLBDGLAEGLBDGKADHJBEHJAEGJADHJBDGJAE
HJADGJBEHJAEGLADHJADGLAEGJAEGLADGJADHKAEHJBDHLADGJBDGL
AEGJBEGLBDGLAEGLAEGJADHKAEGLAEGJBEGKADHJAEGLBDHKBDGLAD
HJADHJAEGJAEGLAEHKBDHKAEHKAEHJBDHKBDHLADHKADGJBDGJADGJ
ADGLADGKADHJADGLADGJBDHJBDHJAEGJAEGLBDGKBDHKBDGJADHJBE
GLADHKAEHJADHJADGLAEGLBDGKADHJBDGKADHJAEHJADGKADHJAEGJ
ADHKADGJADHKBDHKAEGLBDGKADHJADGLBEGKBDHKBEGKADHJADHKAE
GLAEHJBDHKBDHLADHKBDHLADHJADHKAEGLADGJBDGJAEGJBEGJADHJ
ADGJBEHJAEGLADHJADGLAEGJAEGLADHKADHJADHLADHJADGLBDHKAD
HKBEGJADHJBEGJBDHKADHKBDGLAEGJAEHJADHJADGLAEGJADHKADGK
BDGKBDHKBDHLAEGJADHKAEGLBDGKADHJBDHLBDHKADGLBDGJAEHJBD
GLBDGKADHJBDHLADGJBDGLAEGLBDHKADGKADHJAEGLBDHKBEGLAEGL
ADGJADGKADGJAEGJADHK

2. Break this ciphertext that was encoded with a variable-length (prefix-free) code. You will have
to do at least part of the process by hand.

856398480981983851692569618769298118581999176380585631
691816781608769285639608563981836997651692135796569980
806357638018380635763569167606796985097187839606996048
563967631228767967081605298192606963583760331811692856
396085639812995838762626083985639848999176361608585809
923981608769218585639017656048563976033181836398315285
606398183934856398483856060283608385533856318583639648
758594608161608585639848098191358991692836398018358783
856160569618160876928560839954856398060812858099239801

838081585859691858563901765604917637603318180639698363
980183838518185392084189605797606756961481606785639606
996718165922876754846087856356965809819801828060816583
639831528460876087616385856062184846087656960808018280
608165838098196985671298560093606065921854608169608563
569616960636080760698581181580583912292856396069967181
659229954846087856356965809819135899846087608761638585
608362916556783878195678998184836081818480183133135797
608732831844608185639806081283604856396032836069616596
285815696156961856381608761636398163912356598563985576
556961604173607651692836397608732631812384639362831845
696185639676087853608728580992392876716928580992392991
618199285606318991018585394608185809923928767831528580
992392996312836260539263583695796998081185853958783858
563969439802608069167606983858160878378160801830317651
831851810181819380635763481561638596992060856385639639
816098383608563984648758594608161608585639581648718181
935656960808063185846087819856356965569611060878583152
858099239287670878558558369858360696063608076069858118
158058397606985569879285809923929954585801838360585675
616385091692545858098198360585806087320908785183585583
698558515698585631858336061575801838563569655696113579
831528998184626035859384806357635838563909838580184608
78560485635838060602

3. Break the following ciphertext. Although it is a variable-length code and not prefix-free, you
should be able to find a weakness and decrypt it.

624435638696115072679850656809026349262963492606798506
332249696349265867914624435644163322496342167914680902
626349265862108644167914658680902634926791463869611507
267985065680902633224963421679146441644163322496067914
680902626332249680902634926567914611507263322496809026
791464416332249680902680902626791462967914610679146296
349267634216791463322496386244356386068090262633224968
090262443564416857219634926115072658644163492611507265
626115072633224964416791464416332249611507267914696349
263861067914611507268090267914658624435638680902634926
441634926342167914680902626244356386067914629644167914
633224969634926586791463421624435606268090268090261150
726332249638644167634926115072634216962633224963860679
146244356386809026349269610606586419763492611507269634
926964197680902633224962443562962963492621086386067914
680902626791462108644163863322496809026244356349263863
322496296441679146962108611507262443568090267985063322
496067914638696798506586791467624435638679146586332249
696349265867914633224964416332249644162108641644168090
262443568090262108680902624435634926386961150726798506
568090263492644167985064416809026791463421624435638685

721962624435696268090262679146562963322496244356386809
026791465580456809026791462967914634216791463868090264
416332249611507267914656115072624435634216332249611507
262443562967985068572196349261150726586441656261150726
332249644167914644163492611507264416791463868090267914
638696791464416332249638658680902626791469634926586791
467914636210862443561063322496296791463868090264416963
322496296296791465869634926586791460611507263492621086
564416809026798506562443569633224962962967985069634926
386441624435644168090263492676296791468090268090267914
611507264416349261150726586244356062443568090264416349
261150726416349268090262624435638634926809026267914611
507268572196244356441679146342167914633224963862443563
860629679146441644169634926342164162443563863322496809
026244356349263864416349267624435658679146386809026244
356963322496296296791463860680902626332249696349265867
914641634926349264197624435644163867914679146586791465
868090263492679146386961150726798506568090263322496386
586586791469611507267985065680902680902626791465626115
072633224964416791464416349261150726857219634926115072
658644164167985069634926386809026115072633224964416809
026962443565626791461150726441679146386961150726798506
568090263421679146441644163322496067914644163322496809
026809026267914629679146106791462963492676244356386586
244356106244356586210863322496296296791468090268090267
914611507264416349261150726441634216332249629629606115
072634926210865644163492676296791468090268090267914611
507264416349261150726791461067914638624435638634216349
265867914611507263869624435656267914611507264416244356
386586244356106244356586210863322496296416244356809026
441634216791464416441633224960679146441696332249638641
679146809026115072633224963864416763492611507263421679
146586762443561150726441680902641679850633224969634926
586791463322496386586809026267914638641679850633224969
624435656267914611507264416210869626342162108629680902
624435656296791467914638696115072679850656809026244356
349263863492611507264416210865679146115072679146386961
150726798506568090262443563492638633224962443563421644
168090263492634216332249641976791469611507267985065680
902633224963863322496296798506441624435644163421634926
115072679146586244356767624435696210862968090262443564
416809026349262967914680902626244356441696244356562679
146115072676115072634926342164416349263421679146562108
638641976262443560626441696263492634926296791461150726
441676115072634926342165633224962963492633224962968090
263492696332249629624435676349261150726386244356332249

madness's book on classical cryptography
unit 100: baconian cipher
last modified 2022-01-13
©2020 madness

Unit 100
Baconian cipher

The Baconian cipher, also known as Bacon’s cipher or biliteral cipher or biliterarie cipher, was
invented by Francis Bacon a long time ago. It is a fixed-width code in which the ciphertext symbols are
‘A’ and ‘B.’ The code words are in the following table:

A AAAAA J ABAAB S BAABA
B AAAAB K ABABA T BAABB
C AAABA L ABABB U BABAA
D AAABB M ABBAA V BABAB
E AABAA N ABBAB W BABBA
F AABAB O ABBBA X BABBB
G AABBA P ABBBB Y BBAAA
H AABBB Q BAAAA Z BBAAB
I ABAAA R BAAAB

If we replace the ciphertext symbols ‘A’ and ‘B’ with ‘0’ and ‘1,’ we obtain a five-bit binary
encoding.

Reading and references

Francis Bacon, Of the proficience and advancement of Learning, divine and humane, London: Henrie
Tomes, 1605.

Wikipedia, en.wikipedia.org/wiki/Bacon's_cipher

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Baconian.pdf

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter V, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 882-884.

Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586,

HDL: 2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/
bpt6k94009991, pages 200b and 241-243b.

Programming tasks

1. Write a function that takes a letter of the alphabet and returns a five-bit binary representation.
You may store the five-bit number as a string of 0s and 1s or as an array.

2. Write a function that takes a five-bit binary number and returns the corresponding letter.

3. Write a function or script that encodes a plaintext in the Baconian cipher. Allow a switch so that
it can use the symbols ‘A’ and ‘B’ or ‘0’ and ‘1.’

4. Write a function or script to take a ciphertext that contains two symbols (any two symbols) and
decodes it as a Baconian cipher. Be careful that if you interpret the ciphertext symbols
incorrectly, then you will find code words that are not in the table above. In that case, you
should automatically correct the mistake.

Exercises

1. Break this ciphertext:

B88B88BBB88BB8888B888888B88B888B8BB8B88888B88B8B8B88B8
8B88BB88BBB88888B88BB88B8BB888B888888BB8B888B88B888B88
B88888B88888888B88BBB88BB8B8B888B88B8B88BB88BBB88B88B8
8BBB888BB8B8888B8888888B8B88B88BB88BBB8BBB8B888B8BBB88
8B8BB88B888BBB888888B8B888B88B88B88BBBB88B8888888B888B
88B88B88B8B8BB88BBB8B888B8B8B8B88B888B8BB8B88B888BB88B
B88BBB88B88B888B8BB888BBB8B888B88B88B88B88BBB88BB8888B
88888B88B8BB888888B8888BB88B88BB88BBB88888B88BB88BBB88
B8888B888BB8B888B88BBB8888BB88B88888BBB88B888B88888B8B
888B88B88B88BB8BB8888B88B88B8B88B88888888BB888B88B88B8
8B8888BB8BB88BB8BBB8B88BB88BBB88B8888B8B8B888B888BB88B
8B88BB88B8B8BBB88B8BB8B8888BBB88BBB888B8BB88B888BBB888
888B8B888B88B88B88BBBB88B8888888B888B88B88B88B8B8BB8B8
88B8B888B88BB8B8888BB8B88BB8B88B8

madness's book on classical cryptography
unit 101: triliteral cipher
last modified 2020-07-20
©2020 madness

Unit 101
Triliteral cipher

The triliteral cipher (or triliterarie cipher) is a fixed-width code that uses the ciphertext symbols ‘A,’
‘B,’ and ‘C,’ and these code words:

A AAA J BAA S CAA
B AAB K BAB T CAB
C AAC L BAC U CAC
D ABA M BBA V CBA
E ABB N BBB W CBB
F ABC O BBC X CBC
G ACA P BCA Y CCA
H ACB Q BCB Z CCB
I ACC R BCC

Some add CCC to represent a space, or put the space at the beginning and shift all the letters down one.

If we replace ‘A,’ ‘B,’ and ‘C’ with ‘0,’ ‘1,’ and ‘2,’ then we have a three-digit base-3 (ternary)
encoding.

Programming tasks

1. Write a function to take a letter and return a three-digit ternary number. Allow for the possibility
that 000 might represent a space. You may want to represent the ternary number as a string or
an array.

2. Write a function to take a three-digit ternary number and return a character. Allow for the
possibilities that the alphabet starts with ‘A’ or with a space.

3. Write a function or script that takes a ciphertext that only has three symbols and finds the best
decoding as a triliteral cipher. There are six ways to assign the three symbols, and two ways to
decide if 000 is a space or not. Use tetragram fitness to choose the best decoding.

Exercises

1. Break this ciphertext:

V4V4VVV444AV4AV444A44V4A44444A444AAA44A4VAA444A4444AAV
VA4AAA44V4AVV44444VVA4AVV4A444A44V4V444A44V4A444A44V4V
V4A44444A444AAA44A4VAA444A4444AAVVA4AAA44V4AVV44444V4A
AV4AAA4AVVAV4VV4AVV444AV444A44AAV444V4V4VV44AV4V44444A
AAV4A4A444AVAAVV4V444AAAVVAV4AV4VA444A4444V4VV44A44AAV
A44V4VVVA444VVAAV4VA44444VA4AVV4V444V4V4VVV444AV4AV444
44AV4A44444A444AAA44A4VAA444A4444AAVVA4AAA44V4AVV44444
V4V4VV4AV444AVA44AV4AV4V44444AAAV4AA444V4V4VV4AV444AVA
V444AVV4A4AVAAVV4V44444AAAV4AA444V4V4VV4AV4444V4VA4V4V
VA4V444AV4444V444AA44V4V4VV44444AAAV4AA4444VVAV4AVA4AV
44444AAAV4AA4444A44VV44AV44A44V4VVVA444V4V4VV4AV4444VV
4AV44AV44V4V44444AAAV4AA444V4V4VV4AV44444VV4444AA44AAV
44444AAAV4AA444V4V4VV4AV44444VAV44AAVVA4444VAA44VAA4AV
444VVAAV4VA4444V4V4VVV444AV4AV44444AV4A44444A444AAA44A
4VAA444A4444AAVVA4AAA44V4AVV44

Challenge

IECIEAEAHEAHDGBGCDCIDGADIAEAEHEAHGCDIADBHFEGBGDCAIDFIBEBGDA
GGDCFBIEAIICEHFCCDGHDAFBGCIEAIDAGDBEHCHFGDCGCEFCHCDGEGCBGFB
IFGDCICEFIAEGCGBDBFGFCHBHEHFAADHHADIADCDIADGEHBEIAFHCAHFIBF
BGFIEAEAIDICBFHAHFFIBFHABGEEAIDHAGBEAFHEHCAIEBFHEAIHFAEBIGC
DAFIFHACIDGBDCGDAHFDBGHBEIBDGDCHADFAHDCIAEHDGCIBFBEGFHAIDCF
CHDGCGECDAHAEICDGFBIDGAEBHAIEAGDIAEHAFHFBHEAGDCCGDFBGAFHIAF
IFACDGDAGGADIDAIBDFHCDGCEGCHADEIAGDAEHBIEAGDBDGCFHABGDBEHHF
CGCDECGHFBCEGDCIGADGBFBIFDGCICEHFAHEAHAEADGEHBEIAEAGHAEHFAH
CFAEIHADICDDAIBGDEIAAHDDGAHFAADIBIFHEACHFHDBCDGCEIAEIAHEHEA
CHFDGCGCEFBGFBIDCGECIDAICHEAEIIBFIAECHEAIEDAHHBFIEADAGAGDHE
BEAIEGBGCEHFCCDIICDGDCFCHCDGCGEAHEHEAEHBAFHCHEIAEDAGGCDAGDI
EAAHEHEABFHIAEDAGEHBAIEAIDDHAFBIAHFFHBAEIDCIHFAIFBBDHAGDEBH
EIABIFADIHEAAHEFBGBIFDGCECICEIBEHDCGDCIEGAEHAFAHHFCDIAIFBEG
BGDCFBIGDAEHBIAEDAGAEIHAFBHFCDGEHBIADHAEEAHAGDAEIHEAHEAFCHD
GCEGCADGHEBIAEIDAHADIFBAFHHFBIEADCIIFAEGCGADHCFCGDCGEBGFIFB
DCGCEIIDADAGIDCAEIEAIFBHCDIAGDDGCHBFAEIAGDBHEIEACHFEGBAIDCH
EEAIDGABEHEAICDIEAIIFAFAHEHAAHEEAGEHAAHFFCHAEIHDACIDFBIGDCC
IEFAHDHBAHFFCHDCIHECEAIHADHCFGEAEIAGBDCGEEHADAIAFHDAHIFBHFA
BFHIEACIDIECBEHGCDIDCDGCFIBDIBIADDAHIDCADGAEIGFCHFABDGAGDHA
EFHCEICHBEHFAAGDFBIGDCEICEHBAHFGADCDICGDIFBDICEIABGDCDGIBFB
DHADIBGEAEIAGDAIFIEAEHBIADIBFHDBAGDHBEAEIEAGHEAHAFAGDIEAAGD
CGDBDHCGDDICGDCBHFAIEBDIAFHIFBBGDCHFBGDFHAGADDBGHEBDIABFIBE
GAGDCGDBHFCGDDHAADHGCDIECICDEAGAIDGDAGBDHEBIDAIFBEGBCGDFBIF
HBFCHADGEIAHAFHFBHFABFIBHDAFHEHBAIEAFHCHECHFHBEIDAADGGDAEAI
DAHGEBAEIDGAIDCCEGEAGIBFGDCEICADGHEBEIAHBEAEIAFHCHEHFCEBHAD
IAGDADGEAIHDAFIAECGFIBGDACIDAGDHEBAIEFIAHAFHEAAEHIECBHEIAEI
BFBEHAIEIAFGCEIBFAGDICDGDAEBHAIEIFAHFAHAEAHEHBFAEIIAFAEIDAI
FBIEBGAHFGEBCGDCDGHBDBDGHFAGDAGDBHBEAEIHADADIBHFBEGGCDFBIFB

IAHFDAGBHEHDADCGCIEADGHBEEAIEGBCGEHFCGCDEGCDGAFAHDAGBDIADIH
DAIDCDGAIFAFAHIDCIEACDIDCGDIAGAEDIADBGFGBGCEGAEGDABHEIEAAFI
AHFAEHHAEFAHBIFHDBGADHEBDAHGCDIECDIAGDAAGDDCGCIEHBEDGCIFBDC
GICEICEHBECGDCDIGEBDGCADGDIAAGDFBIFAHDGACGEHDAFHAAEHAEHFHCA
EHDGCDGCFBGDIADBIIADAGDEBHAHDDCGICEGDABHEEIAIAFFHAHAEHEAGAD
DCGBDIADIHADDICDAGIAFAFHCDIIEACDIGCDHBFEIAAIFDGCBDHCFHDICEB
GGDCADGADGFHAEGBAIEAGDDAIADGBFIGDCICEEICBHECDGBEHHFADCIAIDG
DAFIBHFAGADEGCAHDFAHAHEHEAHCFIDCDCGADIAEGIADGDBFBGGECEAGADG
HEBIAEAIFAHFHEAAHEFHABIFHBDDAIADGHEBADHDCGIECIDAADGDAGDCGCE
IEBHGCDIECBEHDGCHBDAHDGCDAEGICDGDAEHBAIEIAFHAFEAHHAEHAFBFID
BHDAGBHEEIAGBEGECCFHDAHGCEIBFICDDGACDGCIDEIABDGCGDIBFBDHECI
EBHCGDEAGDAIDBGBFGDICCGEEAGGADHEBIEAFAIAFHHEAEAHFAHBFIHBDDA
GEHBAHDCDGCIECDIDAIADGDAGGDCCIEHEBHAFDAGCEIBHEHAFGDAGDABEHA
HDDCGIECCIDDIAGADGADGDCDAIBHDDGCIFBADGGFBBIFGDCIECDAIBDHDGC
BIFAGDBGFIFBGCDEICADGEBHDHADCGCIEDCIAIDDGAAIFHFAGBDBFGDGAGD
CADGCDGFBHDCGHDADAHDGCIECDAGAHDDAIGAEHAEIAEGEAAEHAFHCFH

madness's book on classical cryptography
unit 102: morse code
last modified 2020-07-22
©2020 madness

Unit 102
Morse code

Morse code is a variable-length code. The ciphertext symbols are the dot ‧ the dash – and space.
Sometimes the space is written with a slash (‘/’); it is placed between code words. In addition to the
English alphabet, there are code words for other European characters, digits, and some punctuation. In
the table below, you might notice that some code words are not unique.

A ‧– J ‧––– S ‧‧‧
B –‧‧‧ K –‧– T –
C –‧–‧ L ‧–‧‧ U ‧‧–
D –‧‧ M –– V ‧‧‧–
E ‧ N –‧ W ‧––
F ‧‧–‧ O ––– X –‧‧–
G ––‧ P ‧––‧ Y –‧––
H ‧‧‧‧ Q ––‧– Z ––‧‧
I ‧‧ R ‧–‧

0 ––––– 5 ‧‧‧‧‧
1 ‧–––– 6 –‧‧‧‧
2 ‧‧––– 7 ––‧‧‧
3 ‧‧‧–– 8 –––‧‧
4 ‧‧‧‧– 9 ––––‧

Ä ‧–‧– Á ‧––‧– Å ‧––‧– CH ––––
É ‧‧–‧‧ Ñ ––‧–– Ö –––‧ Ü ‧‧––

& ‧–‧‧‧ ' ‧––––‧ @ ‧––‧–‧) –‧––‧–
(–‧––‧ : –––‧‧‧ , ––‧‧–– = –‧‧‧–
! –‧–‧–– . ‧–‧–‧– - –‧‧‧‧– + ‧–‧–‧
" ‧–‧‧–‧ ? ‧‧––‧‧ / –‧‧–‧ # ‧‧‧–‧–
$ ‧‧‧–‧‧– % ‧––––‧ ; –‧–‧–‧ _ ‧‧––‧–
~ ‧–‧‧‧

Reading and references

Wikipedia, en.wikipedia.org/wiki/Morse_code

Morse Code World, morsecode.world/international/morse2.html

Programming tasks

1. Write a function or script to encode a text in Morse code.

2. Write a function or script to decode a text from Morse code.

3. Write a function or script that takes a ciphertext containing three symbols and finds the best
interpretation of those symbols as dot, dash, and space, and decodes appropriately.

Exercises

1. Encode this text in Morse code:

IN MORSE CODE THE LENGTH OF A DASH IS THREE TIMES THE
LENGTH OF A DOT. THE SPACE BETWEEN DOTS AND DASHES IN
THE SAME CODEWORD IS THE LENGTH OF ONE DOT. THE SPACE
BETWEEN LETTERS IS THE LENGTH OF THREE DOTS. THE SPACE
BETWEEN WORDS IS THE LENGTH OF SEVEN DOTS.

2. Decode this text:

– ‧‧‧‧ ‧‧ ‧‧‧ – ‧ –‧‧– – ‧–– ‧– ‧‧‧
‧ –‧ –‧–‧ ––– –‧‧ ‧ –‧‧ ‧‧ –‧ –– –––
‧–‧ ‧‧‧ ‧ –‧–‧ ––– –‧‧ ‧ ‧–‧–‧– –
‧‧‧‧ ‧‧ ‧‧‧ – ‧ –‧‧– – ‧‧ ‧‧‧ ‧–
‧–‧‧ ‧‧‧ ––– –‧ ––– – ‧‧‧– ‧ ‧–‧ –‧––
‧‧ –‧ – ‧ ‧–‧ ‧ ‧‧‧ – ‧‧ –‧ ––‧ ‧–‧–‧–

3. Decode this text:

::'';':;:'::':';::'';';;;'':;;':;':;:';:'';:;;';;;'::;
'':;::':;':::';'';'::';;':'';'::::':;';'';'::::'::':::
'':;;';;;'::;':;::';::'';:';;;';'';:::':'':::;':':;:';
:;;''::';:';':':;:':':::';'::';:';;:':;:;:;''::';':;;;
;:':::'';:;;';;;'::;':;:''::;:':;'::;':;::';''::;:';;;
':;:'';:';;;';'':;::'::':::';':';:'::';:';;:':;:;:;'';
:';;;':;;'';:;;';;;'::;''::::':;':::;':'';';;;'':::'::
;'::;:'::;:':':;:'';'::::':;:';;;'::;';;:'::::'':;';:'
;;;';'::::':':;:'';:::';;;':;:'::';:';;:'':;;:':;::':;
'::';:';':';::;';':;:;:;

Challenge

01110001010101000101000101010000000111010111010001010001011
10111010001010101000100010111010001110001000111010101110001
11000000010101000101000111011100010101110001011101010001011
10001110001000101010000000111000101010100010000000101010111
00011101110111000101110101000111000101110001110111010001000
00001110111011100011101000000010111000000011100010001011101
01000100011101110100010111010001011100010111011101000101010
10000000101110101000101000111010001000000010111000101010000
00010111000000010101110100010101110001110100011101011101000
11100010100011101110111000111010000000111011101110001010111
01000000011100010100011101110001000101110101110101110000000
10100011100000001010111010001110111011100010111010100010111
01010001110111011100010111011100010101000000011100010101010
00100000001110101000100010101000111010111010001011101000101
00010111011101000111000101000111011101110001110100000001110
11101110001010111010000000111000101010100010000000111011100
01110111011100010111010001010100010000000101010001110001011
10001110100011101010001011100010111010001110101000000011101
11010001010001010101110001000111010000000101000111010000000
10001110101011100010001011101000111010111010001010001010100
01000000010111011101110111000101110101110101110000000111010
00111011101110001011101110000000111000101110100011101011101
11000000011100011101110111000000010100011101110001011100011
10111010001010001110100010000000101010100011101110111000101
11011100000001010101000101110001011101000111010100000001110
00101010100010100010101000000010111011100011101110111000101
01110001011101010001110101000000011101010100010000000101000
10101110100000001110101110111000111011101110001010111000000
01011101110001000101110100010000000101110101000101000101010
00111000100011101000101000111010001110111010000000111000111
01110111000000010111000000011101110001110111011100011101010
0010001110111000101110101110101110

madness's book on classical cryptography
unit 103: monome-dinome cipher
last modified 2020-08-08
©2020 madness

Unit 103
Monome-dinome cipher

The monome-dinome cipher is a prefix-free variable-length code. The key is a keyword and a
permutation of the ten digits. The cipher uses a 24-letter alphabet, so we have to boot out two letters.
Usually, we merge ‘J’ with ‘I,’ and sometimes ‘Z’ with ‘Y’ or ‘S.’ The keyword is used to generate a
mixed alphabet from the remaining 24 letters. This alphabet is put into a 3×8 grid. The first two digits
label the second and third lines, while the remaining eight digits label the columns. The code word for a
letter is the row label, if any, plus the column label. Code words that contain one digit are called
monomes; those with two, dinomes.

Let’s work through an example, using the keyword KEYWORD and the list of digits 5, 9; 3, 4, 1,
7, 6, 8, 2, 0. One way to generate the mixed alphabet (remember that there are many ways) gives us this
grid:

 │ 3 4 1 7 6 8 2 0
───┼────────────────────────
 │ K E Y W O R D A
5 │ B C F G H I L M
9 │ N P Q S T U V X

If we encipher the message

THIS MESSAGE WAS ENCRYPTED WITH A CODE

we get

96 56 58 97 50 4 97 97 0 57 4 7 0 97 4 93
54 8 1 94 96 4 2 7 58 96 56 0 54 6 2 4

Of course, we don’t want the spaces to betray our encryption method, so they are removed. The
ciphertext is

9656589750497970574709749354819496427589656054624

With a ciphertext that is long enough to reliably use statistics, the monome-dinome cipher is
easy to break. The two most common digits will be the row labels; the rest will be column labels. Once

we know all the code words, it becomes a monoalphabetic substitution cipher, which we can break with
the method in Unit 28.

Reading and references

American Cryptogram Association,
www.cryptogram.org/downloads/aca.info/ciphers/MonomeDinome.pdf

Programming tasks

1. Implement an encryptor for the monome-dinome cipher. Allow for the choice of letters that are
merged in the mixed alphabet.

2. Implement a decryptor for the monome-dinome cipher. Allow for the choice of letters that are
merged in the mixed alphabet.

3. Write a function to tabulate the frequencies of digits in a ciphertext.

4. Implement the attack mentioned above.

Exercises

1. Encipher this text with the keyword AUTOMOBILE and digit list 3, 1; 8, 7, 5, 4, 2, 6, 0, 9. Use
standard choices for mixing the alphabet and merging letters.

When the windshield was closed it became so filmed with rain that Claire
fancied she was piloting a drowned car in dim spaces under the sea. When it was
open, drops jabbed into her eyes and chilled her cheeks. She was excited and
thoroughly miserable. She realized that these Minnesota country roads had no
respect for her polite experience on Long Island parkways.

(from Free Air by Sinclair Lewis)

2. Decipher this ciphertext with the keyword HIGHWAY and digit list 1, 3; 6, 4, 0, 8, 9, 2, 5, 7. Use
standard choices for mixing the alphabet and merging letters.

814693514915148717157143639417151710173230030149397173
215393026143035938391514383861430359304141638714151430
261430363017383614304392614306936364151438386143051732
151619143838301438173230714386143041212141538143617383
845419439414386143018415161514383891516617361410321915
143838814930145173215163917614305293961732389151615148
394143817109734329415399157141710938381774939417159151
617103630416143961419415717191564068924389193014916286
939439438415391415161416391751490171916141530179161710

361914938323014915163238141032191514383810439192161416
479391416915161614383941514163917415383643014903014939
369393041739438129151639176171517323090301493936939304
1739

3. Break this ciphertext:

480805287681808451276545287548157525345257518153802686
152872848212506450257577577480053257578187808153868051
259528062578214805048257528487521525680818780868064576
545257287815301234626481808728451484508135215251654484
572878728495254480512575765452878115681535081825218045
086845652825752128051025745752812805187542665452754251
518180528052525152514806521821526264818046872848386465
280268612576542665452598184681934818684280515952505428
045025782545280815952802845481865751534184695215251865
052512805184816545282148050482428728450818050521805251
874654595250542804502578214805048257528428282574525168
1284618180815945025782181957525984

Challenge

BEAHAICIHAICGAHBFAFBEBFDGBEAGGCIBFCFHAFDHCGBEBFBGAGAIBEAHGD
ECFAIFAIBEBFAFGFEAIFAIBEBFAFGFHAICGAHBFAFAGAHAIHAHAICIGDFGA
FAIGEFBFFBFCFBIBEAHCGAFBFBHAIDGBHAFBFBFHAEBGBFBFGHAHFBFBEBE
BFAFAEBHBEAHBFCGFGAICFBEBFDGBEAICIBFCFHAICGAHBFAFBFBGGCIBFA
IBEAHBFAFAECFBFAEAFBEAGAEFBFBEBEBFAFCIAICFBEAHBFHAICGAHBFAF
BEBFDGBEBEAHBFGCICIAIBICFCEBFCFBEAEBHHAEBGBFAGAEAFBGCIBHAEA
FBFGHAHCGFGAICFBEBFDGBEFBFBEBEBFAFAICIBGAECFBFAICFGCIDHCIBE
BFCEGBEAIHAGGDHHGCFDHAEDEBHAICFBGBEAHBFIBFDHAGAEAFBGBEAHGBE
AGGCIDECIBFBG

madness's book on classical cryptography
unit 104: straddling checkerboard cipher
last modified 2020-10-13
©2020 madness

Unit 104
Straddling checkerboard cipher

The straddling checkerboard cipher is another prefix-free variable-length code and is very similar to
the monome-dinome cipher. The key is a keyword and a pair of digits. The keyword is used to generate
a mixed alphabet, which is placed into a 3×10 grid. The two digits label the second and third lines,
while the digits 0, ..., 9 label the columns. When the alphabet is laid in, the spots in the top row under
the digits that match the two row labels must be left empty. There will also be two empty spaces in the
third row, or two additional characters can be added, such as space and period. The code word for a
letter is the row label, if any, followed by the column label. Code words are monomes or dinomes.

Let’s work through an example, using the keyword KEYWORD and the pair of digits 5 and 8.
One way to generate the mixed alphabet (remember that there are many ways) gives us this grid:

 │ 0 1 2 3 4 5 6 7 8 9
───┼──────────────────────────────
 │ K E Y W O R D A
5 │ B C F G H I J L M N
8 │ P Q S T U V X Z

If we encipher the message

THIS MESSAGE WAS ENCRYPTED WITH A CODE

we get

83 54 55 82 58 1 82 82 9 53 1 3 9 82 1 59
51 6 2 80 83 1 7 3 55 83 54 9 51 4 7 1

Of course, we don’t want the spaces to betray our encryption method, so they are removed. The
ciphertext is

8354558258182829531398215951628083173558354951471

With a ciphertext that is long enough to reliably use statistics, this cipher is easy to break. The
two most common digits will be the row labels. Working from the beginning of the ciphertext, knowing

the row labels allows us to unambiguously break it into code words. Once we know all the code words,
it becomes a monoalphabetic substitution cipher, which we can break with the method in Unit 28.

Reading and references

Practical Cryptography,
practicalcryptography.com/ciphers/straddle-checkerboard-cipher
practicalcryptography.com/cryptanalysis/stochastic-searching/cryptanalysis-straddle-checkerboard

Wikipedia, en.wikipedia.org/wiki/Straddling_checkerboard

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 200-201.

Paolo Bonavoglia, “The straddling checkerboard cipher,” La crittografia da Atbash a RSA, 2020,
www.crittologia.eu/en/critto/straddle.html

Friedrich L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology, 4th edition, Berlin:
Springer-Verlag, 2007, pages 56-57.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 635-636.

Programming tasks

1. Implement an encryptor for the straddling checkerboard cipher.

2. Implement a decryptor for the straddling checkerboard cipher.

3. Implement the attack described above.

Exercises

1. Encipher this text with the keyword AUTOMOBILE and digits 3, 1. Use the easiest choice for
how to mix the alphabet.

What I was going to say is this: wouldn’t it be much better to turn your car into
the means of making an honest living, and at the same time having some rattling
good fun, rather than sell the thing for less than half cost, and not only get no fun
at all, but not know how to get out of the scrape in which you’ve landed
yourself?

(from My Friend the Chauffeur by C. N. Williamson and A. M. Williamson)

2. Decipher this ciphertext with the keyword HIGHWAY and digits 1, 6. Use the easiest choice for
how to mix the alphabet.

151818142173563162626215116526363181711951705611015721
653217116305636201191864151010612651159561563626490631
161612122962191111106301119648152921726362162171062117
111718101864863122364611162630262161863186190516192181
756258236263615191921735165671817101861186307151165263
632621166596315718615151618626362186301110261119631819
191862263111812626490519296364611162011262630111618626
332611526201812418165171574181611176215230632176263563
646111620751710620612171421735151618626363216210217011
611165116171057152121126326262111116217351656165111563
056362011951761115151578116301141816517401805621018171
151515630563630116111918611062620184

3. Break this ciphertext:

714240734049764717070383037176141456714240456713560705
340465407040404570646346701072804051467149693571314634
171423707053404654037014607694097257137340346647474064
964654041491457442404654037094049373409714267147404941
405714932172497442354237054260040462409876461464034114
671424051467149649766007142404749147170371314670744235
423714046724653671407045676840940493734093461499404987
671424049720407014141149456001235421743703717142671456
714240456713570370461714940972540971162326467135716727
110127671424070760012370455646714065427270461714234624
070704046713600764640746469341407340497671423462457270
717047493462414914571424047493465347040141394046713717
671424046407340497671423462704217209840564768040141840
346249409725409711714267147493465347040649407440714240
467116945371714267171424040467246536713146701416007142
407142401494045707437142744235427014564676731072454070
649404130040964940146076346934940571746767014170676346
2714267163706

Part IX
Miscellaneous ciphers

madness's book on classical cryptography
unit 105: symbolic substitution
last modified 2022-01-13
©2020 madness

Unit 105
Symbolic substitution

A symbolic substitution cipher is like a monoalphabetic substitution except that the ciphertext symbols
are not letters. We can attack such a cipher by transliterating it, i.e., by assigning a letter to each
symbol, then applying the hill-climbing attack from Unit 28.

Reading and references

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998, pages 173-180 and 183-184.

Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography,
New York: Random House, 1999; see the section “The Babington Plot” in chapter 1.

Edgar Allan Poe, “The Gold-Bug,” 1843, en.wikisource.org/wiki/Tales_(Poe)/The_Gold-Bug
Edgar Allan Poe, “The Gold-Bug,” 1843, en.wikisource.org/wiki/Tales_(Poe)/The_Gold-Bug,
www.eapoe.org/works/tales/goldbga2.htm

Arthur Conan Doyle, “The Adventure of the Dancing Men,” first published in 1905, now in The
Complete Works of Sherlock Holmes, London: Simon & Schuster, 2012.

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter VII, section II.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 90-91, 93-94, and 174-176.

S. Tomokiyo, “First Codebreaking in the American Revolution — Benjamin Church’s Cipher,”
cryptiana.web.fc2.com/code/church.htm, 2009-2014.

Benjamin Church, Jr., George Washington Papers, Series 4, General Correspondence: Benjamin Church
Jr. to Maurice Cane, July 1775, www.loc.gov/item/mgw443691

Friedrich L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology, 4th edition, Berlin:
Springer-Verlag, 2007, pages 44-45.

Johannes Trithemius, Polygraphiae libri sex, Reichenau: Joannis Haselberg de Aia, 1518,
www.loc.gov/item/32017914, book 6.

Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586,
HDL: 2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/
bpt6k94009991, pages 286-343.

Martin Gardner, Codes, Ciphers and Secret Writing, New York: Simon & Schuster, 1972, sections 4, 6,
and 7.

Exercises

1. This is the ciphertext from Edgar Allan Poe’s “The Gold-Bug” (the original version). Break it.

53‡‡†305))6*;4826)4‡.)4‡);806*;48†8
¶60))85;1‡(;:‡*8†83(88)5*†;46(;88*96
?;8)‡(;485);5*†2:*‡(;4956*2(5*—4)8
¶8*;4069285);)6†8)4‡‡;1(‡9;48081;8:8‡
1;48†85;4)485†528806*81(‡9;48;(88;4
(‡?34;48)4‡;161;:188;‡?;

2. This ciphertext uses the symbols from the Sherlock Holmes story “The Adventure of the
Dancing Men.” Some symbols did not appear in the story and were designed by the font’s
creator. Break the ciphertext.

SPOILER ALERT THIS IS A SUMMARY OF THE
PLOT OF THE SHERLOCK HOLMES STORY THE
DANCING MEN SHERLOCK AND WATSON WANTED
TO INVESTIGATE THE ART OF DANCE FIRST
THEY WENT TO THE YMCA WHERE THEY MET
SOME VILLAGE PEOPLE THEY TOOK THE
SLEUTHS TO STUDIO FIFTY FOUR WHERE
THEY DANCED UNTIL DAWN IT WAS A GAY OLD
TIME FOR ALL

3. This ciphertext is from the 2002 British National Cipher Challenge. Break it.

4. What does the note say?

5. This is the pigpen cipher also known as the
freemasons cipher or the rosicrucians cipher

you probably already know about it since

children use it often Its shapes are from a

tictactoe board and from an X both with and

without a dot

6. What is Ozzy trying to tell us?

madness's book on classical cryptography
unit 106: one-time pad
last modified 2020-10-16
©2020 madness

Unit 106
One-time pad

The one-time pad (Vernam’s cipher) employs a key that has the same length as the plaintext. The key is
combined with the plaintext to produce the ciphertext, usually in a Vigenère-like manner. Because for
any ciphertext there exists a key that can decipher it to any plaintext, the one-time pad is the only
provably secure cipher. The problem with it is in key distribution: The sender and receiver must have
access to the same key. Sending the key introduces insecurities, and carrying a large codebook of
pregenerated key material is inconvenient.

We can view the one-time pad as a limiting case of other ciphers. It can be seen as a Vigenère
cipher in the limit of a long key or infinite period. It can be viewed as a stream cipher in the limit of
perfectly random key generation.

The key must never be reused. If two messages encrypted with the same key are intercepted,
then the security of the cipher is destroyed. Also, the key must be random, lest the adversary find a
pattern in your key.

Reading and references

Claude E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal 27:3
(1948) 379-423, DOI: 10.1002/j.1538-7305.1948.tb01338.x, HDL: 11858/00-001M-0000-002C-4314-2

Wikipedia, en.wikipedia.org/wiki/One-time_pad

users.telenet.be/d.rijmenants/en/onetimepad.htm

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 394-403.

Programming tasks

You can just use your routines for the Vigenère cipher for this one.

Exercises

1. These five ciphertexts were encrypted with the same key. Recover the texts and the key. This
may require some trial and error.

DNBYDYWSXBNXHPRWYBHMSGHEXVRINUBSQIXEBHBQKUUHAFHXWJSNSN
JGALTYUVCGLXZIWSD

DNBTZHDGGAYBRSWVFZABDLHTNXKLQLINQKAXBCPPPWIQBIXERVIZTL
JNIWVLJQ

SZTCNAOOOWNIZXBXVEHMUDQANIFYAZMFROQYTLTGUWTGJIOKFJPEYC
KBELERWRBWNYVSJU

DNBHMZQHJXISVEBEGMUUMCSJRWKHUZTKAKUXXTSBPVBGYPYUDNMSFL
HBHSZQMSJFCNNG

KYPVZAKOTUYGSXQUJYBUQDSJRMDMNUFYCZKYCZSCOLYCWFWKXTFNDA
JRHSUNWVWLSMXD

2. These two ciphertexts were encrypted with the same key. See if you can recover the texts and
key.

PPHKLXETAGOTLJGODXRODJBSJQGYGXJLGTKSGPHBTFEJSDXKEESUWL
DDPVCVPKPZQMGFAEFTQLUKSBEJLHHHSKZFXNOYIDGMQOICSMZQQIUF
YQBGCEZXVDJTBOGTXDRPWRIDTORXABUGDGIRGGBYHYRIRIJEKTLOMK
IMKERZHFGZVCMOORRAMIHIRERZCPLCYFJKWPQRSHKTQIHBAYZXLBZO
UJZRXNYBGIEVWJUXBSTOGWABQHGHPUCRISHTSTHDCCRAWABIZPEOWQ
VOBJYYSCNUUPYUFOVBZAOSCSODBKWGWRRVUQQRHDVHTJYSLGZRHWAK
WYWTNPITYMPCQSRUKAHSJLKCZYEIDOEDVAHFIQGHNYODMLOTWANYAG
XIHUVSNMGVLKYHBJTNUSVFFAFNKNMBMZPCN

HRETWPKMQUJEBMKEIMIKXNEEMHOZIETHUNQFKTKWPERUSDTRDTWJIA
RUGMOSLDCRFTHPMOJTRHWDEIYUKUCQNRFGRJDGFOABXJCMPNRPBUUP
RHMKXOGFCFJEJFWPKGRPMGPGCKHBTFPVUPIIKBQSBFEJQQCENZWDUW
IXUOVXSMMVACYCYRWCAQOGICTCKWXJGIVPVQQUNYXJBMHDIIXDLYJQ
RTGECARZHPPCHMFDRCUPJHIXDRXNPRUDQGVRPDQTVEEFBZVNNZEPCU
RLANGYFOPVUBLRPVAEUMJZHAUDAKQUBHLKBSFLEGYJCFDSXDCXHUUL
MIAWDJXESREIEWQCGECWCFLGMMEDTXFCMSFSDWTSZWAXCIZEJIJANP
AWLWTFMCAEBKMZFUUYVPVAPPDCPTLVXOMROVANDAUH

madness's book on classical cryptography
unit 107: slidefair cipher
last modified 2020-10-03
©2020 madness

Unit 107
Slidefair cipher

The slidefair cipher is a periodic digram substitution cipher. The mechanics of the cipher involves
sliding one copy of the alphabet against another. The plaintext is divided into digrams, with padding if
necessary. For each letter of the keyword, the lower alphabet is slid until that letter is under the ‘A’ of
the upper alphabet. The two plaintext letters in a digram form the corners of a rectangle, with the first
in the upper alphabet and the second in the lower. The ciphertext letters are taken as the other two
corners of the rectangle, again with the first in the upper alphabet and the second in the lower. If the
two plaintext letters are in the same column, then the ciphertext letters are taken as the two letters in the
column immediately to their right.

As an example, let’s encipher this message with the keyword FAIR.

THIS MESSAGE WAS ENCRYPTED WITH SLIDEFAIR

First, divide the plaintext into digrams:

TH IS ME SS AG EW AS EN CR YP TE DW IT HS LI DE FA IR

To encrypt the first digram, TH, we line up the alphabets so that the first letter of the keyword is under
the ‘A’ in the upper alphabet.

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
. . . A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H . . .

The ciphertext letters are read from the same columns as the plaintext letters, starting with the one in
the upper alphabet: CY. For the next digram, we use the second of the keyword, ‘A.’ This continues as
we cycle through the keyword. The final ciphertext is

CYSIWUBJBFWEKIWVMHPYWBFUONSHATNUVKRI

There are three variations of the slidefair cipher, corresponding to the three ways of arranging
plaintext and ciphertext alphabets in the Vigenère, Beaufort, and variant Beaufort ciphers. The example
above used the Vigenère-like variation. For the variant-Beaufort variation, we use the same
prescription, with the exception that the keyword letter is taken in the upper alphabet and aligned with
the ‘A’ in the lower alphabet. For the Beaufort variation, the lower alphabet is written in reverse order.

If we have a ciphertext that is sufficiently long, we can find the length of its keyword with the
method of Unit 31. The period that we find with that method is twice the length of the keyword, since
we encipher twice the number of letters in one period.

A hill-climbing attack on the slidefair can be done in the same way as we did for the Vigenère
cipher in Unit 37, by varying each letter of the keyword to improve the fitness of the plaintext. When
we can no longer increase the fitness by changing any letter in the keyword, we have likely found the
correct one.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; page 199.

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Slidefair.pdf

Programming tasks

1. Implement an encryptor. Allow for the option of choosing one of the three variations of the
cipher.

2. Implement a decryptor. Allow for the option of choosing one of the three variations of the
cipher.

3. Implement a dictionary attack. Check all three variations of the cipher.

4. Implement the hill-climbing attack described above. Allow for the choice of the three variations
of the cipher.

Exercises

1. Encipher this text with keyword RULER. Do it three times, once for each variation of the cipher.

The slide rule is a device for easily and quickly multiplying, dividing and
extracting square root and cube root. It will also perform any combination of
these processes. On this account, it is found extremely useful by students and
teachers in schools and colleges, by engineers, architects, draftsmen, surveyors,
chemists, and many others.

(from Instruction for Using a Slide Rule by W. Stanley)

2. Decipher this ciphertext with keyword CIRCLE and the Vigenère-like variation of the cipher.

FVVMCRNCTCAWRPVMWZFVHTNEGVDKBVMJIHWLUVAPNCFVTPNEGNKMBK
GNTOQVCNOAAVMGIQALGEUZVMPCNEATFVDMCRPGADZMPGDCBVDQWEOI
TGFMNKLGWEAGRPJCFPPGDPPJCJWZDUJKCTWISUHGGV

3. Decipher this ciphertext with keyword ARGUE and the Beaufort-like variation of the cipher.

NMNPTSBUSWHWNKCPQYANEHLDSSMRMATEBDGMDDTAWPROKOIGRAVMNY
KTJMETXNKVTCNBGAATEONSMNYRPWNZSNAENEWJRGSFBAXLCWNMVVGB
WZTUJYATTUKQHHNKPYANDMNAZOOGGBXIYSVKOGNBMAPSJGOCGBLZWT
UF

4. Perform a dictionary attack on this ciphertext. The keyword is a common five-letter English
word.

GMUIVVNAVLFQRCQKPEGPCRYFWRECXDGFQPXWERWEQQDIJKNICZVFNS
JFDRPDRZAZTFISIYHAQVJWRIULSQUZPEFOGATAGCMEEMPWQZAVHCOC
TXCEQJQIMICTWTEGALEVDJHRQVDSTSXWUZXDLRYEHPVFEWBZAVXYMF
MTAZONPECYMFYCALTNSOFFRRLNCJFAYOAVYRCZHQAVPLVHGPBKUCHJ
HTRPFGMHWZIWAWSNBIAGSECPZFMMMEEHXHZXQPDKNRCTCSQJQIAEPO
RZQVUVASSYFOUMPEOHPHSDAMGL

5. Find the length of the keyword used to encrypt this ciphertext. Break it with the hill-climbing
attack.

UGSYGABUJSNMQFARCNMMNUKPJTMLUGJYQQLJHEXGVAVGZMAAJBWIND
BFYNAGHXOJEPJTQLABYOBUNHHRCPMZVSYLRFFJPMRJBFRUOASHEOYE
XKAJUGTYZBBBPINYMVVPGGDXHPPRWZPLFROFSPTSAPNICKGYUMVFSB
PMEJTSRHYCSZQBOICKIZBGZZSTDNPRURCEGYVCWXZDEXWF

madness's book on classical cryptography
unit 108: nicodemus cipher
last modified 2020-10-28
©2020 madness

Unit 108
Nicodemus cipher

This is a real dog of a cipher. To encipher a text with the Nicodemus cipher, first encrypt with a
Vigenère cipher, then break the text into blocks of five times the key length and apply a columnar
transposition to each block, using the same key as the Vigenère. Here is a short example:

KEY KEY EKY

THI DLG LDG
SME CQC QCC
SSA CWY WCY
GEI QIG IQG
SEN CIL ICL

CRY → MVW → VMW
PTE ZXC XZC
DWI NAG ANG
THN DLL LDL
ICO SGM GSM

DEM NIK INK
US EW WE

The ciphertext is read off one block at a time, including the final, incomplete block:

LQWIIDCCQCGCYGLVXALGMZNDSWCGLMIWNEK

Variations on this cipher can use a different block size, or replace the Vigenère cipher with
Beaufort, variant Beaufort, or any other polyalphabetic cipher.

Here is how to break a ciphertext encrypted with Nicodemus:

1. Guess the length of the keyword. You probably guessed wrong, so try a range of values.

2. Reconstruct the columns by taking five characters from each block. Ignore the final, incomplete
block for the time being.

3. For each column, decrypt it as a Caesar shift cipher. Use the frequency-matching technique
from Unit 19. You will, after this step, have a text that is only encrypted with a columnar
transposition and a keyword that has been scrambled with the same permutation.

4. Break the text you found in step 3 as a columnar transposition cipher. Use the hill-climbing
technique from Unit 60.

5. Use the key from step 4 to unscramble the keyword.

6. Use the keyword to decrypt the full ciphertext. Now the final block is included, and you get the
full plaintext.

Reading and references

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain; page 216.

American Cryptogram Association, “The ACA and You,” www.cryptogram.org/cdb/aca.info/
aca.and.you/aca.and.you.pdf, 2005 edition: web.archive.org/web/*/http://www.cryptogram.org/cdb/
aca.info/aca.and.you/aca.and.you.pdf, 2016 edition: web.archive.org/web/20160418014322/http://
cryptogram.org/docs/acayou16.pdf; the relevant page is also at www.cryptogram.org/downloads/
aca.info/ciphers/Nicodemus.pdf

Programming tasks

1. Implement an encryptor and a decryptor. Feel free to import your routines for Vigenère and
columnar transposition ciphers.

2. Implement the attack. The key length can be an input, or your program can try a range of key
lengths. Again, feel free to import some of your other routines.

Exercises

1. Encipher with the keyword GEOMETRY:

I will not, from henceforward, talk to any squarer of the circle, trisector of the
angle, duplicator of the cube, constructor of perpetual motion, subverter of
gravitation, stagnator of the earth, builder of the universe, etc. I will receive any
writings or books which require no answer, and read them when I please.

(from A Budget of Paradoxes by Augustus De Morgan)

2. Decipher with keyword MURDER:

KWRQDIMJXQAQFSMKPGRJMGRSNHLICFKHHBHLRRXVTPDRQTVBSZRSFY
TCVIZZQORNWXIHMLQDZYSZRTJWVJVEVQACOIZBDUXGLVCMOXPRMFEV
VSFRRVCLISNLVRKIORYIXWFEQAQZPKFRVJKYRBNYJVLNITERISYVYN
AYFVFWURXEIZFVLZYYOPKVUENITEMREQFGIKPFKLMFTXINLZVUOHKR
SSMIDEUFTNWJYKVDWXNINNSNHXFBUWRSPITDUZKCFXIGLULRRILHNM
WWDPLFLKEHPZUQNLRVKJVCIGVIYEUYHDDWDLPWSJESMGQYSNVJZJJS
VNBGLUWHDKFJXWEPEDQQPFYNPFFIMIZJNYLNWFRWJWLAWVYDEZOZEI
RRSVZLVVUAABLHKQWJIHMMADUTKLKIXNHGI

3. Break this ciphertext:

ZIMSHCUJAROQDMOVOFSNZJVXRDEKFLWRQLEANXAFKXOQISWRWOLZLK
SJUKSMSSMEICJBJCDTXOCHMCGCGBKJVDWOQLLRMKRQJWKNDSOIKOGQ
ZBVTMIUOGSWUMISHSXWPBNPQTKVBUSVUUFEKIAJWZQIELXRXNWRTZB
DCYTHUFSIKVAYHAXGAKQVJEVNRCNOSKKBVVUVQRRNZTNUAJCRAXVGN
JTQMSNNMYFBSSHZZFFFLFLOEIIIIRNRUAURQNCKHBCSMKOUEUZHHLK
XLSHIFJDRDZDUYCSMZQGRVWVPOTFEWACIKWJYORFRGJVJSD

madness's book on classical cryptography
unit 109: fractionated morse
last modified 2021-02-10
©2020-2021 madness

Unit 109
Fractionated Morse

The fractionated Morse cipher first encodes a text with Morse code using dots, dashes, and × between
letters, and ×× between words. The stream of symbols is taken three at a time and replaced with letters
according to an alphabet key that may be mixed by use of a keyword. Since ××× never occurs, there are
33−1 = 26 combinations, which fits the number of letters that we can use. If necessary, we pad with one
or two × symbols. The fractionation occurs when symbols from the same plaintext letter are separated
and become part of different ciphertext letters.

As an example, let’s encipher a short message with the keyword FRACTION. If our message is

HIDE THE CANDIES UNDER THE PILLOW

we first encode it in Morse code, with × as the separator:

 H I D E T H E C A N D I E S
‧‧‧‧×‧‧×–‧‧×‧××–×‧‧‧‧×‧××–‧–‧×‧–×–‧×–‧‧×‧‧×‧×‧‧‧××

 U N D E R T H E P I L L O W
‧‧–×–‧×–‧‧×‧×‧–‧××–×‧‧‧‧×‧××‧––‧×‧‧×‧–‧‧×‧–‧‧×–––×‧––

The resulting symbol stream is divided into groups of three. We need to pad the last group with two ×
symbols.

‧‧‧ ‧×‧ ‧×– ‧‧× ‧×× –×‧ ‧‧‧ ×‧× ×–‧ –‧× ‧–× –‧× –‧‧ ×‧‧ ×‧×
‧‧‧ ××‧ ‧–× –‧× –‧‧ ×‧× ‧–‧ ××– ×‧‧ ‧‧× ‧×× ‧–– ‧×‧ ‧×‧ –‧‧
×‧– ‧‧× ––– ×‧– –××

Now let’s set up our key. Each letter in the mixed alphabet is associated with one triplet of symbols.

F R A C T I O N B D E G H J K L M P Q S U V W X Y Z

‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ ‧ – – – – – – – – – × × × × × × × ×
‧ ‧ ‧ – – – × × × ‧ ‧ ‧ – – – × × × ‧ ‧ ‧ – – – × ×
‧ – × ‧ – × ‧ – × ‧ – × ‧ – × ‧ – × ‧ – × ‧ – × ‧ –

By replacing each group of three symbols with the letter that appears above it (where the groups are
written vertically), we get the ciphertext:

FONABLFUVGIGDQUFYIGDUCZQABTOODSAJSP

We can attack the fractionated Morse cipher with the same hill-climbing attack in Unit 28.
However, we will not be seeking the best plaintext, but rather the best match to English text that was
enciphered with the key ABCDEFGHIJKLMNOPQRSTUVWXYZ. So, we must encipher a corpus of text
with this key and from it compile a table of tetragram frequencies for the attack to use. We must also
augment the attack with a margin of error and allow downward steps about 5% of the time, as we did
for the attacks on grid-based ciphers, in order to avoid becoming trapped in a local maximum. A good
margin to use is 0.5. Once we have found a key that gives the best match to English text that was
enciphered with the key ABCDEFGHIJKLMNOPQRSTUVWXYZ, we can use that key to simply decipher
the ciphertext. To say this another way: we are factoring the cipher into a fractionated Morse cipher that
has the standard alphabet as its key, followed by a monoalphabetic substitution; first we break the
substitution, then we decipher the fractionated Morse.

If instead of three Morse symbols per ciphertext symbol we use two, then the cipher is called
the morbit cipher. This cipher is keyed with a nine-letter keyword, which is then converted to digits in
the same way as with a permutation cipher. So, for example, if the keyword is FRACTIONS, the
substitution uses this table (note that most people use the digits 1-9 rather than 0-8):

F R A C T I O N S
3 7 1 2 9 4 6 5 8

‧ ‧ ‧ – – – × × ×
‧ – × ‧ – × ‧ – ×

A plaintext such as

THIS IS MORBIT

is thus enciphered with that key:

T H I S I S M O R B I T
–×‧‧‧‧×‧‧×‧‧‧× ×‧‧×‧‧‧× ×––×–––×‧–‧×–‧‧‧×‧‧× -×

 4 3 3 6 1 3 1 6 1 3 1 5 4 9 4 7 1 2 3 6 1 4

Reading and references

Practical Cryptography, practicalcryptography.com/ciphers/fractionated-morse-cipher

American Cryptogram Association,

www.cryptogram.org/downloads/aca.info/ciphers/FractionatedMorse.pdf and
www.cryptogram.org/downloads/aca.info/ciphers/Morbit.pdf

Programming tasks

1. Implement an encryptor for fractionated Morse.

2. Implement a decryptor for fractionated Morse.

3. Implement a dictionary attack on fractionated Morse. Remember that there are many ways to
construct a mixed alphabet from a keyword.

4. Implement the hill-climbing attack described above.

a. Encrypt your textual corpus that contains spaces but no punctuation with the key
ABCDEFGHIJKLMNOPQRSTUVWXYZ.

b. Compile a table of tetragram frequencies from the encrypted corpus.

c. Put the pieces together.

5. Implement an encryptor for morbit.

6. Implement a decryptor for morbit.

7. Modify the hill-climbing attack on the fractionated Morse cipher to attack the morbit cipher.
You will need to compile a new frequency table.

Exercises

1. Encipher this text with the keyword LINGER. Use the same method for constructing the mixed
alphabet as in the example above.

Two hours. One hundred and twenty minutes. Anything might be done in that
time. Anything. Nothing. Oh, he had had hundreds of hours, and what had he
done with them? Wasted them, spilt the precious minutes as though his reservoir
were inexhaustible.

(from Crome Yellow by Aldous Huxley)

2. Decipher this ciphertext with the keyword ODIN. Use the same method for constructing the
mixed alphabet as in the example above.

LVVJESICJCMBOTVWQSICJOSQCQEIBJLXOCTEQMLVTVCCNSJCJEESCB
JBJGTVCCNSJCJEEWWQMJDCJLWXOCWQCSCMCICVWPMOWPGTPPIPOUJB
MEMDESIBPIDVTVVEPQCCMBOXOCVTWULSJPOTXMLWQEOSQTTIATVMOV
ICOSVVCILTIBJGWTVSTQMNCDUOTPVXBAWPGSJGCSIIJGUBHCOXOCTQ

MNCDUOVJBDWCOXLVXOCWTXNCPIPQEIPOUHQICDWPBNUGSEMNCQEIMB
JIBJGXOCVXOCTQMNTIGTPPIIJGTTEBJCIOTVVENWPGVF

3. Break this ciphertext with a dictionary attack.

FHRNJLMKCRAKPSYMEWYMRNJYUKRMAAFKPSGRMSFLEJYSPWHUWPMVMF
MUVSICVKJPRUUMEEQAMAJAYMEEFTEJHRAFHUSDMNEYVNKGRRMRKEQA
TMNACUJKPSCMRQIMFFHWMLSFPMMADEJLQMEMHSYRETVQKADRMNQAIT
MGUJTKNYUKAGKIAYRMRAIFCQERMMGSCUFPMMGVQNEIPWHRMQKGQFHV
NALEJYWPMRAHUVEYVKCUENJFKPQMJPMUREJLVMPUAYVNQAMFFHREQA
TQUUMNEATKNYUKYREJPWYQKCSIFCRJMFYUJJLQEIYRWCMIAYEAPRQF
AFMPVKIPSTQAMFMEEVNIMRFTRREKNEADEJJLEJYWICMCSCMIKKCRAK
PQQMMAIPUVNQAAFGWHWPMRNJYUNJLMGRUEADNQAEPSIPKRB

4. Break this ciphertext with a hill-climbing attack. What is the keyword?

NTQQMKATXTMQHLGQBSMQMIWOMLLDMDURBKTQXLJVQQLADWOGVHESHL
BLLHNTUNSLBHGSSHTMLMHTNBGUAHDQSNNLTWNOBEQWNATXJVLMOQLA
HDQVVHATULTQLJQNDVBTUHMVMVBQLAOKHBMBHTBQAMHFNDSXMMLANB
BQLBKEMGQVHBLESMBBHATXJSBOBKNKLTQLLHIXJVHEXJQHEBQLBGWO
BMVHNBKHLTNVXESMVBWOKHMNHNTUFUFNOBLEBKGWVKDBKGBLHMLTSN
NLFVWOGVNVBKEMGWVKTXJWNDSQHGMNLTBKEMDQWMTXHLHIQAMHFOMS
SMDVKBBLBLKFOGSSMUGSQHNSBQLANMKATVWOUDQVXTMWNGQHLFMQHJ
SBGSQOQWOBLESMBBHGMBHTBVQVWMLOKGWQC

5. Encipher this text with the morbit cipher with the keyword BACKWARDS.

A snip of the scissors, and six inches of white beard fell to the floor. For the first
time in thirty years Mr. Simpson felt a razor on his face. Then his hair was cut
and shampooed; and an hour later he sat gazing at a dark-haired, clean-shaven
man in the glass who gazed back at him with wondering eyes.

(from Stepping Backwards by W. W. Jacobs)

6. Decipher this text with the morbit cipher and keyword EMPLOYING.

911353121621139543788436129113993731884291132513918967
358633131312187915334338784312113948618884218543689313
188373918356854346731916136125916318676318858186672956
532911338583785139443259113851327942565844673568967358
631883133918794218113214673568483893846585885313846434
84724813581438443534896672788936954348794769846

7. Break this ciphertext which was encrypted with morbit.

457534743498616878454984372675677647313764498437267376
374754772236464775861646873474647243625494349443713433
274294232364627468435763625492743434716233459644366313
9823643294716313327849616177644332

madness's book on classical cryptography
unit 110: hutton cipher
last modified 2020-10-28
©2020 madness

Unit 110
Hutton cipher

The Hutton cipher was invented by Eric Hutton to challenge strangers on the internet. Its key is a pair
of keywords; one generates a mixed alphabet (where the remaining letters are added starting with the
beginning of the standard alphabet), while the other serves as a set of shifts that are applied periodically
(for this cipher, ‘A’ = 1, ‘B’ = 2, ..., ‘Z’ = 26). This may sound like a quagmire 3 cipher, but there is an
added complication: after each letter is enciphered, the plaintext letter and ciphertext letter swap
position in the alphabet key.

As usual, we will work out an example. Suppose we want to encipher this message with
keywords HUTTON and CIPHER:

THIS MESSAGE WAS ENCRYPTED WITH HUTTON CIPHER

We begin by mixing the alphabet with the first keyword. Remember that for this cipher, we add the
unused letters starting from the beginning of the standard alphabet.

HUTONABCDEFGIJKLMPQRSVWXYZ

The first plaintext letter is ‘T,’ and the first shift is ‘C’ = 3, so the first ciphertext letter is ‘A’:

HUTONABCDEFGIJKLMPQRSVWXYZ
3→

Then we swap the two letters in the alphabet key:

HUAONTBCDEFGIJKLMPQRSVWXYZ

The next plaintext letter is ‘H,’ and the next shift is ‘I’ = 9, so the second ciphertext letter is ‘E’:

HUAONTBCDEFGIJKLMPQRSVWXYZ

So we swap those letters:

EUAONTBCDHFGIJKLMPQRSVWXYZ

Next comes ‘I’ which we shift by ‘P’ = 16. We wrap around and get ‘A.’

EUAONTBCDHFGIJKLMPQRSVWXYZ

This continues until we have the full ciphertext:

AEAIVQTKANRFZVABZIJZITDURFVLZVSZDPUC

There is a variation, known as Hutton cipher 2, in which the shift is increased by the value of
the first letter of the alphabet key at any given time. For reference, when enciphered with Hutton 2 and
the same keywords, the message above gives

JPQIGHMFJOOZXBEJVUMUKJKNYDWEFYSABVKR

Reading and references

hutton-cipher.netlify.app/howto.html

Programming tasks

1. Implement an encryptor. Allow for the choice of cipher variation.

2. Implement a decryptor. Allow for the choice of cipher variation.

3. Implement a dictionary attack. Allow for ... you get the idea.

Exercises

1. Write an essay about why the inventor should have used ‘A’ = 0, ‘B’ = 1, ..., ‘Z’ = 25.

2. Encipher this text with Hutton 1 and keywords GEOLOGY (mixing) and EARTH (shifts).

We know little of the earth’s internal parts, or of the materials which compose it
at any considerable depth below the surface. But upon the surface of this globe,
the more inert matter is replenished with plants, and with animal and intellectual
beings.

(from Theory of the Earth, Volume 1 by James Hutton)

3. Encipher this text with Hutton 2 and keywords OCEAN (mixing) and LAND (shifts).

By the present theory, the earth on which we dwell is represented as having been
formed originally in horizontal strata at the bottom of the ocean; hence it should
appear, that the land, in having been raised from the sea, and thus placed upon a

higher level, had been of a different shape and condition from that in which we
find it at the present time.

(from Theory of the Earth, Volume 2 by James Hutton)

4. Decipher this ciphertext with Hutton 1 and keywords VALLEY (mixing) and HILL (shifts).

BSDULXXUPXKHLZXVJRKOQZVXUVOGQHZAGHSSELJXQSKHVLHMBEDGCC
AXNAYIAZGFNMVFFEEUFPGIYEIDZTPJYNNBLGSNXUYVTWYTIFLUOJTN
RTTPLBDEUPJMVMNMWAQRMTTQPLBBOGDLUIUJTXZIZXUOBDPDABMNNU
JJAMUYDDDCXWYFHDHWPNUALTPYYMKVTGJIXFBMXMGIWNZEHDUAFCWZ
KIIHQIQVEWKIEFILDPEBSGNUOCFDQMEWXXTLJVS

5. Decipher this ciphertext with Hutton 2 and keywords RIVER (mixing) and SEA (shifts).

KDXLRZUWOVTDBCZBXMFVIGBWTXMKIDVEOFYBAJSJBUOBQRALSLQTGN
JUGFJZXCIOZUEVOKOKBAMMORVLQREGSGVMGVBZPDCDNRHOSPGEZXOC
BCETWNDJLYMRRIVUQGTLRZFBIYBLHBMGIVPDHASDMJLTPLUJCUBSBB
UPQJEBRBDBTVGNWELCHCMIWBFUPSSNKBPPXUH

6. Perform a dictionary attack on this ciphertext. It was encrypted with Hutton 1. Both keywords
are five-letter English words.

ZVFPHUFWADZGGCAXLVLCWBKQGYMFKFWWWHHNOLADQIRTEZHPBHKFSU
UQZFNMQRLMGCVZFWEJYIGYNCMGAVLXPAUQHKCRCXGENGTKKFUILCKK
MOQACODGRSJYMJHYXKMVBMQFZQULXZMUQXMHWAFITBDLSIMIHCGLVA
IGLICLRVBNNZFPGJYJZPLQIGNUZASDGJVGPNGGHEXZCYVCNCLLWECG
REILNCNOKYKLSCGJJWPUWUOON

7. Perform a dictionary attack on this ciphertext. It was encrypted with Hutton 2. Both keywords
are five-letter English words.

SABOOKONJEMXGEUWGFUDDZOOFCTMJUVATUYEQYNCNFLBHZSGZHJUTK
WGCCYQLYETQCCSUHMRYHQKJVNPXILEHYNHJEKQGKHEXTZSSGINBQTA
JKOGEPHOMKYATHZHPCCIBXQLOSVNVHLDMYBRZQFLMAWIQLZJGYHLJK
TSMZVMTZXYOOZEPMNJBZTRZMRSSMICIDAGNDSNYNFIRFYXXRHYVFMI
NDSVVROMLNVLTMEIFOXLUSMZJEUIXHMURCMOHTVOHYNNSDLYLUUPAL
DFRGDQUUYPVVQRXHRUEWWFSCLLTWMLBBPXLNJEVUGOQFZVHAHVAPKU
HIVGXJZVKLYTBJTGIIQEDRXUGKUUVSPFXTJCYVPCKOTTZSBKAKGWCE
QGHGIJPOYELOMJSOPOSNBDFDRSJWKTEDUCFMIE

madness's book on classical cryptography
unit 111: scrabble cipher
last modified 2020-10-28
©2020 madness

Unit 111
Scrabble cipher

The Scrabble cipher is an invention of this author in response to the Hutton cipher. It is an attempt to
create a cipher with a similar level of security but with simpler rules. Scrabble™ is a trademark of
some large corporation. They seem like nice people, and we are sure they would be happy to let us use
the name, but we haven’t had time to ask them yet.

The basis of the Scrabble cipher is the monoalphabetic substitution. When each letter of the
plaintext is enciphered, it will be done with an alphabet key. That key, however, changes with each
letter that we encipher.

The first thing to do is choose the initial key. There are four choices for how this is done.

1. Use a keyword to generate a mixed alphabet. For example, if our keyword is KEYWORD,
then we have

KEYWORDABCFGHIJLMNPQSTUVXZ

2. Shuffle the alphabet with a keyword. Here is our example with the keyword KEYWORD. We
begin with the standard alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

For each letter in the keyword, we do a shuffling step that swaps the letters before and after
our key letter. If there are no letters in one of those groups, we just do the swap anyway,
with one set being empty. So, we start with the standard alphabet and swap around ‘K’:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ↕
 LMNOPQRSTUVWXYZKABCDEFGHIJ

Then we take the result and apply a swap around the next key letter, ‘E’:

 LMNOPQRSTUVWXYZKABCDEFGHIJ

 ↕
 FGHIJELMNOPQRSTUVWXYZKABCD

We continue and use the remaining letters of KEYWORD to get this keyed alphabet:

YFGHIJELMNRPQDSTUVOXWZKABC

3. Generate an alphabet from a keyword as in option 1 above, then shuffle it with another
keyword as in option 2.

4. Use a randomly permuted alphabet.

The encryption process employs the same shuffling step as we used above in creating type 2
keys. For each character of the plaintext, a substitution is made, and then a shuffling. Each shuffling is
swapping the block of letters before the plaintext character with the block of letters after it.

As an example, suppose we want to use the alphabet key from keying option 2 above and
encrypt the message “send help”. First, find the substitution for ‘s’:

a b c d e f g h i j k l m n o p q r s t u v w x y z
 ↓

 YFGHIJELMNRPQDSTUVOXWZKABC

We get an ‘O’. Next, shuffle the alphabet around the letter ‘S’:

 YFGHIJELMNRPQDSTUVOXWZKABC
 ↕
 TUVOXWZKABCSYFGHIJELMNRPQD

This new alphabet will be used to encrypt the next letter of the message.

a b c d e f g h i j k l m n o p q r s t u v w x y z
 ↓

 TUVOXWZKABCSYFGHIJELMNRPQD

We get ‘X.’ Another shuffling, this time around the plaintext letter ‘e’:

 TUVOXWZKABCSYFGHIJELMNRPQD
 ↕
 LMNRPQDETUVOXWZKABCSYFGHIJ

This continues until the entire message is encrypted.

s e n d h e l p
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
OXWDZMSA

Reading and references

Challenges on RingZer0:
ringzer0ctf.com/challenges/300

ringzer0ctf.com/challenges/301

Programming tasks

1. Implement the four keying options.

2. Implement an encryptor.

3. Implement a decryptor.

4. Implement a dictionary attack for the cases in which the key is generated from one or two
keywords.

Exercises

1. Encipher this text ...

a. ... using keying option 1 with keyword QUACK.

b. ... using keying option 2 with keyword MAVEN.

c. ... using keying option 3 with keywords PLAY and HARD.

Scrabble™ is a crossword game for humans, but did you know that there are
computer programs that can play the game? One such program is Maven by
Brian Sheppard. Maven was incorporated into the video-game version of
Scrabble™. Quackle is an open-source program that also comes with a graphical
interface.

2. Decipher this ciphertext with keying option 1 with keyword CROSSWORD.

JNNQZVMEEAOLRZNQJXWULPCSSURGDXEEVPMKSYZNBKAQIVUXJVWANQ
CRSBZEQJWMYCPBAPDOWGNXKQJPPJFZGGHRNUTAXUKHHBHPHIQHFE

3. Decipher this ciphertext with keying option 2 with keyword POINTS.

LVMXWUTRDMQJQQNGEIBXHIRHUPOMOZDWDDCHKKJFWTNEMTCTOFGDTT
GORQFLCGJMWXKRGFECSLKJPALVXJJKVIKEDTJTIPINNLEAWDFVBVMC
LWKNDXDMAJLFCOBXLNWMVFJEWRTLFCBFWKDDQTUDERPVUJPSHMD

4. Decipher this ciphertext with keying option 3 with keywords BOARD and GAME.

ZVXDIMUCIXANYNGBSYZIZZFWZTXXZNSKKSYVQCZVCAXECAYOHLPTZO
CWACHINTHDUEGGHKPQTSKMEGYEEIEEXAXPIONLMACKHWPWQBYQNXTI
VIZEPGLHAZBONYNEFYRRXVJNNWIBGPRHRHDEAHNBHJBYIEBGCPQBLF
ZMGEYEUMPRDCMIBXAZWSXYXIYQFKOJMBQBORISUHMGOQZRMXBFSVUX

NRBMVCRNKVEJLOPWPPYTYEGSHDSOYSXIKWLGTMPRUHATHDOIJSZLCO
LSYFIGNOKBVSEUXTZA

5. Break this ciphertext with a dictionary attack. It was encrypted with keying option 2.

ERMQNRLMWFTKUDJHHUNFKHSIUIMXCXFWJRRXLEXRSBLCHRCIYXQPKZ
ZNGHGDQUMKYIXMLNZFSOHLDJJWOOPHZXTENDRKZHBDGZGJEKGFMIUJ
SZXOFMBGIHJRLBVNXTDHLQJDQCLJMEFJPEQXZJLRCPVLHVAXNOLLUC
XJDMLYMJWNZMUQRJFOESDRWMJZBNQJWEZMPALHOGLFKXVBTUROUYDI

6. Break this ciphertext with a dictionary attack. It was encrypted with keying option 3.

IMUFQFYMAECPAUAMUSSOYDCVJIOUMIGKVRUHEFTCPIDMAFNORGTREE
PPIIFTMZUNZMTJMNSILAEWEDIUHNIBEATJBDRTDNZNHJBGDQUJDXAG
CFGUWWCANYGQYNERIDVHTTETIQJTMVJTMBLYIAVGFXSEDRWPRVDZCM
ZPQNDQJWETZNFXEPXSDADLDDUMEHDLKHWQBJOVAFASTTPPIYQVKJXQ
REDDKWTKFQCJQTEEWSCJIMIQJOAXKBHZPTHEYZIRQNZMUYMMATDK

Challenge 1

Here are a plaintext and its ciphertext. Can you recover the key? The initial key
alphabet was generated with keying option 2. Can you also recover the keyword?

WHENALANTURINGWASSEARCHINGFORNEWCRYPTANALYSTSTOJOINTHEWORKA
TBLETCHLEYPARKHEUSEDACROSSWORDPUZZLEFROMTHEDAILYTELEGRAPHTO
TESTTHEAPPLICANTSTHOSEWHOCOULDCOMPLETEASECONDCROSSWORDINTHE
ALLOTTEDTIMEWEREINTERVIEWEDANDACCEPTEDINTOTHEPROGRAM

PDMCOMMLKRTAENINDKQUKIMHQLRGOWAAJTMFUSVGEZCWNNCSPYOYNOZRYKO
MRFNPNHKHSQZEGBONPGRTPRZAPBYUXNVUCFDVTZFJTHIGTIEOTWXAWDSDCJ
IKTYIQWJMHZHEZSFMWCXKFMPEHTQGSSXQTNJMXYQUVPUNQKNWQTVHUCCYDQ
DGIFNYEFDAAIPLVZXULXDZVLEDWGMGFAQQUUMFNIHTRZFFSIKVBT

Challenge 2

Here are a ciphertext and the beginning of its plaintext. It was encrypted with a
randomly scrambled key alphabet. Can you recover the key and decrypt the entire text?

SUCIEIEOANRWBUHKWYJTPDUTWRBEZJTOQLFHUDTTNBKBRMOZQJWVNDGPRAW
PUOUREAYNAAKNLPMDUSAJHGWHLCPMXUAVHEFFFENJIZNNEGWUFYRDXPXNDA
LMRPXMLPEKHBJQCVCRUDXGYXKVPUKZUCKQWSMYAICBYNMBFOTQBFCGQEPBM
PYINVFLVZRWZNVCHIXCPKDHCSDZLDJQBPHEXKJBCSILJUDZNXFDMSQZZUMK
FGERXBWNHZPWXQRPQKXRTYWDYLVUG

BLETCHLEYPARKISNOWAMUSEUMRUNBYTHEBLETCHLEYPARKTRUSTANDSUPPO
RTEDBYTHOSEWHOVISITTHESITE...

madness's book on classical cryptography
unit 112: homophonic substitution
last modified 2022-01-13
©2020 madness

Unit 112
Homophonic substitution

In a homophonic substitution cipher, a plaintext symbol is enciphered to one of a set of ciphertext
symbols. Each plaintext symbol has its own set of ciphertext symbols, and the sets do not overlap. The
members of a set are called the homophones of the corresponding plaintext symbol.

In the monoalphabetic substitution cipher, encipherment is a one-to-one function from one set
(the plaintext symbols) to another (the ciphertext symbols). In that cipher, it is clear that decipherment
is also a one-to-one function and as such is unambiguous. This lack of ambiguity in decipherment is
one feature of a good cipher. With the homophonic substitution, encipherment is a one-to-many
mapping. If the choice of homophone is made randomly, then encipherment is not deterministic, but is
probabilistic. Decipherment, however, is a many-to-one mapping, and is therefore deterministic. So,
while one plaintext can have many different ciphertexts, all of those ciphertexts share the same
plaintext. A probabilistic cipher has the advantage of being resistant to brute-force and dictionary
attacks, since it is unlikely that such attacks will find a matching ciphertext.

There are several ways to build a homophonic substitution cipher. Here are just a few:

• Assign the same number of ciphertext symbols to each plaintext symbol.

• Assign a number of ciphertext symbols to a plaintext symbol in proportion to the frequency of
that plaintext symbol. This hides the frequencies of plaintext letters and makes analysis based
on monogram frequencies difficult or impossible.

• Assign ciphertext symbols based on a system, such as a grid.

• For each plaintext symbol, choose a homophone randomly from a set.

• Choose homophones from a set in cyclic order as the text is enciphered.

Let’s work through an example. Here is a short message:

this message was encrypted with a homophonic substitution

And here is a randomly generated key that assigns two homophones to each plaintext letter:

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext: m O F r y q Y A d p U V X L w c E l x z a B e j t Z

D h i s u H K P g N T v W I J n o R C S b Q f G M k

The first letter of the message, ‘t,’ can be enciphered to ‘z’ or ‘S.’ The second letter, ‘h,’ can be
enciphered to ‘A’ or ‘P.’ One possible complete ciphertext is

zAgxWyxCmKueDCyLFRtnSuregSPDPwWJnAwIdiCaOxzdSbzdwI

A hill-climbing attack can break a sufficiently long ciphertext. Since we cannot a priori know
how many homophones are assigned to each plaintext letter, and to avoid running off toward a solution
that gives the plaintext THETHETHETHE..., we need to define a textual fitness that incorporates both
monogram fitness and tetragram fitness. One possibility for this is to use the cosine of the angle
between frequency vectors (see Units 7 and 8) as the monogram fitness, and define the full fitness
function as

F = F4 (2 − F1)

where F1 is monogram fitness and F4 is tetragram fitness. Since F1 is always between 0 and 1, the
expression in parentheses is between 1 and 2. The algorithm for the attack uses the parent/child
paradigm. Child keys are modified in one of two ways: randomly chosen homophones are swapped, or
a randomly chosen homophone is reassigned to a randomly chosen plaintext letter. Like many times
before, we will use a margin of error to allow occasional downward steps, in order to avoid becoming
trapped in a local maximum fitness; 0.1 is a good margin to try. Here is the full algorithm:

1. randomly generate an initial parent key
2. decipher the ciphertext with the parent key to get a plaintext
3. set the parent’s fitness to be equal to the fitness of the plaintext
4. set counter to 0
5. while the counter is less than 1,000

a. copy the parent key into the child key
b. if we flip a coin and get heads

i. randomly choose two symbols in the child key
ii. swap those two elements

c. if we got tails in the coin flip
i. randomly choose one element in the child key
ii. randomly choose a plaintext letter
iii. reassign that element in the child key to that plaintext letter

d. decipher the ciphertext with the child key to get a plaintext
e. calculate the child’s fitness of the plaintext
f. if (the child’s fitness exceeds the parent’s fitness) or
 ((the child’s fitness exceeds the parent’s fitness minus the margin) and
 (we roll a 1 on a 20-sided die))

i. copy the child key into the parent key
ii. set the parent’s fitness equal to the child’s fitness

iii. set the counter to 0
g. increment the counter

6. output the parent key

Unfortunately, the algorithm does not always settle into a maximum and needs to be restarted with a
new random parent key. Of course, if there are constraints on the cipher, such as our example above in
which each plaintext letter had exactly two homophones, then the algorithm can be similarly
constrained; this helps.

It is possible to specify a key using a keyword. Here is an example to how it may be done.
There are, of course, other ways.

plaintext: abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz
ciphertext: KNIGHTSroundtableABCcDEFfghiJjkLMmOPpQqRsUVvWwXxYyZz

Some homophonic ciphers use numbers as the ciphertext symbols. For example, the Grandpré
cipher uses a square grid to assign numbers to letters. The rows and first column of the grid contain
keywords, and all letters of the alphabet should be present. The rows and columns are labeled with
digits. The homophones for each letter are the various two-digit numbers made from the row label and
the column label. Another example is the Mexican Army cipher disk which had five concentric rotating
disks to assign three or four two-digit numbers to each letter.

Reading and references

American Cryptogram Association,
www.cryptogram.org/downloads/aca.info/ciphers/Homophonic.pdf,
www.cryptogram.org/downloads/aca.info/ciphers/Grandpre.pdf

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter IV, sections I-III.

Merle E. Ohaver, “Solving Cipher Secrets,” Flynn’s, May 19, 1928,
toebes.com/Flynns/pdf/Flynns-19280519.pdf,
toebes.com/Flynns/Flynns-19280519.htm

A challenge on MysteryTwister C3:
www.mysterytwisterc3.org/images/challenges/mtc3-madness-01-polyhomophonic-substitution-01-
en.pdf

Wikipedia, en.wikipedia.org/wiki/Probabilistic_encryption

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 322.

Python tips

Python has a dictionary data type. A dictionary is like a list except that items are indexed not by
integers but by any object. For us, it is most useful if those objects are strings. To define a dictionary,
we could use this statement:

x = {"A": [1, 3, 4], "B": [5, 7, 8]}

Our new dictionary x associates the letter ‘A’ with a list of numbers. To retrieve that list, we call on x
with index ‘A.’ For example, we might want to do something with each number in that list:

for y in x["A"]:
 print(y)

To add to a dictionary, use the update() function:

x.update({"C": "See?"})

or simply use a new index:

x["C"] = "See?"

To remove an entry from the dictionary, use pop():

x.pop("A")

To change a value in the dictionary, simply assign a new value to it:

x["A"] = "Aaayy!"

The choice() function from the random module chooses an element from a list or string randomly.

Programming tasks

For these tasks, you will need to decide on a way of storing the key.

1. Implement an encryptor.

2. Implement a decryptor.

3. Implement the hill-climbing attack described above. Allow for the possibility that ciphertext
symbols are integers.

Exercises

1. Encipher this text with this key. Choose homophones randomly.

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext: P H O N E h o m e A B C D F G I J K L M Q R S T U V

W X Y Z a b c d f g i j k l n p q r s t u v w x y z

TOP SECRET XXX FOR YOUR EYES ONLY XXX THE EYES OF ET
THE EXTRATERRESTRIAL WERE MODELED AFTER THOSE OF
ALBERT EINSTEIN XXX DESTROY THIS MESSAGE AFTER
ENCRYPTING

2. Decipher this text with this key.

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z

ciphertext: L y t k A u w b T 4 2 m q X P x 5 h e G o z s 3 v 6

M l B c U n r Y Q i f H p
N C d V Z R j g I
O D W a S J
 E K
 F

LevQptOYeBCuhQrGcD2EvHRJcVfA3DitVfEtUxdBiHA3HevqyRngNi
CXQHjFfIiVtHFlJQoxxEjMXlmSsCitOeAnDKJCjgypItLZyDapryBh
fSiEzDXxpYtGoNITPXsQonlvPocMzCxiBuDhjFlJcLKGcDtUxbFhKA
3GtSZHOUaElKsQlTwUIYoqyBhfvSpqVwdHNngQbLzCYQIWtBkIdOGI
dEYpryBiRudRqPxcSaCfuSjDMtcmAGHEjWghRowcmvxjQxSiITRaNn
IQVIeujD5pAYtvGbWfrL2DgJdFtTxcDiJE3KdMjkBjHRyiBM2

3. Break this ciphertext.

rucdupmdEvrYJbRNGIsRuOElKOHdMMTCOnvPGKFEvblSbfAOvsTJfN
OIKGnmnDrlSdGnvsOWGCFsGNGUbRnOdJMCGNeCTTalnHNOluJJfBOJ
RmuHsRBRUbRnOJDfnslhOATKoHrMqTCTnSBTlnrupJlnFAOCoHrMMO
KOuSEIOcxrneJbOCTlCOJGBTOnpcdJbbRNGIbGnOEldKsTdCJGfKEG
CTZrSTzgvTMxyqcTWOlCnyKnBlrcBfcOCOTHCTfFCOHCTlFPRGHWRm
cHPbrnTPrnOYKTfaYKOTaDbGCHYRCHYOKTfxETCrfcbdNboNnUxfdn
IcfnTPfKnPGCuWOfvbTKWbTvsOCWbdcOWrcTDyKKfuvYmKCTuSzfCO
zOlCzlxxZlPcfSOTrpsvJTfJOTcrDQTCxrimGCxTfFxOHqxOLqcTDQ
JcGluxRnTxduQJcgnL

4. Break this ciphertext.

afPSKaMjEnjNiaYNzgvLAAPNiWrLBMEtRDBXBvTLRWLAGoXrDYBlEP
UNjBYCWoizlbtyVamJefiNumVqXNJhbtyVjESYeLSKfVGETUJIbGSR
ufJqlNVgdDvKZHimMnjUfZSMCgjEfYkjUmMWVTjAQhofYemQNwCofa
ZNzwDATUYyPWaGemjCrojSKPOuXEQYAdnHLRcjCgTtRBtALoXuGZBf
jkZUmYSJtwTKNLoebqhNVbXrtsQuiNkHcrLutwoZWsJBtJSuuZCwiD

KlHTYIcKJbqlBzrZoXbbXSqajEzMAumLTyDWzhmYkjUfZWPlSvaiXN
PwYhooCgKZnVzrjfYnYUmYSigtBPWRItgfrmhuumPqvMBMukCofjAA
JSzCTaVvjSMuLkhRLBQrfPGESjWPODgKPBoidWvnZwKUPjUbPdEJUE
MHdHIqCSlalEVYArmVGEGWojWsiBDQBoiGKntRfuTJJnKfleKZHJUQ
NUVuClIIqHCNvJSVzHqlSGWoZWsPSDJBoinCwrHiumPTcEQwKadqZA
NJlItxtSRDeHcKrfEMCRmmXHLuChrGZWZcEUEXoKLoVLwWMvMcHeAc
IIYACBoMBwoGjCTzistoPgAYNlsZGvGWRKfigJlnHLRcLrLPgnjNJY
sQELWoMSsJSGQBoJgrZamtomaQlNPHYEBdEPsJEqbGRfrIqrhyiSHC
uTLWoQGAhIIaYNzgaiNidItyJLSwYcWzemQNiaMcIvHiWYTUMyQSbl
WRchRiKfPvLAAPNPWrtluLYSjArfJgYcBvYAajEvwtTZAefJJTgiWo
iYAgUJioflBzDrAjIbZawKmhuefQnMNPfMkYUfMSPwKmJNQdNVLSlW
qIdSRChRVufikMEiAlcIrqtTrmleIXWRCdRJlThgoLVSuLAtoXBzoj
WsJStVBesJmDoIQZAgUPVomrfGwaGIbHPGbbcwKEluJzLSzCJoMCEg
PKfPdorclbojWvtrLZSYAJWRbGwmaLumEiTUVoruZfMnMUmYSPwkCT
eHJCSzQNgujZzlWzlUUNQotleQzHVAZNQemJSdKcNiMAufPDNREYaK
mlWzrfiUMwTDHbJkVhWgjAKfJGEkteGRhKLjBaLbIgQikUNhouLodI
FciwKDZST

5. Break this ciphertext.

86 42 25 81 84 63 70 97 87 74 25 27 42 97 84 89 41 59
58 77 84 88 81 21 17 31 18 23 35 84 31 63 75 27 47 84
60 24 23 34 42 27 24 77 74 87 45 93 93 57 45 14 60 24
23 95 70 94 47 31 21 86 14 18 75 88 27 34 25 14 23 70
69 81 81 11 31 18 96 79 84 97 95 57 70 87 63 14 23 66
88 73 21 17 14 18 13 77 22 13 81 69 41 94 69 96 35 11
97 79 95 57 42 94 78 27 87 58 78 88 14 23 86 46 41 79
58 13 74 79 60 42 47 75 47 36 69 27 46 70 78 25 27 87
74 47 97 94 45 41 89 66 57 33 41 95 33 66 11 66 93 70
42 57 86 18 96 22 93 78 86 42 89 96 34 66 24 88 60 32
14 23 84 25 73 21 48 88 34 74 78 93 25 14 60 48 88 34
66 78 93 95 17 74 95 70 95 11 74 66 94 78 95 33 17 73
60 11 14 18 87 89 13 88 87 87 25 27 77 87 46 63 73 73
24 27 66 59 79 13 24 35 13 73 78 48 69 84 77 27 74 94
69 96 22 86 97 78 81 69 97 87 88 81 73 25 66 35 31 75
69 17 23 11 97 75 35 36 78 27 74 59 77 27 77 97 96 57
66 59 86 14 18 88 27 22 33 14 60 63 66 63 73 73 95 45
66 88 97 13 93 24 32 23 11 31 18 75 32 27 13 69 74 57
48 18 93 32 70 18 27 69 69 96 46 57 97 87 70 69 25 27
34 60 24 79 13 88 31 60 32 97 89 81 78 96 75 78 66 94
63 66 48 78 78 81 97 88 34 57 73 23 25 34 74 11 58 77
89 66 97 77 73 48 42 59 77 93 69 97 31 47 41 59 86 14
18 41 57 48 27 86 18 59 41 69 14 46 24 95 33 66 17 32
46 48 93 89 18 94 74 79 31 77 23 63 31 60 73 22 31 77
34 47 46 24 14 22 42 87 35 58 33 75 94 48 47 93 13 77
22 13 73 69 95 33 41 48 35 93 32 97 22 33 31 23 63 31
70 87 35 45 14 23 17 42 45 27 96 66 35 93 33 31 95 88
75 21 66 22 84 63 93 23 74 57 84 31 95 45 66 42 59 69
93 79 87 31 57 66 94 89 14 18 95 69 59 17 96 23 58 69

96 57 84 95 45 42 74 59 24 87 88 58 79 18 27 88 70 58
47 87 87 63 31 60 18 27 88 70 87 21 70 88 31 60 60 77
32 23 97 17 81 79 96 75 77

madness's book on classical cryptography
unit 113: polyphonic substitution
last modified 2022-01-13
©2020 madness

Unit 113
Polyphonic substitution

In a polyphonic substitution cipher, more than one plaintext letters are enciphered to the same
ciphertext symbol. Here is a very simple example of a key for such a cipher:

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: A B C D E F G H I J K L M A B C D E F G H I J K L M

As you can see, in this example, both ‘a’ and ‘n’ are enciphered as ‘A.’ Deciphering a ciphertext is not
unabiguous; there are many ways to decipher a text; we hope that there is only one way that gives a
sensible plaintext. In other words, while encipherment is deterministic, decipherment is not. This
makes polyphonic substitution a bad cipher.

One can generate a key from a key phrase like this:

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: O N C E U P O N A T I M E I N A L A N D F A R A W A Y ...

When the key is created this way, we call the cipher a keyphrase cipher.

An attack on a ciphertext uses the parent/child paradigm in a hill-climbing algorithm, very
much like that in Unit 28. However, to evaluate each key, we must find the best decipherment with that
key before calculating the textual fitness. The method to do this resembles our hill-climbing attack on
the Vigenère. We start at the first position in the plaintext and try each possible character that can be
there, given the key. We keep the one that gives the best fitness for the entire text. Then we move to the
second position and try all possibilities that are allowed there, and keep the one that results in the best
overall fitness. This continues until we reach the end of the text. We start over at the beginning. The
cycle repeats until an entire pass through the text results in no increase in fitness. At that point, we
believe that we have found the best decipherment for the given key. The overall attack starts with a
parent key, then modifies it in every possible way, and for each possibility (child key) finds the best
decipherment. If it finds a higher fitness than the parent has, then the child key replaces the parent. The
algorithm terminates if no child key results in a higher fitness. Unfortunately, this algorithm is not
guaranteed to find the solution, and we may have to restart with a randomly generated parent key until
we can find an acceptable plaintext. Even then, some human intervention is often needed to finish up.

Reading and references

A challenge on MysteryTwister C3:
www.mysterytwisterc3.org/images/challenges/mtc3-madness-02-polyhomophonic-substitution-02-
en.pdf

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939,
chapter IX, section I.

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 787.

Programming tasks

1. Implement an encryptor.

2. Write a function that finds the best decipherment for a given ciphertext and a given key.

3. Implement the attack described above, for the case in which each ciphertext symbol can
represent either of two and only two plaintext symbols.

Exercises

1. Encipher this text with the given key.

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: H M F A A K E B C L I D J G J E D K G C M H B L F I

Polyphony is the art of imitating sounds of various kinds, usually, without
attempting to deceive the hearer as to their direction. It may therefore be studied
independently of ventriloquism. Already the art is much in vogue.

(from Three Hundred Things a Bright Boy Can Do by anonymous)

2. Find the best decipherment of this ciphertext. Use the given key. You may have to finish it by
hand, once your function gives you something recognizable.

plaintext: a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext: D C I M J K A E M G C L A F L I G J H E D B K H F B

DFMAJILLLFHDELFEEJHEMLJDFMEDEJMEEJKELLJHIEJAJLKLMKJKEM
IEKDHDELFIJJHIJHHMBJDFMMFDMJGDDEJDHDHLLDEMLFEJEDEJMKLH
CLDJFJEJEDEJMKLHCLDJFJEMAEHEJJJEEJEDEJMEMHHELIDFMEMHKM
KJDFMEMHFJMAECLDJHJBJJFCLJHHJMFJMAECLDJDFMKMEEMFMJHIJM
CDCLJCMEEJJFJHHEJEDEJMEMAHJLK

3. Break this ciphertext. Each ciphertext symbol can represent two and only two plaintext letters.
At the end, you may need to tweak the decipherment by hand.

GFLLKILLJEAFHCJIEEBCHIEAFABCFKCBEAFLCCJEAFBCDEFICLBCCC
HBCBCEBCLKCEHCBCEAILCCJBDGBHDABILLEFBAEFIHCBLBIEJDECFG
CECJBCBCKCEIEIEECLCJBCBDEAFIAJDCAGIBLFBLDCCBFFHABIAFGC
ECJJDBCLALKIBFHIDIABIKCEJCEBCEAIBCJIBFJEJIFBIGLDHGECFI
ABCGFHEEEBCCMGCLACJAFECCFJAEFABDEGLDCCFECHIEAFFCECCEAB
CJDGEDIDCJLIJKHBFHCAIEECIEJIICHFABCBHCLLJBCEECJHFHCEHB
FLFEKCBECJDELFHAFECEHDABCILBFABCBJDJEFALFFCLDCCGFLLKED
JCIFIEBFGGDBLEIEECELIJKLFEJJLACJABCHAFILDIAIEJABCKEBFA
JGAHFEAFBDCEIGIDEABCKLIHCFJADEAFILFKCLKLFJEGDEGBFFHFJA
EADLLEFEDGEFIJBCEECEABCLIJKGJEBCJIFJAAFEIEJIEFABCBHFHI
EBJBBDCJDEABCEGFLLKHIEELDCEADIDLILLKHCIEJBCJIEJDEIEBFB
AADHCIEJHFCBFIHFJCLEHCBCFBFJGBAIFBBCBDEEGCLADFEIEJIGGB
FKILABCECHCBCGLILCJJGFEIFBHEIEJCKCBKJCEDBIFLCJCAIDLFIA
BCGFHEEHIEGFDEACJFJAAFIEECIEJABCGDBLE

madness's book on classical cryptography
unit 114: polyhomophonic substitution
last modified 2020-10-28
©2020 madness

Unit 114
Polyhomophonic substitution

Polyhomophonic substitution incorporates both homophonic and polyphonic substitution. Here, a
plaintext symbol can be enciphered to any of several ciphertext symbols, and a ciphertext symbol can
represent more than one plaintext symbol. Encipherment is probabilistic, but since decipherment is not
deterministic, this is a bad cipher.

Here is a quick example. Consider this (randomly generated) key:

plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext: E A B H N D H B C F L J A G I T H D E J P N B F G J

M C E Q Q G L O T K M R F V P X M R I S Q P D L S K
X N U V I O U Y W Z X V U W Z Y R S O Z Y W

With this key, the word SECRET could be enciphered as ENBDQJ or as ZQNRVS or as INBWQY, but
ZQNRVS could also be deciphered as MEELEY (not a word).

The attack on this cipher is similar to the one in the previous unit. We must modify it to
accommodate the fact that each plaintext letter has homophones.

Reading and references

A challenge on MysteryTwister C3:
www.mysterytwisterc3.org/images/challenges/mtc3-madness-03-polyhomophonic-substitution-03-
en.pdf

Programming tasks

1. Implement an encryptor.

2. Implement a decryptor.

3. Write a function to find the best decipherment for a given ciphertext and given key. You can do
this by modifying your function from the previous unit to lengthen the key.

4. Implement the attack described above, for the case in which each plaintext letter has two
homophones, and each ciphertext symbol can represent either of two plaintext letters. You can
do this by modifying your attack from the previous unit to double the length of the key.

Exercises

1. Encipher this text with the given key. Choose homophones randomly.

plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext: Y D D A W I S T V B R A E F X I V W O J Z Y P Z H U

N H F Q C S J N B T M E K O Q L G K C X U L G P R M

There were fine lawns and beautiful flowers everywhere, but Polly and Rose
loved the shore, and surely the salt air was delightful, and the beach a lovely
place on which to romp.

(from Princess Polly at Play by Amy Brooks)

2. Find the best decipherment of this text with the given key.

plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext: Y C R U G I T N W O Q G K Q J P P X L R E F L D U D

O X E F W M Z N A S I C S H B Z B V M J Y H K A T V

WOHWSPCCDXHSDWREKWELDKXIJXCCXCSWSCPOXCEDTWAHJYXMWHOSHJ
OKLXBOXOCJJXSWJFBIWHPOPEBCOXCFXCJXLDPSXIXFHPXHPOIPSKPH
XCPOHJOGFZOHAASPOAOYSWOFPEBCOIGDEIOCREZSXSUZHHJOSWYAOS
AWWCCXNQPWDNCYSEBONPHXXCBUDWSHPWIWQXOLNCCAOKAWOOXXMPXH
WAHJWIXFJGFVWACHJODSPWGPODNICXNSPWJXDDCYAWYIJJPHWCIHJW
JEBCWSPWOHPOAWXIGBOMDCKXXKPXSJOIOEJ

3. Break this ciphertext. Each ciphertext symbol can represent either of two plaintext letters, and
each plaintext letter has two homophones.

QZAGUXPRKKVNFOTAPQBUWNQNVUWMAODHPAWMROHKFMBOCOBNJYUJWH
RNOSOKNPAVQWNVUJRNUSWQAHMWPYAVOFUPRWRQWOFMBUPSSOPNJRCH
RPBGUPYTYQPGMCTVPSQLAUSXUHWCNGUKNQSNJWCGQHRNMCUSQXQIOG
QAUJAQXGYHCHOUJWAGUJWAOSRPNHQWQDXKXQNGPKXGPAGEQWWUHPKM
WPRTUFVNVPYPNASQLNHMRXONIOUWJWWJMJUVQDPRJDYKMXOAJXUKMM
UBDUQBBPTHQDUJZZOBORTOKHRBMJWNMCMJURQRWEUABQTHPYUHZCOB
UWTUKJRBMJWAMZMJOIIHYYQDIQKPXUQNIQSRJNGFVNTQDQANBQTAJM
WXONRUORHWUHAJWVQDKQDDTMWNSQKNKPDDLQFGYUZJNJUPPSUZQTTP

KUWQRAVHKKJWDYUPAQDURGJDOMRUCUAKPPWMRGOSUOYPONGULMWZYJ
LNIGJTVOQLGRUINMSWCOWOSQNJQRLQWRQAXVARQDOPCQJRPNAGUWJT
NQAHQWQCNVOQCUKQRNVHKTBQRUOWPTOWUNBJWCJWAVQNQXUBJTPRUD
UXOWNNQIVHLGNVUUHTAQNJQWQZNGOPDUPFOQWPSODPAHMOYERQAVHW
CPWUAGOIUPDAGQZAVOUSQXQAJLZJOYWXUTMFUKMXAHQVPJNJPTTBJQ
VPNVUBUZMBUAVQAJNVQPNUOWPMYHNNDONMTTGUUHAVQKNOORUWNOBO
WXTARMNMOSECPSAGOCSUQNSTPKJQWPWUZSOWTVRQAUDJPNPRHAVAVU
JSLMRLUWABPAJMRQWNGOYHZOJXXUWHQNODESMTWWNGOXHRNGOFPHWJ
CWMBUJAAGOUWDDHPGGQAURMSHOWHAPYJANYUNTARQAMZAOWPRWWMAI
HAGFTTVJRPJDVAAVONSVNGKOUFPNMNUNGQNNVUUTSMGUQRWQNJQWKI
HNVAGOHSPASQWDYHROPQZLDOQAQCUVPMOWHZCJLTDNEJRVWUUSKNQW
WJWDUPTVMNVUBIVHYUAVUKTWUOSKAQWWPXUBJLPRMAPAPDDKNOUBUW
QRWWKUUHRNVUHBMRRWQNJQWQDGSOBMKPUKPJMRKNGOESOCQBUMNGUB
RQNJQWQYBSUBQKKUPPHMWPIJAGJRUJCZUSORTUPXQYOXOWNQBVMPAJ
DJAEAGOBUQBUUZLOGNHQWKNQNGHKKAPAUFOWNMCTMTSKOJPGUPSMWD
KMZCOWOSQDAOWWURTJOKNGOASORWQZOMOWNPPHWLOAVURQSUAUWXQS
UAGQRAVUIQSJAKOYZXSHWCPVQXUAMTPNGUZPLNAVPAAVUOTSMGUPWF
JWWHPABJXQD

madness's book on classical cryptography
unit 115: pollux cipher
last modified 2021-02-08
©2020-2021 madness

Unit 115
Pollux cipher

The Pollux cipher is another cipher that uses Morse code. Like in many such ciphers, a plaintext is first
encoded in Morse, with a separator between letters and two separators between words. The dot, dash,
and separator are then enciphered with a homophonic substitution to digits. The key is the mapping
between Morse symbols and digits.

As usual, let’s run through a short example. Consider this plaintext:

THIS MESSAGE WAS ENCRYPTED WITH POLLUX

We can use this key, for example:

 0 1 2 3 4 5 6 7 8 9

 ‧ ‧ × – ‧ ‧ × × – –

The first step is to encode with Morse.

–×‧‧‧‧×‧‧×‧‧‧××––×‧×‧‧‧×‧‧‧×‧–×––‧×‧××‧––×‧–×‧‧‧
××‧×–‧×–‧–‧×‧–‧×–‧––×‧––‧×–×‧×–‧‧××‧––×‧‧×–×‧‧‧‧
××‧––‧×–––×‧–‧‧×‧–‧‧×‧‧–×–‧‧–

Finally, replace the Morse symbols with digits, according to the key. For this example, choices of
ciphertext symbol from sets of homophones were made randomly. One possible ciphertext is

32505074465102238606055614121828842422198749200477528129481
24352943365835636123046203371568604447658946933208557031471
5868418

To break a ciphertext we can brute-force the key, or we can perform a hill-climbing attack.
Because the cipher has two stages, Morse followed by homophonic substitution, we will attack the
substitution. Once that is accomplished, it is easy to decode the resulting Morse code. Since the
substitution is between an intermediary text of dots, dashes, and separators and the final ciphertext of
digits (or some other set of symbols), we must build a frequency table for a corpus of English text that
has been encoded with Morse, and use this table in defining a fitness function that we will work to

maximize; we recommend tabulating the frequencies of 10-symbol groups (there are only 310 = 59,049
such groups to consider). The hill-climbing algorithm will be similar to ones we have used before. We
will use the parent-child paradigm. For each step, the parent key is modified by randomly selecting one
element and changing its value; i.e., pick one digit and change which Morse symbol it represents. The
ciphertext is decrypted back to Morse code with the child key and its fitness is calculated. If the fitness
exceeds the fitness of the parent key, or if it comes close on rare occasions, we replace the parent with
the child and continue onwards. When we are no longer able to find a higher fitness for some number
of tries (like a thousand), we terminate the algorithm and decrypt all the way (including decoding the
Morse code).

Reading and references

American Cryptogram Association, www.cryptogram.org/downloads/aca.info/ciphers/Pollux.pdf

Programming tasks

1. Implement an encryptor. It should check that the key is valid, i.e., that it contains at least one
homophone for dot, dash, and separator. Choices of homophone should be random.

2. Implement a decryptor.

3. Implement a brute-force attack. Remember to only try valid keys.

4. Implement the hill-climbing attack described in this section.

a. Take your textual corpus containing upper-case letters and spaces and encode it with Morse
code. Replace the space between letters with × and between words with ××. Compile a
frequency table of dekagrams (10-character sequences) from the result.

b. Modify your fitness function from Unit 9 to handle dekagrams of Morse code.

c. Implement the hill-climbing algorithm. Experiment to find a good margin to use for
allowing downward steps about 5% of the time. Terminate after 1,000 children if the fitness
does not change.

Exercises

1. What is the size of the keyspace for the Pollux cipher? Only include valid keys.

2. Encipher this text with the same key as in the example above.

CASTOR AND POLLUX WERE THE TWIN SONS OF ZEUS AND LEDA.
ZEUS SEDUCED LEDA BY DISGUISING HIMSELF AS A SWAN.
UNFORTUNATELY, ONE OF THE TWINS WAS ACTUALLY FATHERED
BY LEDA'S HUSBAND, SO ONLY ONE OF THEM WAS IMMORTAL.
WHEN CASTOR DIED, POLLUX SHARED HIS IMMORTALITY WITH

HIM, AND THEY ALTERNATED DAYS ALIVE AND IN THE
UNDERWORLD.

3. Decipher this text with the key (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) ↔ (–, ×, ‧, ‧, –, ×, ×, ‧, ‧, –).

082128642855029919991729160395931040674955063778124591
602481706788541909670251241985422562492100057937684731
234548895638236201082514520958750215827588522719185307
533217200336696833763508405180957520763550802684875039
450686405976767236068035806534598643255467788586683426
345405004623412721582371753072576981549063308564679760
491974068489395189130286343265370354991770180351494633
431695283213652376731077357932123148140268225184184858
562876796771972160500415373313052229575598335253502653
872130505924368778576928662892179269445091635002590753
331093749568781871925984713119182326868268035183925705
018333675397614082521830583751823768064876543886357193
510786271283540752391726332575033652417226170112225290
629107517469650588871267757921192931044698503986252908
6418350945421293089

4. Break this ciphertext with your brute-force attack.

764636431162537452150386525685612294503574864163956989
653509437410458805865668109355528597250277729452518217
266683451292453018768918253619086224265721935981103456
957220789598628642199369134758405026981725318409320025
682771304189863704330585684112367637758458942702374340
473721900347589419255524463564532074360352610988696937
778040301189891022648403410837896613444211535592066925
284452104122972696330702139993505636048136598166885442
165633531916377426613923102703870929121663420492036013
099267049738480090391219083758407485260992547817163577
245627974380629992346118186491209208660539370132725452
857034758846930293645139295084410778269356284261663972
783448073462464723618413499877425969973036042646245726
446202942703276793665294192436973151308009886699804360
142983572495725310603661335452067982469869219672108502
122555804023099202742692709819801643098702622530573018
718290113574867926002984439840305056422063563852090030
261080285484157358609131993278696180324395720987121613
804807629381963986351886480063866080439167899375521403
066237452905682520910247731093688003768817413186402612
670622658762401889489662378111131824150255720787170390
108743084132769267921629604816349275638529990318291198
574397930992626913342691186434331750216721419397612342
961629336903194870830584051315934458060316038430001312
29962417371773951564

5. Break this ciphertext with your hill-climbing attack. You will find that it is possible despite the
brevity of the text.

194925739853721143540660461564856257706111381886975538
846790763873570253246089065227281124416275893915209311
569888272969902426589642812919609523052402344860214605
379208

6. Break this ciphertext which uses a larger set of ciphertext symbols. You may need to reduce the
margin in your hill-climbing attack for this one. Did I use a keyword?

CEDAMPSBVEXTDHYVACSBUPVOPCGKHWNNHFRXBETJFTLKBNLQPMNSEA
MSADMHSJKNHUBHGRUEAYCEZAOOQHZYRHOFKBFSXRLTAAWSXLSFUHYS
SBGIKHTSTZLADBEUVVQNCVZKLIEHTGCALBCTMOIQOQFOFSGSONTQDE
PGODRKDEKNBMHDSYTTLVCVPPPBEMOXPXOQSBXVFUSMXD

madness's book on classical cryptography
unit 116: doubled-over substitution
last modified 2020-10-28
©2020 madness

Unit 116
Doubled-over substitution

The doubled-over substitution cipher was invented in 2011 by Viktor Veselovsky, albeit by a different
name. His name for it was “monoalphabetic substitution with camouflage,” for a reason that we will
explain below. The cipher involves interweaving two halves of the plaintext and a substitution that
involves both upper- and lower-case letters. It is a probabilistic cipher, since the point at which the two
halves are divided and the interleaving are both done with some randomness. Decipherment is
unambiguous; it is always possible, with the correct key, to recover the plaintext.

Here is an example to show how the cipher works: Start with a plaintext, such as

The quick brown fox jumps over the lazy dog.

Split the text at a randomly chosen place near the middle:

The quick brown fox jum
ps over the lazy dog.

Throw away the punctuation, convert the first part to upper-case letters and the second to lower-case,
and replace spaces with ‘_’ in the first half and ‘/’ in the second:

THE_QUICK_BROWN_FOX_JUM
ps/over/the/lazy/dog

Next, interweave the two parts. This is also done randomly.

TpsH/E_QovUerICK/t_hBROe/lWN_aFzOyX/_JUdoMg

The key is a permutation of this plaintext alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz/

For this example, we use this key:

plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz/
ciphertext: ROUNDTABLE_knights/abCcdeFfGHIJjKlMmoPpQqrSuVvWwXxYyZz

After making the substitutions, we arrive at the ciphertext:

aSvBzDftrXbjVLU_zWfMOsgjzpcifGTZgydzfEbJrnl

In decipherment, we first invert the substitutions. Separating the two halves of the plaintext is possible
because of the use of upper- and lower-case alphabets.

Optionally, we can remove all spaces from our plaintext, and remove ‘_’ and ‘/’ from the key.

Veselovsky’s original name, “monoalphabetic substitution with camouflage,” came from an
earlier version of the cipher in which the plaintext was not doubled over. In that version, the plaintext
was converted to upper-case letters, and lower-case letters were added randomly as camouflage. The
substitution proceeded as in the example above. Decipherment involved inverting the substitution and
removing the camouflage.

We can attack this cipher with a hill-climbing algorithm that seeks to maximize the fitness of
the plaintext using the parent/child paradigm that we employed in Unit 28 for the monoalphabetic
substitution. As we have done before with other ciphers, to avoid becoming trapped at a local
maximum textual fitness, we will allow downward steps by a margin of 0.2 about 3% of the time. In
order to converge on the global maximum, we must shrink this margin down to zero after we have
reached a fitness at the lower end of acceptable for English (see the exercise in Unit 9). Another
complication is that there is about an even chance that the algorithm will have the two halves of the
plaintext in reverse order.

Reading and references

Challenges on MysteryTwister C3:
www.mysterytwisterc3.org/images/challenges/mtc3-veselovsky-11-mono_split-en.pdf
www.mysterytwisterc3.org/images/challenges/mtc3-veselovsky-13-mono_nospaces-en.pdf
www.mysterytwisterc3.org/images/challenges/mtc3-kallick-27-cloakedsub-02-en.pdf

Bruce Kallick, “A Modified Simple Substitution Cipher With Unbounded Unicity Distance,”
Cryptology ePrint Archive, report 2019/621.

Programming tasks

1. Implement an encryptor. Allow for the choice to include or exclude spaces.

2. Implement a decryptor. Allow for the choice to include or exclude spaces.

3. Implement the attack described above. Remember that spaces may or may not be included in
the ciphertext.

Exercises

1. Encipher this text with the following key:

TWAIN_story/aBbCcDdEeFfGgHhiJjKkLlMmnOPpQqRSUuVvwXxYZz

I have found out that in one way you are quite different from other people. You
can see in the dark, you can smell what other people cannot, you have the talents
of a bloodhound. They are good and valuable things to have, but you must keep
the matter a secret.

(from A Double Barrelled Detective Story by Mark Twain [Samuel Clemens])

2. Decipher this ciphertext with the following key:

HOMEWRK_duetomrw/AaBbCcDFfGghIiJjkLlNnPpQqSsTUVvXxYyZz

BWHzVALJzhaqGyUHzgQimEzGkabltTeFGPRUHMWzaGVHmqqzExJGdT
JzokwrPgBWmiBGRzxLdJaQzBxaqTnlGQkzVlEprbJzOItgpWJEzGRd
WTqAMvQWitFzgGckg_lWQzmgGQiz_dVaGLJOHMzpeGcgUVJHaGBbAm
TWzxJEQGVczLWqApWJGzB_VqzWGALWJcHPSAzLlEaUGrRG_daGzMjr
gVLmJTazMdWqQzmBdrbVaLJmzjgWaTapGHmE

3. Break this ciphertext.

dsLIiVEzmLivklyWeIpzdiDqBKIGzmkuLVDzJrIWDABIbvzLcsDbip
idIVzEacSIueNsLIqEjtcdeIekzt/XLiVzMRIqktzvmAiIsLcIyvzt
mRuuNEKzLIDXRQiIyteeqzmiKzviyLPkqzmNQzIDdsiDX/LiBYzIvm
esLIkzftalWyuYzLuRAVkzULIaiEMIGstiUsIdNsLIqzNqszmDkBuz
IOmLLkAiI_FutyevHziqIsDKzuiMBIfkKzWDqAvNpztNvdzjsiQkzv
RLBzmkuzIEcaQ/NIqKsLczImRdXbtzmcktuezIKkiuDzSAuBINqjAk
azGIXRWyDHpKIzmtiAIsLcwkIz/LlpRX/acqHIzGteivszIemkuzsL
IUvDymuRi/vzNIlz/amckAzmiKzVtkkqA_zImOkuzLsNqztVABWjIt
emIGzistzSiyVVLItANIERqzvcaAeImeksLzIQCFkQtRLeIBuYFzji
drpQkHIKAtz_smekuIGDzidIqKzAVmkzauRGIVUkyadztiA_qItKAz
IXeskLqIyavFzmRQkBzvmkIdukzSsDkumiSVzV/mkzXRWLpIOLKzeG
ltgeIDNIqKBzSauFNqOyLIjbLkzlDRUuLzVWukpIOLeGLLYAIzemsL
IekGazjIsLRWcIbpDKddtaAIyaarLzqkwBIF_yHIkteIbuzmDitwkA
LBIsLcIeaIcLz/JkkL/OqzVLcWjIdsmLIELzyeizIVtNppeYzIKRGM
ziVzMRziXiYzipvRMkvmkuzXNvmzizVvuiqMkzXRQiq

4. Break this ciphertext.

evEevFfOmBbGoSwFbVsvXMZBbvHOafdfAmiFwfRmBWkafblOjFwSfl
APVbRTNTHSmTNTXfduikbGTaRRffTFSeBFTwfukOafPWMVDTubHFRP
wqfIQYmAbmEEbaMVwWEvWBeBOjvjBufdafWmjBMpXVveBowbCfmEMY
WPvBDOlVXfWkdOEFwWRjFeuxBmqTEXVCeMmdqfePkFEjkIZvTvOdef
mlfheEFfBqLmfSWEnLwvOTfafNbjKlmmVvTSnEXmTWAugTWFNejKXv
vmbBluNbqdeZVFqEECfLmefEneqmBFjuwSfYOZEFdVTRjSGZooANqT

YmfulVOjbxdEmVGvPdkgeQZgkWjqPAkFmwVWTFutuTeFwvmkWEIvfP
fBExAmOjbPHAiuCVYfdlfLOFZveOBmVoHQXSeQkFjKKjnwEbmafeBE
fLFEwftXuACtqFwmdvbuGoPqwqPXRjFwSMkjufuWoPTfEeSFeNEqTY
BbFWmuCWmEEeRgfPvFweBoFjbIfWNmvPMTMTDuaedfDIYOiwPGqaWm
TvBfOifmuEBbdNqDbfEeFTYHmWEFuVmfeFVEEtHfmkfFBPfEEjqqbZ
vOmBYOPFvwfDmTfuEfdtjqmFWedZemqFeEWqEfBTFeYfBFSIPnOvKq
TfeBToReaCmuVfkOjAuARYPvfOvOmPDFbWLuFMmeqBFPkPfATXAeof
VBKuFAimFwdjvbOGVommPNZTXwkFjwSSTvfMPVkTExmuYOWafEFZvO
mPdRRbPBoDnujfSvMEejPVZdjqufEmFwjWMFZYOPWvBmSeVTXauWNF
PfmGqMVYEPWBvOMDmVkfBmDbHSMfjDSHeFwvVLfjdFWeVBSXRmCbHf
duTXEVDellfdjVveOmVBojbSMVTBANvOieBDfmVmjVodOffTuImYOG
mumjVZFBTbXFReBsjZveuBDjRldtjYbaOFwbTEfqmMbjZYlPFwvfOW
BTeXavWALNdPSfWFeMbBDfPEeSnjdVfPfgfdSLndfWqmFfESjlvbPx
dmaqDbjibMGDPbmGVIVFeqPttmu

madness's book on classical cryptography
unit 117: duplicitous ciphers
last modified 2020-10-28
©2020 madness

Unit 117
Duplicitous ciphers

A duplicitous cipher is one which can be decrypted to two different plaintexts, depending on how the
decryption is performed. The structure of the cipher does not involve interweaving two ciphertexts;
rather, all ciphertext characters are needed to decrypt each plaintext.

A very simple duplicious cipher was invented by Jack Levine. In his cipher, two sets of numbers
are assigned to the letters of the alphabet:

 a b c d e f g h i j k l m n o p q r s t u v w x y z
set 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
set 2: 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

The first set is used for the first plaintext, and the second set for the second plaintext. The ciphertext
consists of pairs of numbers. In each pair the first number is the average of a character from the first
plaintext and a character from the second plaintext. The second number is the difference from the
average to either of the two characters. For example, if we want to encrypt “definitely yes” and
“possibly not so,” then the first characters are d and p, whose numbers are 4 in the first set and 42 in
the second set. The average is 23, and the distance from the average to each of the two is 19; so the first
two numbers in the cipher text are 23 and 19. The full ciphertext is

23 19 23 18 25½ 19½ 27 18 24½ 10½ 18½ 9½ 29 9 28 23 26 14 33 8 35½ 10½ 25 20 30 11

Decryption is simple: For each pair of numbers, the character in the first plaintext is the difference
between the numbers, and the character in the second plaintext is the sum of the numbers.

Let’s work an example of another duplicitous cipher and run through the encryption of two
plaintexts. This cipher will encrypt one plaintext in a base-5/Polybius-cipher scheme, and another
plaintext in a 5-bit binary scheme. The first plaintext must be five times as long as the second; if not, it
is padded with nulls (usually ‘X’) until it is so (spaces are not used). The base-5 encryption will use
different symbols for the horizontal and vertical labels of the Polybius square. The binary encryption
will involve permuting those symbols. For our example, we begin with two plaintexts:

#1: DUPLICITY IS THE SAME AS
#2: LIES

We also need two keys. We can construct them from keywords CANARD and DECEPTION. The first
keyword is used to fill the Polybius square. Remember that we have only 25 spaces, so we must
remove one letter; typically we merge ‘J’ into ‘I.’

 │ U V X Y Z
───┼───────────┐
 A │ C A N R D │
 B │ B E F G H │
 C │ I K L M O │
 D │ P Q S T U │
 E │ V W X Y Z │
 └───────────┘

To encrypt the first plaintext, each letter in it is replaced by the labels on the rows and columns of the
square, just as in the Polybius cipher:

 D U P L I C I T Y I S T H E S A M E A S
AZ DZ DU CX CU AU CU DY EY CU DX DY BZ BV DX AV CY BV AV DX

From the second keyword we construct this keyed alphabet, and assign numerical values to the letters:

D E C P T I O N A B F G H J K L M Q R S U V W X Y Z
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The second plaintext is converted to a 5-bit representation based on the keyed alphabet:

L I E S
15 5 1 19
01111 00101 00001 10011

We take the ciphertext from the first plaintext and swap the two symbols if the corresponding bit from
the second plaintext is 1.

AZ DZ DU CX CU AU CU DY EY CU DX DY BZ BV DX AV CY BV AV DX
 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1

AZ ZD UD XC UC AU CU YD EY UC DX DY BZ BV XD VA CY BV VA XD

The final ciphertext that hides both plaintexts is

AZZDUDXCUCAUCUYDEYUCDXDYBZBVXDVACYBVVAXD

The key to cryptanalyzing the cipher we have just described is to separate the ciphertext
symbols into two sets, those for row labels and those for column labels. Once that is done, the rest is
straightforward. Let’s work through an example. Suppose we have this ciphertext:

AJCDICHAFBHBAEHADFHGJAHAEIFBBCIEFDJADCICHAFBJICIBFAJHAEIBFI
EBCCAIHEAEBHADHHAAJEIHIHBHDAHAEDCCIFDBHBJHGHBJADCICCBHABFGH
BEHDDCGHBEBECIBFGCICHAFBJADCCIEDFDAHJAAHHBCDFBHGJAAHEIFBGHE
BHDHAEADCCIFDHDCDHGBEBECIBFGCICEIBCJAJBCIFBJAGEBFHABFCIJAIC
CIBFHAJAHIHBICCAIFAHGJCIACFDGHCAHAJGFBHIIFDECIFDHBAJEIICFBD
HEICACIICHGDHDCAEEBGHHABFAJCIJGAJBEICJAAJCIFDGHFBACHBCIFDAH
GHAJAHEIBFGHBFACBCFDGHHDJAAHEIFBGHJAHAEIFBJAIECDHAACICAJCDG
HAJCBHGDHAJJGJGJG

We begin by breaking it into digrams:

AJ CD IC HA FB HB AE HA DF HG JA HA EI FB BC IE FD JA DC IC
HA FB JI CI BF AJ HA EI BF IE BC CA IH EA EB HA DH HA AJ EI
HI HB HD AH AE DC CI FD BH BJ HG HB JA DC IC CB HA BF GH BE
HD DC GH BE BE CI BF GC IC HA FB JA DC CI ED FD AH JA AH HB
CD FB HG JA AH EI FB GH EB HD HA EA DC CI FD HD CD HG BE BE
CI BF GC IC EI BC JA JB CI FB JA GE BF HA BF CI JA IC CI BF
HA JA HI HB IC CA IF AH GJ CI AC FD GH CA HA JG FB HI IF DE
CI FD HB AJ EI IC FB DH EI CA CI IC HG DH DC AE EB GH HA BF
AJ CI JG AJ BE IC JA AJ CI FD GH FB AC HB CI FD AH GH AJ AH
EI BF GH BF AC BC FD GH HD JA AH EI FB GH JA HA EI FB JA IE
CD HA AC IC AJ CD GH AJ CB HG DH AJ JG JG JG

Now let’s see which symbols appear together. In this chart we put an ‘X’ if two symbols appear in the
same digram.

 │ A B C D E F G H I J
───┼─────────────────────┐
 A │ X X X X │
 B │ X X X X X │
 C │ X X X X X │
 D │ X X X │
 E │ X X X X X │
 F │ X X X X │
 G │ X X X X X │
 H │ X X X X │
 I │ X X X X X │
 J │ X X X X │
 └─────────────────────┘

By studying this chart, we can divide the ciphertext symbols into two sets. For example, ‘A’ and ‘B’ do
not appear in the same digram, but both can appear with ‘C.’ So ‘A’ and ‘B’ are in the same set, and ‘C’
is in the other. The two sets are {A, B, D, G, I} and {C, E, F, H, J}. To uncover the first plaintext, we
reorder each digram so that a symbol from the first set comes before a symbol from the second set:

AJ DC IC AH BF BH AE AH DF GH AJ AH IE BF BC IE DF AJ DC IC
AH BF IJ IC BF AJ AH IE BF IE BC AC IH AE BE AH DH AH AJ IE

IH BH DH AH AE DC IC DF BH BJ GH BH AJ DC IC BC AH BF GH BE
DH DC GH BE BE IC BF GC IC AH BF AJ DC IC DE DF AH AJ AH BH
DC BF GH AJ AH IE BF GH BE DH AH AE DC IC DF DH DC GH BE BE
IC BF GC IC IE BC AJ BJ IC BF AJ GE BF AH BF IC AJ IC IC BF
AH AJ IH BH IC AC IF AH GJ IC AC DF GH AC AH GJ BF IH IF DE
IC DF BH AJ IE IC BF DH IE AC IC IC GH DH DC AE BE GH AH BF
AJ IC GJ AJ BE IC AJ AJ IC DF GH BF AC BH IC DF AH GH AJ AH
IE BF GH BF AC BC DF GH DH AJ AH IE BF GH AJ AH IE BF AJ IE
DC AH AC IC AJ DC GH AJ BC GH DH AJ GJ GJ GJ

We can now break this ciphertext as a Polybius cipher. To recover the second plaintext, we compare
this to the original ciphertext. If we had to reorder a digram, assign a 1, otherwise a 0.

original: AJ CD IC HA FB HB AE HA DF HG JA HA EI FB BC IE ...
reordered: AJ DC IC AH BF BH AE AH DF GH AJ AH IE BF BC IE ...
bits: 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 . . .

The full bitstream, broken into groups of five, is

01011 10101 11110 01100 11110 01100 01011 10101 11100 01100
11100 11000 10000 10001 11011 10101 11110 11011 11011 11100
10001 01111 10010 11010 11110 10001 01011 11100 11101 01011
10100 01010 01100 01011 01011 10000 10000 01011 01101 11110
11000 10011 00111

When we try to decipher this as a Baconian cipher, we have a problem: code words like 11110 are not
valid. However, if we reverse the rolls of 0 and 1, we can decode the bitstream. This simply means that
we should swap the row and column labels that we found earlier. To finish decrypting, we must break
what we get as a monoalphabetic substitution cipher.

We have another example of a duplicitous cipher. Before we present it, we should briefly describe the
cipher that inspired it. The final challenge for the 2019 British National Cipher Challenge involved a
modification of the bifid and trifid cipher to a fourth dimension. A 2×2×2×2 “grid” has 16 cells into
which we can put letters; this is not enough. A 3×3×3×3 “grid” has 81; this is too many. As a
compromise, the four-dimensional box used in the cipher has size 2×2×2×3. This allows 24 letters to be
used. Since we need to remove two letters, we can merge ‘J’ into ‘I’ and ‘Z’ into ‘S.’ This should make
the British happy, since they never use ‘Z’s. The key for the cipher is a keyword for mixing the 24-
letter alphabet in the box and a period for seriation and fractionation. Each plaintext letter is first
encoded as the mixed-radix number describing its location in the box. A mixed-radix number is one
whose digits have different bases. The base is often written as a subscript. For example, one such
number used in this cipher is 12021223 (or simply 1012). This number has three binary (base-2) digits
and one ternary (base-3) digit.

Let’s encipher a short text to see in detail how the cipher works. Suppose we have the keyword
KEYWORD and period 5, and this plaintext, which is padded to the fit the period:

THIS MESSAGE WAS ENCRYPTED WITH A NEW CIPHER XXX

The mixed alphabet is

KEYWORDABCFGHILMNPQSTUVX

The box is four-dimensional, so it is very difficult to draw it on this two-dimensional page, but we can
instead list the contents and their coordinates:

K 0000 D 0100 H 1000 Q 1100
E 0001 A 0101 I 1001 S 1101
Y 0002 B 0102 L 1002 T 1102
W 0010 C 0110 M 1010 U 1110
O 0011 F 0111 N 1011 V 1111
R 0012 G 0112 P 1012 X 1112

We can now encode the plaintext as a fixed-width code using the four-digit mixed-radix numbers as
code words.

1102 1000 1001 1101 1010 0001 1101 1101 0101 0112 0001 0010
0101 1101 0001 1011 0110 0012 0002 1012 1102 0001 0100 0010
1001 1102 1000 0101 1011 0001 0010 0110 1001 1012 1000 0001
0012 1112 1112 1112

Write each vertically, and group them in fives (the period):

11111 01100 00010 10001 10001 11010 00111 00111
10010 01111 00110 01000 10100 10100 01000 00111
00001 00001 01000 11101 00010 00010 11010 01111
20110 11112 10111 10222 21001 20111 00120 12222

Read off each group by rows:

11111 10010 00001 20110 01100 01111 00001 11112 00010 00110
01000 10111 10001 01000 11101 10222 10001 10100 00010 21001
11010 10100 00010 20111 00111 01000 11010 00120 00111 00111
01111 12222

Unlike the bifid and trifid ciphers, the box in this cipher does not have the same lengths in each
dimension. Therefore we are unable to recombine the digits into letters. So the final ciphertext is

11111100100000120110011000111100001111120001000110010001011
11000101000111011022210001101000001021001110101010000010201
110011101000110100012000111001110111112222

To break this cipher, we first have to identify the period. This is easy if we break the ciphertext
into blocks and adjust the block size until the ‘2’s only appear in every fourth block. Then we can

reverse the transposition to the digits. We then decode the result using an unmixed alphabet. What
remains can be broken as a monoalphabetic substitution cipher using the hill-climbing technique in
Unit 28. The keyword can be recovered from the key to the monoalphabetic substitution.

Before we move on, we should note that the ternary digit need not be the last coordinate. In the
BNCC challenge, the ternary digit was the third. Which coordinate uses the ternary digit should be
clear during cryptanalysis, since ‘2’ can only appear there.

We are now ready to describe a second example of a duplicitous cipher. Like the first example, it
encodes symbols from the first plaintext with coordinates, and then permutes them according to the
contents of the second plaintext. Like the BNCC cipher described above, we the coordinates that we
use are for a four-dimensional grid in which we place a mixed 24-letter alphabet. However, since we
cannot rely on a positional number system (i.e., one that keeps digits in order), we have to expand the
set of ciphertext symbols so that each coordinate has its own set; we did this for the first example
cipher above, when we used ten row and column labels instead of five. Unlike the BNCC cipher, we
will not use seriation and fractionation.

Let’s work through a short example to see how the cipher works. Start with these two
plaintexts. One is padded, since they must have the same length (spaces don’t count):

#1: DONT MAKE FUN OF ME
#2: RIGHT BACK AT YOU X

The key consists of two keywords; suppose they are SNICKER and LAUGH. For labeling cells in the
box, we can use these sets of symbols: {A, B}, {C, D}, {E, F}, {G, H, I}. Then encoding the first
plaintext is done with this assignment, using the mixed alphabet obtained from the first keyword:

S ACEG R ADEG H BCEG T BDEG
N ACEH A ADEH L BCEH U BDEH
I ACEI B ADEI M BCEI V BDEI
C ACFG D ADFG O BCFG W BDFG
K ACFH F ADFH P BCFH X BDFH
E ACFI G ADFI Q BCFI Y BDFI

The first plaintext is provisionally encoded as

ADFG BCFG ACEH BDEG BCEI ADEH ACFH ACFI ADFH BDEH ACEH BCFG
ADFH BCEI ACFI

The second encryption scheme enumerates the permutations of four objects. Luckily, there are 24 of
them. We use the second keyword to assign a mixed alphabet to them:

L (0, 1, 2, 3) C (1, 0, 2, 3) M (2, 0, 1, 3) S (3, 0, 1, 2)
A (0, 1, 3, 2) D (1, 0, 3, 2) N (2, 0, 3, 1) T (3, 0, 2, 1)

U (0, 2, 1, 3) E (1, 2, 0, 3) O (2, 1, 0, 3) V (3, 1, 0, 2)
G (0, 2, 3, 1) F (1, 2, 3, 0) P (2, 1, 3, 0) W (3, 1, 2, 0)
H (0, 3, 1, 2) I (1, 3, 0, 2) Q (2, 3, 0, 1) X (3, 2, 0, 1)
B (0, 3, 2, 1) K (1, 3, 2, 0) R (2, 3, 1, 0) Y (3, 2, 1, 0)

The second plaintext then becomes this list of permutations:

(2, 3, 1, 0), (1, 3, 0, 2), (0, 2, 3, 1), (0, 3, 1, 2), (3, 0, 2, 1), (0, 3, 2, 1), (0, 1, 3, 2),
(1, 0, 2, 3), (1, 3, 2, 0), (0, 1, 3, 2), (3, 1, 0, 2), (3, 2, 1, 0), (2, 1, 0, 3), (0, 2, 1, 3),
(3, 2, 0, 1)

We apply these permutations to the blocks of symbols from the provisional ciphertext of the first
plaintext:

#1: ADFG BCFG ACEH BDEG BCEI ADEH ACFH ACFI
#2: (2, 3, 1, 0) (1, 3, 0, 2) (0, 2, 3, 1) (0, 3, 1, 2) (3, 0, 2, 1) (0, 3, 2, 1) (0, 1, 3, 2) (1, 0, 2, 3)

 GFAD FBGC AHCE BEGD CIEB AHED ACHF CAFI

#1: ADFH BDEH ACEH BCFG ADFH BCEI ACFI
#2: (1, 3, 2, 0) (0, 1, 3, 2) (3, 1, 0, 2) (3, 2, 1, 0) (2, 1, 0, 3) (0, 2, 1, 3) (3, 2, 0, 1)

 HAFD BDHE ECHA GFCB FDAH BECI FICA

The final ciphertext is

GFADFBGCAHCEBEGDCIEBAHEDACHFCAFIHAFDBDHECHEAGFCBFDAHBECIFICA

Decipherment requires that one knows the alphabet key(s), the choice of symbols for the digits
of the mixed-radix numbers, and which digit of those numbers is the ternary digit. However, this is not
a particularly difficult cipher to cryptanalyze, as we shall see. First, we break the ciphertext into blocks
of four symbols. Then, by noting which symbols do not occur in the same block as others, we can
assign them to groups, each of which represents the first, second, third, or fourth digit of the mixed-
radix numbers. We can then assign a mapping from those numbers to the 24-letter alphabet. The
resulting text can be analyzed as a monoalphabetic substitution cipher, which can be broken with the
hill-climbing technique in Unit 28. The orderings of the digit symbols (i.e., the permutations) can also
be mapped to the 24-letter alphabet. The resulting text can again be analyzed as a monoalphabetic
cipher. Finally, it is possible to recover the keywords (if any) that were used to reorder the key
alphabets.

Let’s crack this ciphertext as an example:

ZTXSXTYRVSYXXZUTRWYTTSYWTUZXTWZUTZSXWTSZWTYSVRZXVUWZSTXZYTX
RSTYWRTZXWVZUVSZXYUVXTUXYWZVRTRYXUTYWTZUWYUTWTUYWZVXUTUXZRT
XYYTXRRTZXTSWYSYVXSZTXVZSWTXZSVUWYRTZXRXYTZRTXYSTWVRZWRTWYU
VYXWYTSTRXYYRXTZTXRWTYSTRYXTXUYTXZSTUXZTZWUTRYWTYUWXVSZWTYS
VUYWTRXZSTWYYTXRRTZXWTYUVUZWUVYXZTXRTYRXUZTXVSZXYTWRXTZRTUZ

XZVXSTRWYUTXYYTWUUVZWVSXZTWYRXYTRZTXRTYSWTYUXTWSYZTWRXTYUTS
YWYUVWXRTZSYVXTSYWVSXZTXYRVUWYYWRVVRWYYRWV

Our first step is to break the ciphertext into blocks of four symbols:

ZTXS XTYR VSYX XZUT RWYT TSYW TUZX TWZU TZSX WTSZ WTYS VRZX
VUWZ STXZ YTXR STYW RTZX WVZU VSZX YUVX TUXY WZVR TRYX UTYW
TZUW YUTW TUYW ZVXU TUXZ RTXY YTXR RTZX TSWY SYVX SZTX VZSW
TXZS VUWY RTZX RXYT ZRTX YSTW VRZW RTWY UVYX WYTS TRXY YRXT
ZTXR WTYS TRYX TXUY TXZS TUXZ TZWU TRYW TYUW XVSZ WTYS VUYW
TRXZ STWY YTXR RTZX WTYU VUZW UVYX ZTXR TYRX UZTX VSZX YTWR
XTZR TUZX ZVXS TRWY UTXY YTWU UVZW VSXZ TWYR XYTR ZTXR TYSW
TYUX TWSY ZTWR XTYU TSYW YUVW XRTZ SYVX TSYW VSXZ TXYR VUWY
YWRV VRWY YRWV

Then we tabulate the occurrences of symbols in the same block. In this grid we see an ‘X’ when two
symbols appear together in at least one four-symbol block.

 │ R S T U V W X Y Z
───┼───────────────────┐
 R │ X X X X X X │
 S │ X X X X X X │
 T │ X X X X X X X │
 U │ X X X X X X │
 V │ X X X X X X X │
 W │ X X X X X X X │
 X │ X X X X X X X │
 Y │ X X X X X X X │
 Z │ X X X X X X X │
 └───────────────────┘

We can see that R, S, and U never appear in the same block. Therefore, they must be the symbols for
the ternary digit. Likewise, T and V do not appear together, so must represent one of the binary digits.
The complete set of sets is

{T, V}, {W, X}, {Y, Z}, {R, S, U}

We can now map combinations of these symbols to the 24-letter alphabet. The choice of mapping is
irrelevant, since we will be analyzing the result as a monoalphabetic substitution later. So, without loss
of generality, let us use this mapping:

TWYR → A TXYR → G VWYR → N VXYR → T
TWYS → B TXYS → H VWYS → O VXYS → U
TWYU → C TXYU → I VWYU → P VXYU → V
TWZR → D TXZR → K VWZR → Q VXZR → W
TWZS → E TXZS → L VWZS → R VXZS → X
TWZU → F TXZU → M VWZU → S VXZU → Y

With this mapping, we obtain this intermediate ciphertext:

LGUMABMFLEBWSLGBKSXVIQGCFCCYMGGKBULRLPKGKBQAVBGGKB
GILMFACXBPKBGKCSVKGMXAKMXAICSXAGKBIBDIBPKUBXGPNNN

Using our hill-climbing attack on the monoalphabe monoalphabetic substitution cipher recovers the
first plaintext (clearly, the trailing XXX is padding):

IT MADE ALICE QUITE HUNGRY TO LOOK AT THEM. I WISH
THEY'D GET THE TRIAL DONE, SHE THOUGHT, AND HAND ROUND
THE REFRESHMENTS. XXX

The substitution key is M?EABDVKL?YFUXC?WIPGS?RNQ?, where ‘?’ denotes unknown parts of the
key because the plaintext does not contain ‘B,’ ‘J,’ ‘P,’ ‘V,’ or ‘Z.’

To decrypt the second plaintext, we need to identify the permutations used to reorder the
symbols in each four-character block of the ciphertext. To that end, we need to order the sets of
symbols, so we will say that they should be in the order {T, V}, {W, X}, {Y, Z}, {R, S, U}. The first
block of the ciphertext is ZTXS, so its permutation is (1, 2, 0, 3), because it takes TXZS to ZTXS. The
permutations for all blocks of the ciphertext are

(1, 2, 0, 3), (1, 0, 2, 3), (0, 3, 2, 1), (3, 0, 1, 2), (3, 1, 2, 0), (0, 3, 2, 1), (0, 3, 2, 1),
(0, 1, 2, 3), (0, 3, 1, 2), (1, 0, 3, 2), (1, 0, 2, 3), (0, 3, 2, 1), (0, 2, 3, 1), (1, 2, 3, 0),
(1, 2, 0, 3), (1, 3, 2, 0), (1, 3, 2, 0), (1, 0, 2, 3), (0, 3, 2, 1), (2, 3, 0, 1), (0, 2, 3, 1),
(2, 0, 1, 3), (0, 3, 2, 1), (1, 3, 2, 0), (0, 3, 1, 2), (2, 3, 0, 1), (0, 3, 2, 1), (1, 2, 0, 3),
(0, 2, 3, 1), (1, 2, 3, 0), (1, 2, 0, 3), (1, 3, 2, 0), (0, 2, 3, 1), (2, 3, 1, 0), (2, 3, 1, 0),
(0, 3, 1, 2), (0, 1, 2, 3), (0, 2, 3, 1), (1, 3, 2, 0), (3, 1, 2, 0), (2, 3, 0, 1), (2, 3, 0, 1),
(0, 3, 2, 1), (1, 2, 3, 0), (1, 3, 2, 0), (2, 0, 1, 3), (0, 2, 3, 1), (3, 2, 0, 1), (1, 2, 0, 3),
(1, 0, 2, 3), (0, 3, 2, 1), (0, 1, 3, 2), (0, 1, 2, 3), (0, 2, 3, 1), (0, 2, 1, 3), (0, 3, 2, 1),
(0, 3, 1, 2), (1, 0, 3, 2), (1, 0, 2, 3), (0, 3, 2, 1), (0, 2, 3, 1), (1, 2, 3, 0), (1, 2, 0, 3),
(1, 3, 2, 0), (1, 0, 2, 3), (0, 3, 2, 1), (1, 3, 2, 0), (1, 2, 0, 3), (0, 3, 1, 2), (2, 3, 1, 0),
(0, 3, 2, 1), (1, 2, 0, 3), (1, 0, 2, 3), (0, 3, 2, 1), (1, 2, 0, 3), (0, 2, 3, 1), (1, 2, 3, 0),
(1, 2, 0, 3), (1, 3, 2, 0), (0, 2, 3, 1), (0, 1, 2, 3), (2, 0, 1, 3), (1, 2, 0, 3), (0, 3, 1, 2),
(0, 3, 1, 2), (0, 1, 3, 2), (1, 2, 0, 3), (1, 0, 2, 3), (0, 3, 2, 1), (2, 3, 0, 1), (2, 0, 3, 1),
(2, 3, 1, 0), (0, 3, 2, 1), (0, 2, 3, 1), (0, 1, 2, 3), (0, 2, 3, 1), (3, 1, 0, 2), (0, 2, 3, 1),
(3, 2, 0, 1)

The mapping of these permutations to the 24-letter alphabet is arbitrary. Let us take a canonical one.

(0, 1, 2, 3) → A (1, 0, 2, 3) → G (2, 0, 1, 3) → N (3, 0, 1, 2) → T
(0, 1, 3, 2) → B (1, 0, 3, 2) → H (2, 0, 3, 1) → O (3, 0, 2, 1) → U
(0, 2, 1, 3) → C (1, 2, 0, 3) → I (2, 1, 0, 3) → P (3, 1, 0, 2) → V
(0, 2, 3, 1) → D (1, 2, 3, 0) → K (2, 1, 3, 0) → Q (3, 1, 2, 0) → W
(0, 3, 1, 2) → E (1, 3, 0, 2) → L (2, 3, 0, 1) → R (3, 2, 0, 1) → X
(0, 3, 2, 1) → F (1, 3, 2, 0) → M (2, 3, 1, 0) → S (3, 2, 1, 0) → Y

We get this intermediate ciphertext:

IGFTWFFAEHGFDKIMMGFRDNFMERFIDKIMDSSEADMWRRFKMNDXIGFBADCFEHG
FDKIMGFMIESFIGFIDKIMDANIEEBIGFROSFDADVDX

Analyzing it as a monoalphabetic cipher yields

THE QUEEN OF HEARTS SHE MADE SOME TARTS ALL ON A SUMMERS DAY.
THE KNAVE OF HEARTS HE STOLE THE TARTS AND TOOK THEM CLEAN AWAY.

with key D?ONFH?G??BSRAE?TKMIWCV?X?, where again ‘?’ denotes unknown elements.

Having recovered both plaintexts, we could stop at this point. However, if we desire, we can try
different ways of assigning the symbols R, S, ..., Z to the four mixed-radix digits and search for a
recognizably keyed alphabet. It is easier to begin with the second plaintext. If we take the mapping of
permutations to letters and apply the substitution key that we found above, we have

(0, 1, 2, 3) → N (1, 0, 2, 3) → H (2, 0, 1, 3) → D (3, 0, 1, 2) → Q
(0, 1, 3, 2) → K (1, 0, 3, 2) → F (2, 0, 3, 1) → C (3, 0, 2, 1) → ?
(0, 2, 1, 3) → V (1, 2, 0, 3) → T (2, 1, 0, 3) → ? (3, 1, 0, 2) → W
(0, 2, 3, 1) → A (1, 2, 3, 0) → R (2, 1, 3, 0) → ? (3, 1, 2, 0) → U
(0, 3, 1, 2) → O (1, 3, 0, 2) → ? (2, 3, 0, 1) → M (3, 2, 0, 1) → Y
(0, 3, 2, 1) → E (1, 3, 2, 0) → S (2, 3, 1, 0) → L (3, 2, 1, 0) → ?

By reassigning the symbols 1, 2, 3, and 4 we can try to find a mapping that corresponds to an easily
recognized keyed alphabet. In this case, it is simple: we merely exchange 2 and 3.

(0, 1, 2, 3) → K (1, 0, 2, 3) → F (2, 0, 1, 3) → C (3, 0, 1, 2) → ?
(0, 1, 3, 2) → N (1, 0, 3, 2) → H (2, 0, 3, 1) → D (3, 0, 2, 1) → Q
(0, 2, 1, 3) → A (1, 2, 0, 3) → R (2, 1, 0, 3) → ? (3, 1, 0, 2) → U
(0, 2, 3, 1) → V (1, 2, 3, 0) → T (2, 1, 3, 0) → ? (3, 1, 2, 0) → W
(0, 3, 1, 2) → E (1, 3, 0, 2) → S (2, 3, 0, 1) → L (3, 2, 0, 1) → ?
(0, 3, 2, 1) → O (1, 3, 2, 0) → ? (2, 3, 1, 0) → M (3, 2, 1, 0) → Y

This gives us KNAVEOFHRTS?CD??LM?QUW?Y. The missing letters are obvious at this point, and the
keyed alphabet is KNAVEOFHRTSBCDGILMPQUWXY, so that the keyword is KNAVE OF HEARTS.
We also learn from this procedure that the ternary digit must come third in the mixed-radix numbers,
rather than fourth as we had used earlier, since we had to swap the last two elements of each
permutation.

We now turn to the task of recovering the keyed alphabet that was used on the first plaintext. If
we apply the substitution key that we found, we get a new mapping:

TWYR → D TXYR → T VWYR → X VXYR → ?
TWYS → E TXYS → ? VWYS → ? VXYS → M
TWYU → O TXYU → R VWYU → S VXYU → G
TWZR → F TXZR → H VWZR → Y VXZR → Q
TWZS → C TXZS → I VWZS → W VXZS → N
TWZU → L TXZU → A VWZU → U VXZU → K

Since in recovering the second keyword we had to swap the last two elements of each permutation,
we will do the same to each block above, and then reorder.

TWRY → D TXRY → T VWRY → X VXRY → ?
TWRZ → F TXRZ → H VWRZ → Y VXRZ → Q
TWSY → E TXSY → ? VWSY → ? VXSY → M
TWSZ → C TXSZ → I VWSZ → W VXSZ → N
TWUY → O TXUY → R VWUY → S VXUY → G
TWUZ → L TXUZ → A VWUZ → U VXUZ → K

We now look at various ways in which to assign the values of 0, 1, and 2 to the symbols representing
digits. If we take T=0, V=1, X=0, W=1, U=0, S=1, R=2, Y=0, and Z=1, and reorganize the mapping
accordingly, we get

TXUY → R TWUY → O VXUY → G VWUY → S
TXUZ → A TWUZ → L VXUZ → K VWUZ → U
TXSY → ? TWSY → E VXSY → M VWSY → ?
TXSZ → I TWSZ → C VXSZ → N VWSZ → W
TXRY → T TWRY → D VXRY → ? VWRY → X
TXRZ → H TWRZ → F VXRZ → Q VWRZ → Y

We see that the keyed alphabet is RA?ITHOLECDFGKMN?QSU?WXY. Again, the missing letters are
obvious, and the full key is RABITHOLECDFGKMNPQSUVWXY, giving a keyword of RABBIT
HOLE.

Finally, we would like to say that this cipher was dubbed the “MadHatter” cipher by a
participant in the online forum for the BNCC. A ciphertext encrypted with the cipher was offered as a
bonus challenge in the 2019 competition.

Reading and references

Merle E. Ohaver, “Solving Cipher Secrets,” Flynn’s, October 2 and November 13, 1926,
toebes.com/Flynns/Flynns-19261002.htm,
toebes.com/Flynns/pdf/Flynns-19261002.pdf,
toebes.com/Flynns/Flynns-19261113.htm,
toebes.com/Flynns/pdf/Flynns-19261113.pdf

Chris Christensen, “Lester Hill Revisited,” Cryptologia 38:4 (2014) 293-332, DOI:
10.1080/01611194.2014.915260

Thomas Kaeding, “MadHatter: A toy cipher that conceals two plaintexts in the same ciphertext,”
Cryptology ePrint Archive, report 2020/301.

Grant A. Niblo, “The University of Southampton National Cipher Challenge,” Cryptologia 28:3 (2004)
277-286. DOI: 10.1080/0161-110491892935. The current (or most recent) challenge is at
www.cipherchallenge.org. The 2019 challenge is archived at 2019.cipherchallenge.org.

Programming tasks

1. Implement an encryptor and a decryptor for Levine’s simple cipher. Try them on a some
plaintexts of your own.

2. Implement an encryptor and a decryptor for the first example of a duplicitous cipher.

3. Implement the attack described above for the first example of a duplicitous cipher.

4. Implement an encryptor and a decryptor for the mixed-radix cipher from the BNCC.

5. Implement the attack on the fractionated mixed-radix cipher from the BNCC.

6. Implement an encryptor and a decryptor for the second example of a duplicitous cipher. Feel
free to call functions you wrote for Exercise 3.

7. Implement the attack described above for the second example of a duplicitous cipher. Feel free
to call functions you wrote for Exercises 3, 4, and 5.

Exercises

1. Finish breaking the example of cryptanalyzing the first duplicitous cipher.

2. The following ciphertext was encrypted in a way similar to the first example of a duplicitous
cipher. Break it and find both plaintexts. What are the keywords?

272515275805153890580751688591850745386172034985703851
260783437019851583584778683025071945178586232758058530
078907833443836186890738156085038787508387052530518525
342568688370864515831692278307255186520972516845250778
301717257090512785505803055878853887868509850715688519
850734273889257168252685503861079803608361154303541703
709883078654913071261527851917588649857130511903711316
850530895871512785508503058578588387688534273898837083
151758581903701772259027851751034983923015258370250778
836825717252070951278523868338053425157215728552506083
831571512758508503055887583887865809850751868591850743
728350852361718515381730541572031551278545305085273087
784530709885072583545207903023168686682532853472580723
835052071715030792581572582505150583161785501771855178
508387585086541527585058030558788583788685232507308668
454327838952178652268598037127250709030798437225508625
070903608316153283050783830625582951323043072507900307
986825922625070951725889167115030789300638498503868690
850751868519580778832625709015275825050738715817432785
505851275845030585708351430370158589254958518368984583

610386193817518549855045512725079090857015685891850707
3843308686383419851538345251279850303447747474

3. Encipher these two plaintexts with the same cipher and keys as in the previous exercise.

#1: CRYPTOGRAPHY IS
#2: FUN

4. This ciphertext was encrypted with a cipher similar to the second example above of a
duplicitous cipher. Break it and find both plaintexts. Are there any keywords?

586951737184523778144879184684968641895641866185342641
876489741886597258493669584936428731654187572384616895
537247181487486282478157275372857428569887525187586913
574871175372853649894681474861824731569856537171486253
864132574136753157314186537274814618487231568659573141
873157864159686985418757238497418773258417513748615693
864274827143659881744186486189564862689581646135852752
376325528793464869714874896418649864894286698565984826
428771435186418765894879748147188427598673154178365278
156148698469858416649824368471841772341846487261536985
351748717285695835174187327595867948728584974871257341
874396498642867482471368245986486189648641643134694869
531764282587728472358417498689568642742874315869753147
186284352741872436658187524789649878257482486265894618
728435166598614842365862648284723147752869534871237564
286589896451377148614851366539847152377394694384276413
285752361578528773256985841651866324418718575872725369
853517418735617825523753627285469386497148859671537285
364931473157895616483642648234614871728584274236739441
684986428669856498648198463426874147813427624884964936
342743725728698478148642598656137285741846892487698562
358426428763518956153781745689486186154236714874988641
984648616243648172354713781452874872817486516439856958
695173718459867315537281478147794884175237714848613642
462361347523852749876315714851368956527814377481895651
377148725318465986782542874871314682577352487278147235
752851786284859642877258537282755287562378245287537282
757528653289561753874147936413352764287841513687526934
695889741753471878245986537181744379648946187489641862
346284341641876314528756238624874274318569715387415723
741864897234324687418724598643975287815775237582857236
526489846162846513486164326428613484174286782463514286
731472486418748269584623739441864872316586491573418748
698461689551365872798482748642748246186234641835727413
487164815723235643613715418684263752816458697582472871
484187428713568527587169853517487168596841518664327148

5. Encipher these two plaintexts with the same cipher and keys as in the previous exercise.

#1: WELCOME TO
#2: MY TEA PARTY

6. This is the final challenge from the 2019 British National Cipher Challenge. Break it. What is
the keyword?

11101 00101 00001 21122 10001 10111 00101 10001 01111
00210 11011 11111 01011 01001 01011 21001 11000 01011
01000 00012 21222 10011 11010 01000 01001 10201 00000
11101 10010 01011 00012 00212 00011 01000 01101 01110
00000 20021 10010 00100 11010 11011 00002 10000 10000
11010 00001 00022 00110 00101 10101 10001 01100 00210
01111 10010 01001 00000 10111 02020 00101 00101 01001
11000 01022 21210 00001 00110 10101 00010 21020 02111
00100 00110 11101 10000 21012 01110 11001 10011 00000
10021 10011 01101 01100 00011 00002 10011 11100 10010
01001 00101 10020 00021 00001 01010 01010 01001 10002
21011 00011 10111 10000 00120 12102 01001 10001 10010
10110 01021 02011 01111 00101 00000 10001 10022 20000
00100 01010 01100 01110 21021 00101 00100 11101 10000
21002 12111 10100 01100 01011 10002 01202 01010 11001
00010 01111 00011 00101 00010 11110 10000 00012 01122
00111 00001 11110 10000 00021 12210 01001 10100 10100
10010 22002 00001 10000 01101 11101 00100 21001 01000
11110 10000 00001 01202 20200 00011 10110 01000 01002
22100 21101 11000 00100 01110 00200 12011 00000 11010
10010 00111 10221 00100 01010 11110 10001 00102 21220
10000 00110 10100 10000 02100 22101 00000 11010 10001
01012 00200 00100 00001 11101 10100 01021 10001 00010
11000 11010 01101 02111 10001 01110 11001 00000 01002
11002 10110 11110 10011 11011 01000 00210 00010 11101
00110 00001 22221 20000 11010 00110 11100 00100 02210
01101 10000 01100 01011 11122 10001 01101 01000 00110
10021 10021 10101 11100 11101 10110 01021 20010 10010
01110 11101 00100 21220 01010 00011 00010 00100 11010
12201 00100 10011 10000 11000 21112 00111 00011 10010
00100 00001 20010 11101 00011 10000 11001 01112 00211
10011 01011 01011 10001 10200 21100 10000 11010 00001
00020 20010 01111 00111 11001 11011 20112 10101 00111
11010 00100 01001 12202 11100 10100 00100 01001 10002
11010 11110 11010 01100 00002 00202 00100 00110 01011
01000 01200 02111 11101 01001 10000 00100 20001 20001
11101 00011 10000 11001 01112 10011 10000 01110 10010
10021 10101 11111 11001 01000 01011 11002 11110 11110
10101 10110 00021 02220 11100 11010 11000 01000 00202
01100 00100 11011 00111 10021 00200 11000 10100 11000
00001 12020 20100 01110 11001 01100 01011 11002 11110

11111 11011 10101 01001 10220 11100 01010 00100 01001
02002 11101 1111

7. This is the bonus challenge from the 2019 BNCC. Break it and recover both plaintexts. What
are the keywords? (This ciphertext used the inverse permutations, so you will have to adjust
accordingly when you look for the second keyword.)

JADGGBJDEJGAJGEBJDHADLHBGJDADLGBDBJHJADHDAGKAJEGDKAHAH
KDAJEGAKHDKAGDALEGDKBHDKGAHJDAEAGLLADHHJDADLGAELHBELGA
EAGJDGLAHAJDJEHABHKDJBEHGBLDEAGJALEGEAGLGJEAHDAKGKDABD
JHLBHEBKDGDJAHLADGGBLDEJGABDLGLAEGHAJDDLGAHKDBDAKHALEG
DKGBDHJABHDJDAGJAKDHEKAGDAGJADHKAHJEDHKBEJHBBGDKAJDGDL
HAJEGAKDHAGAKDAHKDDHKBGALEKDGBEAGJDAKHKDGAGALEBHKDEHJA
HBKDBHKDAKDHEBGJHDAJBDKHGDALELGABLDHJAEGEGBJDJHADGLBDB
GKJAHDDBKGDJGAAEJHAKEHDJHAADJHHAEKJADHHAJEEJGAHDAKGALE
DBHKELAGDKBGJAHDHDBJDKHBHDBKEGAKGKDBADJHAGLDDLBGEJGAGL
DBELGADJAHADLGBLDHGAJDBGLDDALGDHJAADJGAEHJAEGJDAHKGKDA
DBHJBLEGELAGJAEGGALEDKGBADJGJAEHHAKDDKHBHKEAEJAGEJGBEL
GABGLEDALGJAHDGDLBHDKBADLGEBJGDKHBKADHHALDDJHALGDALDBG
DJGAELGAEAGJDHKBHAKDBLGDAEJGKADHJAEGLEGADJGADKHAEJAHBD
HLDKGBGJDAAELGJAGEBLDGELAGDBGKJADHLBEGGBLDDJHADHBKEBHJ
DGJABHDJBDKHHBDKKAEGGALEDKGBDHKBBELGADGKBDGKEAGLGJDADB
JGGAJEEJGBDAJHDBHLAGJEELAGKBDGBDKHGBLEELGAHKEAEAJGEJGB
AEGLGBELLADGHAJDDLGBKHDBDALGJBEGBDKHADKHDLAHDAJHADLGDB
LGJADGAGLEAEGJBDHKKADHGBLDDBGLKBDHDBLGGBKDDJHAHLBDJAGD
BGLDJBEGDKHBHADKBDLGGJEAAJHEADJHLADGJAEGHAKDDKGAJGEAKD
HADKGBHJDADLGADBHKBDHLAHKDKEBGEJGADAHKAJEHDJAGDBLGHBLD
DJHAJDGBDBGJDAJGBGLDLBGDDBKGJADHBJGEBDKHBGLEBJDGAJHEHJ
EBBDKHLAGDALEGDKBGJADHBDKGDBKHELGAEJHAAGJDHBELKBEGGAJD
EJHAJDHABDKGHJDADLAGJBEHJDHADJHADJGBDLAHADHJDLGALEHBDB
GLDBJGJDHAHJDAAHKELBEHJADGDKHAAJEHDBGLLAEGLBEGHAKEEJGA
EHAJDBHLDGKBAHDJAELGGBDKDJHADAGLEGLAGBKDDHJAAEKHBDGJAD
HJDAGJGLDBLEGBGALDDJHABKDHEBJHGBKEDJGAKEGAEAGJDAKHDAKG
JADGEAHJGJDAJAEGBDGLELHBEJBGDGBKJGDAEAGJKDAHBDLHBHKDEG
LBDJGBEHJABDJHHDAJBHLDBKDHALGDGAELGKDBAELGGDBKJADHGALE
DLGABDKHBLEGDJHBGDBJDAHJHKDBBHEJDKGADJAHELAGLAGEGEAJAH
KDGADKLGEBAEKHJAGDKADHHAJEAHKEAJEGBGEJKEGAEJGAHKDADKGA
LEGADBGKJHADJEHAADJGGJEABGDLEAJGHAJDDLGBDBLHDBGKAHJDDK
AHLGDBBELGJAHEAEJHJAHDAKHDGBJDLBEHJADGBDLHGDKBEAGJLGEA
JHDAADLGJAGDBHDJBJDHAEJGLEGALDHBEAGJLGAEKDGBAEKHGJEAAH
DKEAKGJDHAELHBHJDADLGBALDGJADGHDAKEBGJDJBGDKHBLBDGADJH
DHBJELHBBDGKADJHADLGAGELDKGBDJAHDAGLJADHHBDLADJGGLDBAK
DHBDKHLAEGGBKDAGJEAKDHAKGDBLDGBDKHHALDADJHLDGAEHLBADLG
AJDHKBEGGJDADAGLGKEAAGJDJDHBBGJDDAJHEJGADAHKELAGDKBGDJ
GAELAGKADHHBKDDLGAAEJHAJEGEJHAGDAJDBGJGJEABGEJDJHAELAG
DKBGEJGADKHAAGKEGAEJLGEABDLGKBHDLADHHAJDAGLDBLEHBGEKLE
GBEJGBGKDBDKHBEBGLAEGLBHKDJEBHELGAKGDBADJHLBHDADJGLBHE
ALGEHBKDKBDGJADHADJGDALGGELADKGBDAHJAGDLAGJDHDBJDBJHJA
GEGLEADLGBAGJDHEBLLEAGDKHBGJEALGEADBLGADJHGJDBHJEBKHDB

KDGBEAHJDAJHDAGJADGLBDHKDBGKAEHJAHJDDGJADLGAEGJABDLGKB
GDADGJDJBGDBJGDBHJJHDAGAELBDKHHKDBJBDGGAJDELGAJDHABDLH
GKDBDJAHDAKHBDLGGBDKJADHGALEDKGBBDKHBEGLDKAGDBKGAELGAJ
EGALGEBHDKDLHAHDJALADGGJDABHJEALEGAJHDAGLDBLDHAJGDLADG
HAJEGLDBAEJGLAGEBKHDGBJEGBJEELGBGLDAGALDDJHAEAHJELAGBD
HKBGKDAHDJDLGALAEGGBKDDJGALAEGBGLDDGKBAHDJBHKDBLEGAKGD
BDKGGAELEAGLDHKBBDGKADJGDHLAAHDJDBHLBKDHDKAHEAJHHAJDDL
GADHJAAEJHJAGDAEGLELAGGBKDEAGJGLDBDJBHBEGLLGEAGAJDELGA
AEGLGDKBDAJHEAGLJGEABGKEAJDHAJGELAEGGAJDDJGBGDBJBDLGJA
HDJADHBEGKADJHJAHEEKBHLBEGJEGAELGADJHADKAHADGJELGAELBG
LAGDGDAJDBGJBJDHELBGLAEGLDHBDKGBDJHADKAHAEGLDKGBDJAHDL
GADJGADBHJBJHDGJEAELGADJGAEJBGLAEGBELGGAJDDBGJJDBGELHB
EAGLDHBKDBHKKAEGJADGBDHLDJGAGAELBEJGGKDBKBDHLEGBELGADK
HBEJBHAEGJELGADLBGLBHDGDAJEAJGDBGLAGLEEJBGKBDHJDGAELGA
EKHADKBHBEGJEKGADJAHELGADJGAHAKDEAHJDJBGDBKHHDKBAEKGAH
JDAEHJDJGAELAGGAJEAGLEDAJGAKDHAHJEEGLADKGBAJDHDKHAKDGB
GLEBDAGLLADGJAEGADHJEJHABHKDKAHDDAJGJBDGJAEGGBJEDJHABL
DGGAELADGJDLGALEGADJAHAEJHLEGABKDHDBGKHDAJADLGBJEHDAJH
JADHGLEABEJHKBHDDALGEGJAGLEABEJHJDGBDAGJDBLGDGBKADHJEA
HJDGJABGEJDAGLDBKHDBGLLBDGDBGKHJDADGALEBGKGJEAHKDAEJHA
AEGLKDGBGAJDAGLEDGLBGBKDHADJGKDBAGJDAJHEHAKDJADHDLHAAJ
DHDLGADJBHDHAJBEJHKBDHGALDJADHGBLDDJHAHAJDDKHAGJDAADLG
DJGADBJHDBJHAEJGLAEGHBLDEJGALGEAGKBDJAHDAGJELAEGDKGBHA
DJADLGGJDABLHDADJGJAEGLBDGGALEEJGBBHKDGJDAGLAEKAHEDBHK
GJEBGKEADJHAAEGLBHKDAGDLAJDGBDLHJDGALEGAGBJEDBGKLAEGKH
DBAELGJAGDGKEADJHAKBDHGBLEAGLEBKDHBHEJAGJEALEGAJGDDAHK
EHAJBDJHLBGELADGDAKHEAGJAHKDDKAGLBDHJEGAELGADKGBEJBGBE
GLDLGAEJAGKBHDGDBLEGAJLAGELBEHBGLDKBDGAHJDDALGAJDGKADH
DAJGBEJGALDGBDKHGBLDBDLGLEGADGKBADJHBJEHJAEGHJDADBGJHJ
EAAGJDJEHBAGLEDAJHDLGAEGJAAELGAJDGKADHAHJEBLDHJAGDDLGB
EJAGLBEGLDGBELGAEJGADKAHAEGLEJGAEKBGDJHAELGABHKDGBDLAH
JDJADHJEGAEAGLEAKHDBKHAEKHAHJEKBDHHDBLAHKDAJGDGBJDJADG
DGALDKGADAHJALDGDJAGBHJDHBDJAGJELAEGKDGBDKHBGJDBDJHAEB
LGADKHAHJEJADHLDGAAELGKBGDADHJDKBGDHAJEJHADGAKJAHDJAEG
DAHKDAJGAHKDKBDHAGLEDBKGAJDHLADGBGKEKBDHEBGKAHJDAKDHLA
EGJAEHHBKDDBHLKADHDBLHADHJADKHALGEAGJDDGJBAGJEJEGBDAHJ
DAJGJBEHGALEAHJDALDGAGEJAGLEAKDHAJHDDAHLADHJAGLDDHKBDK
HAEBJGDAHJBGJEDKBHKDAHDLGBGJEAJHEAHDJAADLGAEGJAHKDKADG
DKGBBDHKLHDBJEGAHAKDAGLEDGKBHAJDBHLDDBKHLADGGBJDEJHADG
BLDKGBDAJHLBDHJDGADBGLLGEABDKHKAGDJADHAELGHBDKLBEGGALE
AGJDDAKGJDGAAEJGADKHELAH

Challenge 1

10000011002233001011010121201100000010002232000010010121201
00000000111221230010021120012220100021220123120000120001223
22110011100101032000000000032023010000202020222000010000230
12000011200112201200000200000022300000111201230000001000112

23120000010000102230100021200123020000000202231220000000000
23022001110011132201000000000002233100001000023202000000000
02301200000001003000100000000112300200000000003201200000001
00300010000010000201230001001012000100001000010220120000000
20032303011001200231120100001200021012000010011130012000112
00102211001000001110320201010120003120311100121222121101100
00001230331100120021112020000011112102310100112200202230110
10112001212111001210222120010000100101230001001110123332010
10010121202111001002001012300111100012303200000110201120200
01100100301020001001212020211010000110002230000011000210120
00000011130012000001222230333

Challenge 2

AFKGOWTPY472DKCGMTXQ1805DCKHNTVRY852FALHNTVPY186HDCKSNXP720
5GEAKNQTVY681EKHBMSPX81Y6HFCJROTV248YCDJHPVMTY681FGKAOTWP53
Y7DJBGOQVT2608BGJEXSNR9Y16BJGDWQOT27Z4DBHKVUMP168YKECGNVTPY
681ECGKSPMW5Y27JFAITROVY481FKAINPWT14Z8AGKEWMPS0762LDBHPVNT
1Z59GFAKNUWPY274GBKFMXQS2074KEAINWUP167YBJDHNUVQ7Z24BDJHMWU
PZ482CJDHPOTV5Z29GBJEVROT61Y8CHKEWPNU274YDIJBMQXU51Z8DHKCNV
RTY671GFBKNPVU4Y72ALEHQTVM1Y67GFBKTNPV159YBJDHOTWR24Y7FAHKV
TNQ167YFKBGPNTV347YAFHLNWPT7Y24EBGJNPVT24Z9AHLFTNPV167ZKEBG
PMVT34Z8DAGKWSMP0681JFIAOSWPY836DBGKUMQW61Y7JEAHWNRS25Y7AFK
ISPMW167ZDBGLTPMV6Z38KGBDPUVNZ482BIJDPTNW724YAHLFTMQWY274GA
FJTQOV91Y4FHJAXOSR5207JFAIVRTOY716JFBGVQUN259ZKFAIPWMU2067J
AHENTXR2Y47JAFHOPXTY752CGLERNWS961ZEGKBWPUM0186AJHDPSNVY274
IDBKTNVP1Y48JHCDQTVO0176BDHJVNUQ248ZBJDINTWPY742AIKFWPSN106
8JHCDSPMW83Y6DGKBMVQTY276HFALTMWP347YJDBHTMPW72Y4DBLHPXSN15
8YEIJAWPNT247YCKGDQXUM4Z27IBJENUWQ72Z5KBDGVMQT169YBJDHOWSP9
1Z6EKHBSMWQ0716EHJAOVQUZ472JGCDUQOW72Y5JDGBPTVN91Z6FGJANVQU
Z592GDBJOTXPY284HCKDMWPS1Z96JDBGNXSR3Z48EKBHNPWU35Y7BGJEPMT
V924YFCHKVTPM2Z47IDBJSOQV2Z95BGJFTOVP86Y1KDCHPVNTY671FJBGQO
SV259ZBFGKMWPSZ671LGBDPTVMZ836BGKDTRMW724YEAGKXSNP1690BKDGM
TWR248YADJHPWOSZ582JDHANVPTY671HFAKWPSMY681FAHKOTRVY418AJID
OUVQZ247AFKGPOSW357ZAGJDUNPX247ZAKFGOTWP24Y7CDKGPUWN257YDGB
LMTVP29Z6EAHLQTWM0247AKFIPOSX41Z8GAEJPTVMY924KEBGPVTM4Z72AJ
DIPTWN824YAFJIQUWMY725BGDKMVUQ71Z4LBDGVPMS196ZGFAKTMPV0752B
GKDVUMQZ427BGJEMPSV159ZJDBHWOPS168ZCKDHMSWP38Z4BGJDSQNX916Y
BJEGWPNTZ274GFAJTQVOY572HDCJRSXNZ481GCEKQMTW5207GBDLNTPWY48
2AKGDWNPUY691BDGJPSXOZ472HADJORWT247YGKFATWPO581YGKECTXPM48
2YHJDCSXPM4720

madness's book on classical cryptography
unit 118: combination-lock cipher
last modified 2020-10-28
©2020 madness

Unit 118
Combination-lock cipher

The combination-lock cipher was introduced in the 2020 special coronavirus edition of the British
National Cipher Challenge. It is a fractionating cipher modeled after a combination lock with a number
of numbered wheels (think about bicycle locks, not safes). Letters in the plaintext are each expressed as
three trits (base-3 digits). Since there are 27 characters possible with three trits, spaces are included as
character zero (in ciphertexts they are written as ‘@’). The most significant trits (MST) (the first digit
of a three-digit base-3 number, including leading zeroes) are shifted some number of characters to the
right, with wrap-around to the beginning of the text. The least significant trits (LST) are shifted by a
different number, and the trits in the middle are shifted by a third number. Hence, the key is a set of
three numbers that represent the shifts. Each set of shifted trits works in analogy to one of the wheels
on the combination lock. After the shifts, trits are converted back into characters.

As usual, let’s work a short example for clarification. Suppose our key is (2, 5, 7), and that our
(very short) message is

COMBINATION LOCK

First, we decompose each character into trits. To help with that, here is a table of the plaintext symbols
and their trits:

_ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

MST: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

LST: 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

The decomposition of the message is:

C O M B I N A T I O N _ L O C K

0 1 1 0 1 1 0 2 1 1 1 0 1 1 0 1
1 2 1 0 0 1 0 0 0 2 1 0 1 2 1 0
0 0 1 2 0 2 1 2 0 0 2 0 0 0 0 2

Now we execute the shifts. Trits that roll off the end are brought back to the beginning.

2→ 0 1 0 1 1 0 1 1 0 2 1 1 1 0 1 1
5→ 0 1 2 1 0 1 2 1 0 0 1 0 0 0 2 1
7→ 0 2 0 0 0 0 2 0 0 1 2 0 2 1 2 0

Trits are converted back into letters to obtain the ciphertext:

0 1 0 1 1 0 1 1 0 2 1 1 1 0 1 1
0 1 2 1 0 1 2 1 0 0 1 0 0 0 2 1
0 2 0 0 0 0 2 0 0 1 2 0 2 1 2 0

@ N F L I C Q L @ S N I K A Q L

An automated attack on this cipher that is better than brute force works as follows. We fix the
first number in the key to 0. We vary the second key number from 0 to the length of the ciphertext. For
each choice of second key number, we decipher the text and calculate the index of coincidence of the
plaintext. For those key numbers that give an IoC in the top 10%, we also vary the third key number
and again calculate the IoC of the resulting plaintext. The best overall IoC wins. Unfortunately, it is
difficult to know where the beginning of the plaintext is located, so there is an overall shift of all three
key numbers that will not be found by this algorithm and must be found by hand afterward.

A participant in the BNCC suggested an extension of the combination-lock cipher in which two
or more characters are grouped together. During encipherment, the number of wheels is three times the
number of characters in each group. With more wheels, it is possible also to represent the key as a
keyword.

Let’s rework our example with two characters per group, and use the keyword CIPHER. The
plaintext has an even number of characters, so we do not need to pad it with ‘X’ or ‘_’. First, break the
groups into trits:

C M I A I N L C
O B N T O _ O K

0 1 1 0 1 1 1 0
1 1 0 0 0 1 1 1
0 1 0 1 0 2 0 0

1 0 1 2 1 0 1 1
2 0 1 0 2 0 2 0
0 2 2 2 0 0 0 2

The shifts are (since space is zero) ‘C’ = 3, ‘I’ = 9, ‘P’ = 16, ‘H’ = 8, ‘E’ = 5, ‘R’ = 18. Some of these
are longer than the number of groups, so we must take them modulo that number.

 3→ 1 1 0 0 1 1 0 1
 9→ 1 1 1 0 0 0 1 1
16→ 0 1 0 1 0 2 0 0

 8→ 1 0 1 2 1 0 1 1
 5→ 0 2 0 2 0 2 0 1
18→ 0 2 0 2 2 2 0 0

L M C A I K C L
I H I Z K H I L

The ciphertext is

LMCAIKCLIHIZKHIL

To break the extended cipher, we can partition the ciphertext into sets that are enciphered with
the same key using the original cipher. If the characters were grouped into twos, then every other
character forms a partition that was enciphered with the original cipher and three key numbers. The
remaining characters form the other partition; they were enciphered with another set of three key
numbers. We can then break each partition separately, then inteleave the resulting plaintexts to get the
complete plaintext. Since each partition may have a different overall shift, we need to adjust them
relative to each other until the textual fitness is acceptable.

Programming tasks

1. Implement an encryptor for the original combination-lock cipher.

2. Implement a decryptor for the original combination-lock cipher.

3. Implement the attack described above for the original cipher.

4. Implement an encryptor for the extended cipher.

5. Implement a decryptor for the extended cipher.

6. Implement the attack for the extended cipher.

Exercises

1. Encipher this text with key (9, 22, 3).

It was a very ill time to be sick in, for if any one complained, it was immediately
said he had the plague; and though I had indeed no symptom of that distemper,
yet being very ill, both in my head and in my stomach, I was not without
apprehension that I really was infected.

(from A Journal of the Plague Year by Daniel Defoe)

2. Decipher this ciphertext with key (15, 7, 11).

JIDJGFH@@IL@TRTJYCSBRFE@KWZ@WEACHBFQJILO@DNAETAKTFIDCU
BTKZRG@OHVIRRX@@KTSBUFCYAIHDIKNB@RHGBUFRUDJFHKXDKBIFCA
IWTSCAF@W@CIJFKV@JLGUS@CIRGKRTTGERHETFVCADIK@BVACREWCR
BZSRMAACBFFNLBLL@GKMO@IHERBTHLXBBTGRAASCRBRBJYCZFR@AZN
UA@SBUJP@GU@I@ACXKP@PU@KTHIYC@RXD@WNN@UBAANHUGJRHDLJOG
HUJICGALQBUCTCKB@HUHX@@GZNUB@YB@QM@BBTCR@EORHWVUI@ZBHI
FCRBTBISCASRAU@K@BJYCZFR@GTQU@CRDCRJKG@GL@KBHIYC@UXG@U
JJF@SIRURBRDJWEKCZS@Z@HCILXDCWNKBRBCIEC@JVB@BLE@AXRCDM
IBBAU@B@EPVCR@VBFIQHCLKUL@AQ

3. Break this ciphertext that was encrypted with the original cipher.

SFI@DWDBHJRJO@CACNKRDIHBMWCQDAKUEBRSCJTDFNR@DCRC@KXUSK
@FJTHCTAAEIKQZT@YWSFJIEUW@ZBW@CLQAOKRFXSFRFCS@@HR@DD@L
B@HJFF@JLCERXJA@OT@TALAIH@HXHBEC@KB@KD@BSCD@OZCET@RBOT
BKO@VDIXDLWJJCNKHQLUIBVCWAQVNI@MNEJORLCTBEVCA@NUBBTC@C
S@FNRARVFNICTDIBH@SFA@ECIOKV@A@W@BFBQBILM@F@VT@ANJRB@C
@LSBXCBSHCRDCJ@RBXBRU@CH@LOIJQLIZ@U@WZAFAISKVCD@EXDFBL
R@BSCB@HWWROKA@HWQ@JIVACUL@HTBCDORNOE@EIYDTI@OLR@@LOCB
TECAIIC@N@AHUBA@CLUKRHECCIRHAUAEU@UEDC@RI

4. Encipher this text with the extended cipher and keyword GARDEN. Feel free to use ‘X’ to mark
the end of a sentence, and ‘XXX’ to mark the end of the message. All other punctuation should
be discarded.

Every afternoon, as they were coming from school, the children used to go and
play in the Giant’s garden. It was a large lovely garden, with soft green grass.
Here and there over the grass stood beautiful flowers like stars, and there were
twelve peach-trees that in the spring-time broke out into delicate blossoms of
pink and pearl, and in the autumn bore rich fruit. The birds sat on the trees and
sang so sweetly that the children used to stop their games in order to listen to
them.

(from “The Selfish Giant” by Oscar Wilde)

5. Decipher this ciphertext with the extended cipher and keyword VEGANS.

@RDLLB@@QLFRCUFWTFLKIOBFIXAZJVN@FJBLO@IK@FUJJGECEARGDO
CCHMSCSXEJHIZC@QO@CUFCQTSLI@RZCNLSRLECSRHGFAC@KFHILR@X
STHCURI@BHXSOBTBCU@JQEFIIVETIBKZLSCWIBCIFUNA@DTG@XIBGX
KU@D@R@JISPPRAOKDGAYOSFLAXBRABVDJGBGOE@@E@BJNPUKKCJLK@
@AGHRAUKTKH@DNL@BDXF@AVQSCL@WRTIERFEB@BLIASQWBRXNLORAN
H@MWRRH@UHKE@@FJCBHHJEACEINXELATYBLL@EEK@EHIEBKWDAYUAI
WADKCTJBHAFMP@GR

6. Break this ciphertext that was encrypted with the extended cipher. What is the keyword?

BCHD@ETTW@BNOATNU@@Q@KXKCOBTOWDTL@SCHKLXAFQVSFC@CLEJFA
ABCORZWHKAD@YFHCCDIRKTCW@IISS@UBFZTWCB@FUEICXA@FIRWTTL

W@FXAIEHD@QBNITCA@SURL@IFSUCBFZLACRKNIQC@USRME@VZVHLBZ
SUAD@TB@FU@DOSDDSBZR@TYC@@CO@EWKTC@AGEKUUBRSBIC@EXA@EB
I@XE@EBWTCKAMDDUYEKUR@@BTFDEEXARGCBWBU@@KZ@UULAQKTXIBB
EORUDCZ@ZO@BYMENRFJHCNCAXAACMBCX@IKSIRC@BSINR@HUXBIELJ
ODNSUTL@FRCRITRIDRLH@K@BM@@P@DKD@@XCDRGB@USJP@ASLBDE@@
IFICDSLGCJIT@USAJHEWRBTBBD@MDKEBBFCBO@AZCIOBFAJFCIIIUT
@JISI@@RH@UIJLXRZK@VEGFHCKHIARDECURZAS@UCWAFCE@NZTTSVD
CISEU@WBM@BXF@NT@@@D@SACQBSQLEBRI@QKLFHQTBDCS@RJD@KXAL
ITAK@FGHPYKOCRCICAPEAL@DG@E@WFIRSK@RHCEFKHLRLI@RAWAAIN
GBLNDX@@KAXCCMLDL@HGRK@GFIWDTRUYT@FDEEBGJ@DPJWIVIIACIC
UTEIRCAIDTL@AE@TICCATRKHCYYGDNCWT@YFR@ANUCTTJ@I@VUCCC@
ARJCCCIY@SIC@KRT@B@KR@L@AGJ@CNWBF@KEIZKEEIJZNABCYC@JMD
XRFATBKLC@@TDLTUBMTVCM@@ICUWMARIN@SUCEESRXJNLAVJ@YIE@B
YBITTALNEGRGUAJ@CTCACCVBFSTIRRS@XRAW@BHFBFEKCBBZTBUKOD
EEIHENCFC@XLBETICEHJSLWSRTKCFTVYEHWIKFAW@TFAOCSFCIQ@BC
BJCHK@TVKLSRDDAWBNZYT@QEERBDTTBC@QKLE@AXHC

7. I seem to have made a mistake, and the following ciphertext was encrypted with a broken
cipher that only has only one wheel. Can you break it?

GSRFTUDURFTRORFTSXAR@OARDQOOSXCAXICDRFTSRFLZI@MSIGDSJX
@FTSRGROSX@@MSICDRFTSREM@MXXIGTUABRBOEGRH@@YFRFTSRAEGD
SCD@EB@FJBWD@OFIBROIFILAIFTRORFTSXAR@OARDW@DQOOSXCAXI@
MSIFTSRAEGDSCD@EB@FJBWD@OFICVWGXI@MD@FTUDTOIH@@MSIGSRD
ARODSSIDPABRBFEDIEGF@FSRJBSXFIH@GSRDARODSSIFTRORFTSRAR
OFTRCFIBD@OR@MSIFTRORFTSRFPDRFAYNDGJXI@OEGDSICFRGTUABR
A@PFJXIFTSRAIQI@MSIFTSRDUBKXRH@GSRDARODSSIFTSRDRMJXIEB
@@MD@FTSRGUDSOIGTUABR@VEGREGJX@FTSRFJROI@MSIEPFKRFTSRF
ILDFIEB@EGF@BOARORFKUEOIH@GSRDARODSSIBWGRFW@@VASSIDJVR
FW@AGFARFTSVIEB@@MD@@LDDJVXXIHHH

Challenge 1

CY__ALHYBXLDBJQGTQWASQUWBCYADMTQFAD_Y_XGAFDXWPTELAROTCIN_MI
WFI,OBKIBH_AMCHAQDHE_JDFBLKDQFEUKUJPDGADODVDQXBIQ_LIPEYFFRR
K_XSA,AQB'I_TNW_PIPNG'NTB_UQQB'X_D!G__._,GW_UO_TYU_!QFDHQ_!
WDJPBFQGM_DEC,AEREQCPDSIAVBMLQTQFWPMC_DSX__DYTALBD_FGP'AQRI
ZBPDEMPYEBGIG,CLSCPDAMECAE_U_IED_DQ!GXN?_.GTDIJ_ACISDEBC_EG
PEHE_JADRNMPK'U_Q__.A_FTXKGFOI._QF?GH,AT_YED_DQNGXLIBYARIBD
EBC_QCDA_AFEFAPED,CQ!G_YEGBEL_TAFWHIYFOEHXTD_?!_'_DDITH_HQI
FMACDDGPAJDCEFT_HGQMHD_K__P,C,EAT_IFF'NDB_AQANUXJPVEMMPITCW
HRNWNYKPAF?GHLA_TIA_DNQFNUHHET_UDBXADNGGCDHQFT?XBJU_DAFGHMQ
PILAPOELXD

Challenge 2

KFHASWBKFRCOORNDFA@SIMDCC@EAPWAHCSCJR@@BFALE@SII@CQIGZ@MFUK
T@INAKNBU@SBN@EDFHRO@I@COORWRW@UBERE@FOXCSI@KVBHAREJ@SSX@PQ
ID@N@FBT@TOAESEB@PTQCRRI@A@Z@RBETEI@FUITKLE@GICTBI@QVBENFLI
C@BFBREOFTFJ@CRSB@UASABLRQ@NA@BKMAXXUNM@THJSIFI@C@A@SETY@CR
IIIUR@LKTTNE@MAEBTJRCDAKLING@LN@INC@UDARAQDAYZOUKIKG@ROBTOC
AYBI@SWEW@ALD@RHELFILOR@GBD@O@ZFMO@TIEALRTBSNI@REW@KLCHWR@U
HOLDCB@QEAU@BE@FIW@CSLOUT@RRCRTCBGGBANFBODZ@KMOWRCBGGTBMGBQ
ANBIKSIRUMOBCRTIMWJJLEARF

Challenge 3

The ciphertext alphabet has been mixed with a keyword, but the plaintext alphabet has not.

QRTANTXWUPNORQJR@QRAQSBIINEFTRTBCNGWCYKUFZTRCOOOBOCRCTD@TNT
PGTQCCHIERKIOVRXETCGUSCYYRBBSETFNTDXNTSURYNUQTZCJRRFOGAOYOD
JNRDONKOOTQMSRUSTEXOCWORTZECU@TAHOTDN@FCINU@DNNJTM@P@Q@GCTF
@IIDZXOGBGEONTOKT@OURFJTRW@INPRLNTOUGNEEMNUVUGSRGZNTNERKGQB
CZNREQTDIAGTNFHTUSTG@EDKGRFRINRMZONNJRTFTX@RGQCZNT@KNPGRJTP
KSNTIRCBEQRKRTREKLTVYNXTTONTOPUHHUQDOIUNRTZPTGSGORG@DT@NOVN
VSRQEOBRCRAIDXACITRJNNOTNNCCXJOLMDTERBNUKYOGNFRTFCXKQBQFBCO
C@PXU@WNRNTUXFONNRTQWWTVGPFSRD@XNTHQLTDSC@PAU@INVNOPTNHC@R@
A@IRSA@VNTUTMCTEFBSEDFUCT@VQKBUEN@RSTKXGRSSPTSNEFGQRCSTOAQU
CNQ@QJSPTMYHTCBESUFNFCOSQPHREQINNNQURNODMWRSWRFGRQOSRSIQCVD
CF@TREWKOMKORKMVTRFFKEXBWH@SDSXT@XSQTNVCVNTFOT@OPRCESQRTNRC
GTGOXZDJGUPCN@OTCZZTELNOCYWR@XSQTNJTVNONNTCCYWOOJRCQGGFFEPB
TFURMQX@CRTDJNXCCNRHZ@SCKQSJO@VOVKRUNOFINPTZCTREP@DXOUUOQOT
NSRNFRVKSNTAZNQBGRCUXSTVGRCGRRONGPAQNTPWPTVNRHJECXKFNAJDNXC
TSCJNEUXOGNTQWFFJ

Challenge 4

Both plaintext and ciphertext alphabets are mixed with the same keyword.

@CLE@EEEEBBMBSYMCTLBVJKQULICZ@CT@EVOYEBHNTLEBUEH@EWJERRJUKZ
R@IE@DBFRDUN@ILALZMA@EGPEEAYUAJC@@M@@EDUAEAXKIBYPESJLMGB@LS
G@QM@MVL@CDAKSUBANNXRDRMPRYMLIGNEBXEJL@NILVQRBYOKARUKEUZAOL
TFB@BVJIYLAFHLRCTRXENK@UKMVBAMVRLMHNTE@RHFMP@BVFKHAFWJEIJBL
NGXLOU@IA@MIGL@CERUENJYTJDHNM@XUFCYUVNGNDMALHG@FTDETBRJ@MAT
LGRHLAGLRQANRWUZMLL@MJBIEULN@MATLELKX@EUUJEABBTUAS@THEAJLTN
XHZULBAMGRMDXVZ@MYTEGRLOLMHLENOGWRLMBUG@MUXGX@M@OLBKIUBHTLE
IJJZT@MSLRUW@ELMGRLZJHFMP

Challenge 5

Plaintext and ciphertext alphabets are mixed with different keywords.

PFVHOIBDHTDMSKC@EKZOGLUYKTX@TLYVAKJBRYBY@YESMOAKVEYXYWTAAZL
DCUBMAACWKBMYYBEASVAZYAEKYFZBTDJHLNUDXKEFKAYYEMBCYABLBYQE@Y

AMCAAUIMOFGDAJWCTRDPBAPDAPKVDEM@XLBFMAETDBMFXJEAYAECLIYZLKY
HH@KEBYSDBNDO@BX@HRFUMBXPSNBRGEABGPMUFFIA@CAMBEY@HEPAKBEQIL
MCDBCXX@@ODEUOJEESQAXI@CHESEAAZFAVMZZELIARHF@SLKCDBYIAESLKB
LZJERFBIAQJFBUOO@EYZBEMJCIASGAKGCU@ACNAAYICAPBRYUPNAHFIBEBZ
CVMOZBE@QL@EMYELEFJDYKLESYTDYLXVBCOBROENFDUKXSVIGLPAS@RFV@K
XXBFADHFYQJFEAMJHUSFIUQCDVVDXLKSDAKMRYSIUDTIJYUIBKHWDMRFYYA
QKEQBEHLEKDBKHGNKLWEYG@@RECMOMKRHBBCKTARMMFO@IAABFQVIEFBLFZ
@@KMEEJECLYAGYAFPASYKAZODVMKDURFGX

madness's book on classical cryptography
unit 119: chase cipher
last modified 2020-12-04
©2020 madness

Unit 119
Chase cipher

The Chase cipher is an invention of Pliny Chase from the 1800s. It begins with a 3×10 grid in which
we place the alphabet, mixed perhaps with a keyword. The remaining four spaces are filled with other
symbols; we will use the digits 2, 3, 4, and 5 (0 and 1 look too much like O and I). The coordinates of
the items in the grid are written above and to the left in this example:

0 1 2 3 4 5 6 7 8 9

 0 K E Y W O R D A B C

 1 F G H I J L M N P Q

 2 S T U V X Z 2 3 4 5

We take our secret message:

MY SECRET WORD IS OBFUSCATE

We need to decide on a period. We can take the entire message at one go, or break it into words, or
break it into blocks of the same length. For security, we should either use the entire message at once or
use blocks whose lengths are all the same. For this example, we take blocks of length five, and pad the
last block.

MYSEC RETWO RDISO BFUSC ATEXX

For each block, we fractionate by writing the coordinates of the letters in two rows, like this:

MYSEC
10200
62019

We take the bottom row and treat it like an integer; in our case, the integer is 62019. Then we perform
some mathematical operation on that integer. Here there is some flexibility, but both parties to the
message must agree on what operation to use. The only requirement is that it must be reversible, so that

the recipient can decipher the message. For example, we might multiply by 7. Our new set of
coordinates is

010200
434133

Notice that we add a zero to the beginning of the upper row, so that both rows have the same length.
We could add any of 0, 1, or 2, and should choose randomly, for security. The new coordinates are
converted back into characters, according to the table.

010200
434133
OIOTWW

One possibility for the full ciphertext is

OIOTWW VRA5WB WCOGUB ZDGX2W XC4KS4

The Chase cipher is very flexible in how it is set up. The length of the blocks can be changed, as
can the mathematical operation used in the enciphering. With another choice of operation, such as
taking the first few digits of the logarithm after the decimal point, the blocks in the ciphertext can be
the same length as the blocks in the plaintext, rather than requiring the addition of an extra digit, as in
our example.

Python tips

In the random module is the function randrange(). It returns a randomly chosen integer in the range
from 0 to one less than its argument.

Reading and references

Pliny Earle Chase, “Mathematical Holocryptic Cyphers,” The Mathematical Monthly 1:6 (1859) 194-
196, books.google.com/books?id=SVNLAAAAMAAJ&pg=PA194

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 203-204.

Programming tasks

1. Implement an encryptor and a decryptor for the Chase cipher. Separate the mathematical
operations as their own functions, so that you can choose which operation with each use of the
program. Implement multiplication by a constant, as in the example, and any other operations
you would like.

2. Implement a dictionary attack.

Exercises

1. Apply a dictionary attack to this ciphertext. Can you find another way to attack it?

U5EFA3 KEBPU4 AVMIJM KIGBJU UOHKI3 2UUIFE 2AHIUP WTORBU
UUJAK4 V5EFA3 2AJTMA DXXLBY MOIFMC BUTOJM DBTPUP V2BGKI
IHQTOR NKODQI DSSGBG ZCALQI UIFMGS NCHTAO GGINIS VOHPIO
ZLIPAR NKODQI ASWFAS JUTAHY TBGNTH DQTBAG GUENJB AEB2NI
YJSTBU XTRIQI V2FUBY KEFUWI AGBPLY JOIG2F DUBINI NRATVM
GUGTIF NAJTOH MRAVMA NCBMTR ZOTWHE NAHMSA IQIAYG GTIKIG
VK2PAG GSTBBG SYTNTH VIFUIE WLRUFU WSTPTS ALZIGE 2TRUU4
MIPJUU SENKIG VKINIS GBLAIF DMNTSL SZIJIG DBMAIF 2AIGDL
DWAPTA ZMIVMA JAOTWF OMAHMS WUQINI NBTUHM 2NWREM VITRLM
GPTHMG YINDOT MJDBOE BIWURF GT2COO GHIJFU 2JBUNT VI5INI
2RATSA GNIADA MGJJTY U4OIFS WOEMJ4 IBTUHM NPLIWU SQINLY
GLPCJT YHHTKE NAHMMG AF4OIF SWOCOO WGUQQI AVCLWI IK52NI
IRATSA JPE3EI BMBAHM VEBOLM GUSEKJ ZIVMWU OOLIKT YHNUQM
WNLIKT YHJVIF DUIET4 MAIGBG NAIHIF IUOONF FIUQ2F AUIFAS
MUTAGD GBPL2F IAJBPI DZJIOK AWTFIG 2CQIAS YIHRFU TSTKEA
NBKIPI NK4MGD MIGDLS WAK5IF ITRTBU XOIVUR SBHEMM VOQEUP
AIBBCD OOLMMC BOEOWU 2JIUQY TLPCJT JH2KEO THDQIA VMPIMM
GLPLIS F4LOCD 2POWIA FYT5IF BEARUI DVINIP ZUOSTH DVINCB
YEHDSA MGFINI GDRTAG VFEACD ASMGFM WFUBIF NAH5IS GFBMUF
DUWIUY GLPCNO WMOFUS ZIGURE KLMBUE AIBKIG ZISMGD TFCEMG
TEIBKT YPIV4T UIFBOC WUQIFA VETGBG WTMTDH ITAOIF MIKNIF
SUBUNC KISV5I ORJT2E GLQIOB TUEIEA 2BKIPI ASMGFM TPAEHL
AZLUNC ZISV5I MALBCI 2JUGKI 2HVMMG AFINEE NTBFMG MEOBOR
TLJEMU YJTGOT VGESTO AMNJTM TFUWLM WNLEME BLILAG ODO5IF
ZEARUI ASMGFM WNCCEH ADSMGD FINLFC WOSTHS SMGFIF ZEDRUI
YHFEAC SDWXXV

Challenge

JQQJYJ A4OJ5F NDUAPF OCQGEF HOKVXC REOAXH E3RM5P CFRQG3
JZ2PT3 RZIDPT QGNNUR JJDOXH RSDLS3 WJ5FTU D23QG3 PQZS3U
TWIDPT DGKYY3 JCJDOJ AP3URT QGKC5V CNSCHT NJY2IW C3Y3Y3
GURAAC RCEA5V 5NSKVQ YFZJTU H3XCGT DGNS3U TWJINP T5IO5V
Y3GRMA OMU5NJ AAHA5V CEFQG3 RAHSYJ ZS25ZF NCXCHM OYFKNF
GYUXCG TSOQG3 JYQZJT CAFUDP KX23RF RSDPYM HC5EAT YFY3UX
RSFHFT DHXCKP OMRQG3 GR54AC QT2XCG LD55QG BHEA5F QYH2LJ
Y3ULAC 5AC3TT NXCKOJ YEA5FT QG2WD3 AROAXH D3RFXU R3DXVD
JILJ5V EOUUSF O2ZTMU GXSOMA YAY2LJ YEAQG3 TNQA5J QYCQG3
YZMLPF WMHQCV ZX23RF 35JWAA YKCWJU BHAQG3 RNQA5J QXKCWP
5FRQEP OMSTDP BHHWY3 KSMLMT JJY2JT 5VUTXU KJWFFR TUTI3U
WJLRX3 CHKGRU LNCTRF D2EYVM TPJDOJ GSZRTF BMQG3R ZIGHXF
OHD3Y3 YUSP5V 53YHX3 GY3QRS C2OAEO OHHWNQ TA5J5V RULP3U

RRQGKY GYNSKC RWPYNJ EHZKHA NQYCHT ZPDODT QG3GRU NMDUZJ
L23RFX NLJU5F HCQGNP TDYCWJ Y3UWJX EAY3XC TGUTPQ ZPICRW
YEAUTT QG2WD3 LRDMT3 PXCGFH TMD2MQ LVUDFQ 35XAHA WFECQQ
BCKV3R 3MJTRU OCCCAC CPDENF JFFFRT GMSIKM BHD3RT QGNXHR
BMJXEO QOAIOD LAEFYU NQZIDP YCPNSV 53RGXU HENHWU HHD3Y3
YAQAWU GYAQG3 BHKTSF HZ3OZF GYCHXU NLXYJT D3YMCV NX2S3U
GA23DP WIOZEF HHHG3R CCPNSS RPQCVT YKVXCG LDLIG3 LKAMCV
GJ5QCV RQDP5V CESDAW OHCPEA RNQATW E3RVMA QSYC5V 5NPYNJ
QHOANY RPJU3T EGKYY3 NCJDOJ BXDH3T DG3XUT R53RIF QA2EAU
ZIGCLY RI2LJU OHPPPQ CKHAI3 PLXYIW EGKCGR RFN2YQ TZJWJU
DSG3ZJ T5KUDY EYCQG3 OYXUWP CFPD5F GYCN2Q ZVHG3R JPYHCO

Part X
Proto-mechanical ciphers

madness's book on classical cryptography
unit 120: disk ciphers (cipher clocks)
last modified 2022-04-14
©2020-2022 madness

Unit 120
Disk ciphers (cipher clocks)

Consider a device that looks like a pocket watch. Around the outer rim are symbols like letters and
digits. Inside that is another ring of symbols. The outer ring has m symbols equally spaced around it,
while the inner ring has n symbols, also equally spaced. The device has two hands like a clock. When
the longer hand moves from one symbol on the outer ring to the next, the shorter hand moves from one
symbol on the inner ring to the next. In other words, the hands are geared in the ratio m:n. The device
can be used to encipher a text by rotating one of the hands clockwise until it points to the first plaintext
symbol; the ciphertext symbol is the one to which the other hand points. The first hand is advanced to
the next symbol in the plaintext; the second ciphertext symbol is indicated by the other hand. This
continues until the full text is enciphered.

The Wadsworth cipher disk uses the outer ring for ciphertext symbols. It holds 33 symbols, the
letters A-Z and digits 2-8. They can be removed and replaced in any order. The inner ring is for
plaintext symbols, of which there are 26 (just the letters). Rather than having hands, in this device the
two rings that rotate in the same direction under a single pointer. To encipher a text, the inner disk is
rotated until the plaintext letter is under the pointer. The gearing rotates the outer ring to bring the
ciphertext letter to the pointer. This operation is equivalent to the “cipher clock” described in the
previous paragraph. The disks are always rotated in the same direction, presumably counterclockwise.

There is no evidence that there was ever more than one Wadsworth disk in existence. We do not
know if it was used more than once. It was invented by Decius Wadsworth in America in 1817, more
than fifty years before Charles Wheatstone reinvented it in England (too slow, Britain!).

The Wheatstone Cryptograph is better documented, especially by Wheatstone himself. Its outer ring
holds the plaintext symbols, which are fixed in place. There are 27 of them, the space and 26 letters.
The inner ring has 26 ciphertext symbols, which are the 26 letters in any order. The initial position
before the first letter is enciphered is for the longer hand to point to the space and the shorter hand to
point to the first letter of the mixed ciphertext alphabet. The hands are always rotated clockwise. To
encipher a text, the hands are rotated clockwise until the longer hand points to the plaintext letter. The
shorter hand points to the ciphertext symbol.

Wadsworth cipher disk. Photo from NSA.

Wheatstone Cryptograph. Photo from eBay.

In his paper describing his device (citation below), Wheatstone introduces a novel way of
mixing the ciphertext alphabet from a keyword. It goes like this:

1. Write the keyword in a row.
2. Take the 26-letter alphabet and delete any letters that appear in the keyword.
3. Add the remaining letters in the alphabet under the keyword in rows with the keyword letters at

the top of each column.
4. Duplicate letters in the keyword are deleted.
5. The mixed alphabet is read off in columns.

Here is an example using the keyword WHEATSTONE:

W H E A T S T O N E
B C D F G I J K L M
P Q R U V X Y Z

The mixed alphabet is

WBPHCQEDRAFUTGVSIXJYOKZNLM

The procedure for encipherment on the Wheatstone disk is

1. Remove all punctuation from the plaintext. Keep only letters and spaces.
2. Either:

a. Put an ‘X’ between any double letters in the plaintext. If the double letters are already ‘XX,’
then put a ‘Q’ between them.

b. Replace the second letter of doubles with ‘X’ or ‘Q.’ Be sure not to accidentally get a
doubled ‘X’ or ‘Q.’

3. If the plaintext does not end with space, then add one. The last ciphertext letter serves as a sort
of checksum.

4. Position the longer hand of the device so that it points to the space on the outer ring of symbols
and the shorter hand so that it points to the first letter of the mixed ciphertext alphabet.

5. For each plaintext symbol (letter or space):
a. Rotate the longer hand clockwise until it points to the plaintext symbol. Do not go all the

way around. Let the shorter hand move on its own, according to the gearing.
b. Read the ciphertext symbol, which is indicated by the shorter hand.

Step 2 is necessary because there is no combination of ciphertext letters that the Wheatstone disk can
decipher to a repeated letter, since the ciphertext alphabet is shorter than the plaintext alphabet. This is
not true for the Wadsworth disk; for double letters on that disk, we would simply rotate 26 more steps
for the second letter.

Let’s look at a short example and encrypt this message with the Wheatstone disk. We will use
the mixed alphabet from the example above.

SECRET MESSAGE

First, we have to prepare the plaintext:

SECRET_MESXSAGE_

We begin the encipherment by putting the hands of the device in their initial positions.

The first letter of the plaintext is ‘S,’ so we turn the large hand clockwise 19 steps until it points to ‘S.’
At the same time, because of the gearing of the device, the short hand also moves 19 steps and lands on
‘Y,’ which is the first letter of the ciphertext.

The second letter of the plaintext is ‘E,’ so we turn the large hand 13 steps clockwise to ‘E,’ while the
short hand also moves 13 steps and lands on ‘E.’

Since we always rotate clockwise, to encipher the next letter, ‘C,’ we have to turn the large hand most
of the way around the circle. The short hand indicates that the next ciphertext letter is ‘Q.’

The process continues, always clockwise, until the entire text is enciphered. By the time we get to the
space at the end of the plaintext, the short hand has moved so far that it points to ‘A’ in the inner ring.

The full ciphertext is

YEQORNCXFLHMRVGA

The Pletts Cipher Machine was another cipherclock based on the Cryptograph. Its innovation
was to mix both the plaintext and ciphertext alphabets, to make breaking its cipher more difficult.

The astute reader may have noticed that these three devices give us stream ciphers. Let’s
consider the Wheatstone disk. The internal state can be thought of as the positions of the two hands,
(hlong, hshort). The initial state is (0, 0). The cipher is factored into a stream cipher that corresponds to the
disk using the key ABCDEFGHIJKLMNOPQRSTUVWXYZ, followed by a monoalphabetic substitution
cipher M that uses the mixed alphabet as its key. For each character pi from the plaintext, which we
think of as a series of integers (space = 0, ‘A’ = 1, ‘B’ = 2, ...), the action of the encryptor is

x = pi − hlong mod 27
hshort = hshort + x mod 26
hlong = pi

ci = M(hshort)

For the Wadsworth disk, exchange the rolls of hlong and hshort, and replace 26 with 33 and 27 with 26. For
the Wadsworth disk, we also need to specify that if x is ever zero, it should be changed to 26; this
allows for the encipherment of repeated letters, which is never done with Wheatstone.

Let’s now redo our example encipherment with the Wheatstone disk as a stream cipher. Start
with an internal state of (hlong=0, hshort=0). The first plaintext letter is ‘S’=19, so x is 19 − 0 = 19. The
internal state changes to (19, 19), and the output of the stream cipher is 19. Applying the
monoalphabetic substitution gives us the first ciphertext letter, which is ‘Y.’

W B P H C Q E D R A F U T G V S I X J Y O K Z N L M
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Next is ‘E’=5, so x = 5 − 19 = 13 modulo 27. The internal state becomes (5, 19 + 13 mod 26) = (5, 6).
The output is M(6) = ‘E.’ Then comes ‘C’=3. The internal state becomes (3, 5). The next ciphertext
letter is M(5) = ‘Q.’ Etc.

A more interesting way to define the internal state S is as the total number of steps taken. From
this point of view, the encryptor does these things for each character that it enciphers:

x = pi − S mod 27
S = S + x
ci = M(S mod 26)

During World War II, the Danes used a derivative of the Wadsworth and Wheatstone devices, called
Urkryptographen (Danish for “clock cryptograph”). Like the Wadsworth disk, it had two concentric
rings of characters that rotated counterclockwise under a single fixed pointer, and the key was written
on the outer ring. Like the Wheatstone Cryptograph, the plaintext alphabet contained a space which the
ciphertext did not; therefore, double letters had to be disguised with ‘X.’ The letter ‘Q’ was used to
indicate numbers, which appeared with some letters on the plaintext disk. The two letters ‘X’ and ‘Q’
are not used in native Danish words. Unlike either of the other two devices, Urkryptografen had three
additional letters in each alphabet: ‘Æ,’ ‘Ø,’ and ‘Ü,’ so that the rings had 29 and 30 characters. The
plaintext alphabet was also mixed, and there was a number of preprinted disks. One such plaintext
alphabet was (where ‘_’ denotes the space)

_ØACUHDGVMKBÜIWRNPOZÆEXFSYJTLQ

Urkryptografen. Photo from Museum of Cypher Equipment in Fife, Scotland.

Reading and references

Charles Wheatstone, “Instructions for the Employment of Wheatstone’s Cryptograph,” The Scientific
Papers of Sir Charles Wheatstone, The Physical Society of London, 1879, pages 342-347.
archive.org/details/scientificpaper00londgoog (the last two pages of the article were completely ruined
by Google in that copy), books.google.to/books?id=CtGEAAAAIAAJ

William F. Friedman, Several Machine Ciphers and Methods for their Solution, Riverbank Laboratories
Department of Ciphers Publication No. 20, 1918, www.campx.ca/Several_Machine_Ciphers.pdf and
www.marshallfoundation.org/library/methods-solution-ciphers

James Stanley, “The Wheatstone Cryptograph,” incoherency.co.uk/blog/stories/wheatstone-
cryptograph.html

William F. Friedman, Six Lectures on Cryptology, www.nsa.gov/Portals/70/documents/news-features/
declassified-documents/friedman-documents/publications/ACC15281/41785109082412.pdf

“Ciphers and Cipher-Writing,” Macmillan’s Magazine, XXIII, Feb 1871, pages 328-338,
babel.hathitrust.org/cgi/pt?id=mdp.39015004979913;view=1up;seq=340

NSA file 41788379082740:
www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/patent-
equipment/FOLDER_515/41788379082740.pdf

Basic Cryptography, Dept. of the Army Technical Manual 32-220, April 1950, section 142 in chapter
11, www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/
publications/FOLDER_238/41748889078809.pdf

Niels Faurholt, “Urkryptografen (The Clock Cryptograph),” Cryptologia 27:3 (2003) 206-208, DOI:
10.1080/0161-110391891874; this article is available also at www.jproc.ca/crypto/crypto_watch.html

Greg Mellen, “Cryptanalyst’s Corner,” Cryptologia 8:1 (1984) 55-57, DOI: 10.1080.0161-
118491858773

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 195-198.

Auguste Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires IX (1883) 5-39 and
161-191, www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf, www.petitcolas.net/kerckhoffs/
crypto_militaire_2.pdf, section IV.

Donald W. Davies, “Charles Wheatstone’s Cryptograph and Pletts’ Cipher Machine,” Cryptologia 9:2
(1985) 155-160, DOI: 10.1080/0161-118591859870

Programming Tasks

1. Write a function that mixes a ciphertext alphabet using the prescription of Wheatstone.

2. Implement an encryptor for the Wheatstone disk.

3. Implement a decryptor for the Wheatstone disk. Think about how to handle double letters in the
ciphertext.

4. Implement a dictionary attack on the Wheatstone cipher.

5. Implement an encryptor for the Wadsworth disk.

6. Implement a decryptor for the Wadsworth disk. You do not have to worry about double letters in
the ciphertext, since they cannot appear with this cipher. To handle double letters in the
plaintext, advance the device 26 steps between them; the shorter hand will return to the same
place, but the longer hand will point to a different ciphertext character.

7. Learn Danish and implement a simulation of Urkryptografen. Brug det for at skrive i sifer din
favorite aventuren av Hans Christian Andersen. Skift din bakkeopstigningangreb på
Wheatstone-kryptografen (Unit 123) at tilægge de tre nye bogstaverne, og brug angrebben din
at løse siferteksten din.

Exercises

1. On average, how many characters are enciphered before the Wheatstone disk passes through its
initial configuration? Use your monogram frequency table in your calculation.

2. Encipher this text with the Wheatstone cipher using keyword CONVOLUTION.

Viewing the Wheatstone Cryptograph as two rotating pointers is only one way of
seeing this cipher. Another way is through the lens of modular arithmetic. The
modulus for the plaintext is twenty-seven, while the modulus for the ciphertext is
twenty-six.

3. This is the example ciphertext from Wheatstone’s article. It was enciphered with the keyword
FRANCE. Each paragraph is enciphered separately; i.e., the disk is reset to the starting position
at the beginning of each paragraph. Decipher the message.

PZLSPQREQAJDITFBUFZOHQOSUQUDIKITORTWEZACMTPLERAUESKGSO
FGFDKHLSJIRKHFHMFADAYIVUOHAOBLNOGREJAIBKMPJZTMJABQCNFP
OMYHYRCZDCWBXUBZ

ZBILIJTEJYSPFDLCXETKQASOXOUNNODQJCWECLXPUYIEMMCMSYVCFP
OKWCDEDVDAGLPEEKNAGVKMNUULSHXYXYVGFQPUYIORQKLPTCZHHK

ZBKUPVSWZWXAQXDREKTKQASOXOUIRSKOMFSTIIXGWTQJJVDYFNAHLS
IIXIAGQLZXVOGNHGRBUOHYZOOPWVYDDMQJKFMOBJPDYVRBAWKGWSJU
RJGITOWTVEZBHSOSLVUNBCHQSOTEIEBDQMGWHGJAMISXFIFBBPAVPE
SVCJUTAD

PZLPTYVXQXDTGLTTAFCVMHOMBINJKWVYAZOCQLAIUKFEGFNCNFIZHH
KVZYQUGLIVENKAHTRVFVEBWHWLRYCMLXWSYSYJHUFSFPOKEGZRXLUB
FT

4. Break this ciphertext with a dictionary attack. The keyword is a ten-letter English word. The
cipher is Wheatstones’s.

ZUKMNXQCDJKEADWCJVQHKCWNGGFVMAGQFEOCOWOIXTVIAKJPNIJJXU
UQKCLBXVABOFIAATPQHIVKJQYUWZQRZKXWXYZVILALHDSSIGGMQQVK
ZVYCVZUPMHRTCTJXCFXBIJGLNUVWEBTJZTOQLIKPRYEDCXIGDMETEY
YPOWFEBARSZZCOHWPABUIZCLWJJYQQKGPTTLWAIZUKXNGWDVHVDXUX
EXEBJWJPPSXPNEPUHRHTILXRKSGXKWMCZFZMBTVMNUDCDVLAFCQRRM
GGFOUWAHVXHNHABCUPXKZOABAWMMZGFVNOQCKYIOVGXDBUARIYSTJG
YVGWLPLKEWXHJSZVIMSYFPL

5. Decipher this text with the Wadsworth disk cipher in which the ciphertext alphabet is not
mixed.

TABLV3BTJWYCVKNRCOXFLSD2GTL6JUBUJNQ7CUXZG4AK4NT2LBO7DM
XYLQDQVCK8OW3AL6T2GWOU3MCPR4ODKVZK56APHABIZ36JUBUN2J8Q
5M7XM3B2MUC2K8YH4TAK6BMXM6DXGL24EF7XHLV7KBE2M3FMZMOERU
3CZG5OSVDHZ46LAFPAYBVG4IOH4IL3S6WYADMXQ3CILMUKYOYQHULP
SAEWZ3I6CM6RBKXZN5P2DEHL56LBMOEJ6CHYGKPVCZQBZ2O5RARJQG
U78K6OBZDK6CKT4BMEUBYP38ZNFY27LYH26P3GKY7YG7OCPBPSDSFT
6XYFHMNSCQR7V8BY5RW3L2LPAOQ5FOUIU8H7K2LAFU8YRBZJYL5V5T
HVL5HITGXKRFRGJW

madness's book on classical cryptography
unit 121: attacking cipher clocks with cribs
last modified 2020-10-28
©2020 madness

Unit 121
Attacking cipher clocks with cribs

If we know some part of the plaintext (a “crib”), we can use it to break the ciphertext. To make it easier,
we will encrypt the crib with an unkeyed cipher clock before we compare it to the ciphertext, since the
difference between a ciphertext and a text that was encrypted with an unkeyed device is a
monoalphabetic substitution.

An example will make the technique more clear. This ciphertext was encrypted with a Wheatstone
Cryptograph:

DGBRHDRYDURNFTWLOMIBLSPDZCIJNSMBZXCSHDYCVMGOAZSAEGNVQLJRFTX
CWJHACZZMPEHMZNPZJYKMRXQGOUIUCRBOYQLOTOBUNZGJTEQBOFYLEHBOBZ
RRGWOHWJKCUKPZCIQELLOUEJVAYVYPQWHEOBJNVGMAXRGLYYHNAHYCYFTGR
ILIJNSMHQFUWYYUEJVNFIXNSDMXZSAHCNFVDVXVZKMCJWLXTBKJJGHHDRSK
CIMACCWTUKZVSRDGZSKCNUQQGCDKWKHVHIIFIXUMYIPWYSOPCGGSGHZBFWW
XPCEWEQMISKVXEMIZXSHAZEWOMRGQUTKCTKMPEUQJYLHTIDHFPERYUKSKON
NCEPLARCSBLMKOBCBSEFGXN

We have this short bit of its plaintext:

never wear out no matter how long it may stand in times

Before we use the crib we will encipher it with an unkeyed Cryptograph. The ciphertext alphabet for
this process is just the unmixed alphabet. Before encipherment we need to disguise the double tt by
replacing the second with q.

never wear out no matqer how long it may stand in times

Enciphered this is

OGXHUDAJGXGVBBIWXJWLECRENVCKOADDXRALSFUSUNOWJAXGLYSIMFT

Notice that we did not add a space to the end before encipherment, as Wheatstone had recommended,
since we do not know if the next character after the crib is a space.

Now we compare the enciphered crib to the ciphertext, one position at a time. Start at the beginning:

DGBRHDRYDURNFTWLOMIBLSPDZCIJNSMBZXCSHDYCVMGOAZSAEGNVQLJRFTX...
OGXHUDAJGXGVBBIWXJWLECRENVCKOADDXRALSFUSUNOWJAXGLYSIMFT

Notice that B in the crib matches up with F and T in the ciphertext. Also, A in the crib matches up with
R, S, C, and Z. These things cannot happen with a monoalphabetic substitution, so we know that this is
not the correct position.

The only acceptable line-up we can find is at position 107:

...TEQBOFYLEHBOBZRRGWOHWJKCUKPZCIQELLOUEJVAYVYPQWHEOBJNVGMAXRG...
OGXHUDAJGXGVBBIWXJWLECRENVCKOADDXRALSFUSUNOWJAXGLYSIMFT

Now we can begin to reconstruct the key by tabulating the substitutions for the letters of the enciphered
crib:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ERCLKABFGHIJMPQ??UVXYZWON?

The missing letters are D, S, and T. Missing three letters means that there are six possibilities. If the key
is mixed in some less obvious way, then we would have to try all six. But in our example, we can guess
immediately that the key is

WONDERCLKABFGHIJMPQSTUVXYZ

and the keyword is WONDERCLOCK. Usually, we also have to try all twenty-six ways of rotating the
key before we find the correct key, since we do not know the position of the cipher clock’s hands when
the plaintext was encrypted at the point that the crib begins.

Deciphering with the reconstructed key gives us the plaintext, which you should recognize as a
paragraph from The Wonder Clock by Howard and Katharine Pyle.

CLICK BUZQ WENT THE WHEQLS AND THEN TICK TOCK TICK TOCK FOR
THE WONDER CLOCK IS OF THAT KIND THAT IT WILQ NEVER WEAR
OUT NO MATQER HOW LONG IT MAY STAND IN TIMES GARQET DOWN I
SAT AND WATCHED IT FOR EVERY TIME IT STRUCK IT PLAYED A
PRETQY SONG AND WHEN THE SONG WAS ENDED CLICK CLICK OUT
STEPQED THE DROLQEST LITQLE PUPQET FIGURES AND WENT THROUGH
WITH A DANCE AND I SAW IT ALQ

Now let’s work through a more complicated example. This ciphertext was also encrypted with a
Cryptograph:

VDZYHDCDOFCLZSCPWTKEIVTTRNVGSYSCPUVEUJOWVFTZBLXDYXNZAU
NICZVYFHIKQFZLEMNLQIJHRCGOJSRODYLLCKDTWQUAOXTAVJOOYOGU
ZGBRZXZIRDXAGYBLHRGUINGCCNQHJSUWPLEUVDDAWVORXIRJBUOOYW
FQOTXDFRDYUJYEVXUAITGMLIIHKGAEFFVDAKXEHGSYXAVVAQCNECYK
ZOXWFXRRQIJYAZVCPZDUWSHHPAWLVFKDYNLRBTSCYREOBLPVVXZMCF
DUNQSXBXSRKAPMWCYHTBUERKAVCCARWYDNEHXSWXBPHRACQIWIOYBX

PFMNUKGEFFDNBXASYSXDHQFLDNWYTDGMCWLTPUXZFUIIALEKEILREZ
JHNPAEIBYHRNVGDLKUFECLXCGEWMEFVLCZBUONKUISJCSOFCLZTNES
DUWSXNLROKNNGWCHBOUIZZATRKNNPQHXJMONSMZDWKGTBZKPDQFTIJ
NVXJRKZP

This crib is known to be part of the plaintext:

information exists of course but it is scattered

After we replace the double tt with tq and encipher with an unkeyed Cryptograph, the crib is

JOHQTPEXNTTGLEQABBJYQLOAGEFSOQJJQZKRAKSLWVOMBOCC

The first position that does not give a contradiction in regarding the monoalphabetic substitution is 177.
This is actually the only position that works.

...YEVXUAITGMLIIHKGAEFFVDAKXEHGSYXAVVAQCNECYKZOXWFXRRQI...
JOHQTPEXNTTGLEQABBJYQLOAGEFSOQJJQZKRAKSLWVOMBOCC

We begin to reconstruct the key:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
EFR?GSHU?VCKWLXTANYI?OZMDQ

There are three missing letters (B, J, and P) in the key, so there are six possibilities. Plus, there are
twenty-six ways to rotate the key. That makes 26 × 6 = 156 total possibilites. But we don’t need to try
them all. Let’s just try one and see what happens. Start with

EFRBGSHUJVCKWLXTANYIPOZMDQ

There are twenty-six ways to rotate this key, and we try them until we find something useful.
Deciphering the ciphertext with the key as written above gives gobbly-gook:

IXUPCUFTPVDGPYCMDGBQIYDCPDVPQCPUDQSIPQCTPGUAHRSBVQTYR...

Next we try FRBGSHUJVCKWLXTANYIPOZMDQE and get more nonsense:

HWTOBTESOUCFOXBLCFAPHXCBOCUOPBOTCPRHOPBSOFT GQRAUPSXQ...

We continue to rotate the key, and soon we arrive at TANYIPOZMDQEFRBGSHUJVCKWLX, which
gives this plaintext:

THE NEQD FOR INXORMATION OF AN EOACT AND RELSBCMFADIB...

Aha! We are getting close. Most of the key is correct, but now we need to find the correct placement of
B, J, and P. By swapping B and P we get the true plaintext, which is from The Modern Clock, by Ward
L. Goodrich.

THE NEQD FOR INFORMATION OF AN EXACT AND RELIABLE CHARACTER
IN REGARD TO THE HARD WORKED AND MUCH ABUSED CLOCK HAS WE
PRESUME BEQN FELT BY EVERY ONE WHO ENTERED THE TRADE THIS
INFORMATION EXISTS OF COURSE BUT IT IS SCATQERED THROUGH
SUCH A WIDE RANGE OF PUBLICATIONS AND IS FOUND IN THEM IN
SUCH A FRAGMENTARY FORM THAT BY THE TIME A WORKMAN IS
SUFQICIENTLY ACQUAINTED WITH THE LITERATURE OF THE TRADE TO
KNOW WHERE TO LOQK FOR SUCH INFORMATION HE NO LONGER FEQLS
THE NECESQITY OF ACQUIRING IT

Notice that instead of trying 156 possibilities, with this method we only need to try at most 26 + 6 = 32
possibilities.

Now that we have the plaintext, we can stop. But, no, we can’t stop. Never stop solving puzzles. Let’s
go onward and get the keyword. The key we found was

TANYIBOZMDQEFRPGSHUJVCKWLX

It looks random, but notice the sequence Q, R, S, (T is missing), U, V, W, X, with one or two letters
between them. Also see F, G, H, J, K, L. So the key was likely constructed with Wheatstone’s
prescription. We proceed by breaking the key into columns and getting the sequences each to appear on
one row.

T I M E P C
A B D F G H J K L
N O Q R S U V W X
Y Z

If we search our dictionary for TIMEP??C?, we find the only choice is TIMEPIECE.

Programming tasks

1. Implement a boolean function that detects whether two (short) texts could be related by a
monoalphabetic substitution.

2. Implement the attack that uses a crib to break a ciphertext encrypted with the Wheatstone
Cryptograph.

Exercises

1. Break this ciphertext that was encrypted with the Cryptograph. Use the crib “the average
collector would be bored.” What is the keyword?

XRIHAOZJMWGRABONYAJXBGPMWMFDHLGBDBYDPVHTBKATCDNUIXEENO
LSUHVCLRCFHRVUQFKBMLMSFGLHMAIAYSWAMNEOPTSJQJBPGITLRYLA
YCRJTGPWAKWAZXSZKONBVNHLXFQDKSPUONMFEGQGBQBCNXNUHUXXTM

RVXPVUQFKCQLMNYXQUIKNGPHANTBVKIVDBAVWONAZGVEJAMSJKXLHQ
TDZFFPJMSFLKMVXGYSKBTBIWTYDNGXOCNUYOHEDACVHXYPKUGNDOIJ
GQRLSFQEOMMXHQSPRYUMBIFYCVFYGAQJWSJOISLFVESKJNIVMXQXEK
YMYXRVELATVXPNBOMEABVQNUUBVIVUYOZQXYETDKKGGWWDEIPXNEXT
MUFXNESNZXUNJIHVAPMFKYZBKWSXIZVMSCDZEQVCBIGGWUAPMGWMZK
BIZPJURNLOKMUAQJGSNVKAODZMYJGJIMCNUCYKMVVLZCQFSLNWWDYA
KQHQGQRVELDBYSGONJEREYNPKEXSAEUCRQJREGWOIOIUKLADDEZQRO
NHZALWJPEYHMDKIYVYDPFZBSFNMDVEOSQTKDNYIAXUDYAKNQECUULN
LCJICNOOHMVBTCYQLSXSIWBNESKTPOYCXOCOLMKHXYFKCNWIPRDGMW
Q

Challenge

crib: NOT A SOUND BROKE THE SILENCE OF THE STILL NIGHT

DOW#GLGHUJ#VOWNQJLPNWBDZQDAQ$R@CVZIXRMEFP#HIGNPAMGCIKGJTPCI
DQTCSLF$UHAXNE#VNGJUK@WDITNJXNHYRKIYQGEQ$NE@IUVHRT#$KCWLVKS
JEOXCLESNBFKFMJAS$LIOSCNVKLFKMWN@#GHPJOXEYVLOST#RHGOMFASYRT
F#AVPHFGUS@TQHUBIXYB#JLTCJRDUS#QND$UEKBTCTAZPWLCXQYPSLUPG#J
@AMPXB@JI$VYJRTZAFRZU$MNOKASVKABVTBHK#ELPYF$KXQSUJDOCHFLESG
CBZLDHXCRZFENO#BC@YPGW@TGJVTANFVIYFKGYOIZSV@JCSLUPG#BUV#LNS
GHILJZTYNVZUFCPQHRKCESL$ATUZE@IUOUKCWYKBHVOAUPF$PSGSADHP@ZQ
M#TGJ#HNUQRHDFN$JXE@IOQLMKRYJNWNQBSW@DROQT#VPENJ@YJIU$R@C
VHUXRIYABOYQZGJDKZJ@QIDQTCH#PHXAHKQSTEUO#N@RSTYPBZTFWLZ$CSZ
@CLVDP@RXE$ZGKXJADKWITE@JMJPCTLYOAZXAQRBOWRIJSNDJ@YRXEFEHXO
HYR@Y$ZCDKMRLAGJFTIEBNK#LIWNCXQYP#YJNWZKTBGOPTGBHPLI

madness's book on classical cryptography
unit 122: digram-counting attack on cipher clocks
last modified 2020-10-28
©2020 madness

Unit 122
Digram-counting attack on cipher clocks

This attack only applies if the length of the ciphertext alphabet is at least two more than the length of
the plaintext alphabet. The reason that it works, if the text is long enough, is that when we encipher the
next letter of a text, then the hands on the cipher clock move at most m steps (remember that m is the
length of the plaintext alphabet, and n the length of the ciphertext alphabet). So if n is one greater than
m, there are no double letters in the ciphertext, but all other digrams are possible. If n is two or more
greater than m, then the missing digrams indicate what letter(s) is found on the key just before the last
ciphertext letter that we wrote down.

To show how it works, we will work through three examples.

example 1: n = m + 2

Below is a ciphertext. It was encrypted with a cipher clock that uses this plaintext alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

and this ciphertext alphabet, before it is mixed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ◊○

And here it is . . .

XAYIHVBS○URMXE◊○WBQPSTGXECXCXPA◊OCATLXVBEQSZYB◊DTAJSNEKGJDV
WEAXA◊GBNGQWJQXOJEGPXJLFXFESFMWDOWEKEJFPWE◊CABSYUWSKOLZDMH○
BIBYTJQYUECVAUEOCSPKWLGM◊HIEWNEJKCUBSXMSEQVALMNTUBSNBMD○OJE
QGADBPGYPHYQJVHBHIBTDKTAPCEUMI○WEHNGZIDVQXZENWAQBPFHJKMSYOB
UORLGNBLZ◊○QAWPRIEOVY○◊RVYUFCHO◊UZJ○DVUNAT○NF◊UPXKOPYRSZ◊ST
JHKNSMPRDVXTGEKITAPLUEJ○OVR○SUPJPZKGNGDWCXIPJDIXCPBYOQMSLZU
JVNXED○QG○WENUGCN◊OFEPATLMPDWLCDEOATAP◊D○Z○CFORQLUZPXQ○ZGOK
TA◊NKMPG○MQLZUJVNB◊ADBNALQ◊E◊KLND○XUF◊BL○E◊GOBHDA◊DTAGXPXIY
UVBCYOJ◊TQD○WDLIO○NJKB○TDRUZRNG◊H○JW○PSE◊NRD○XUSLHZSRNXSDXZ
GKIJEUYXCPVOMHGHSLNULRZPU○UNO◊EGEAPEXUFWEACWJYIEMLHJXNOWLIQ
YXKVXV○GRCMPYKOJDP◊DJZGVPOVUBIQGAZIHUYX◊RLWBSL◊DSGTBEV○PSKE
DLGRLORQYVJQWBGBZMDAWCUQ○IKET◊PISD◊QPVSZGTLTDZODTUO○MEKO◊FX

OMXCOGZIDVUNAXKRENOQ◊FHVAW◊UIVPSKGJVRNGQVMDJYBPQBQ◊FHOMSFEC
WORYQSZLMK○ZFPSIJQCEHXSEDHNJQJGZOBPSBQMGUJOMSFECWORYQSZLMK○
ZFPSIJQCEHXUJ◊MHMPAEGBNXEIDUWCDK○OQYXKMSIVOPBZKQDRGWZSHBYTA
PLXB◊CSF◊SMAYMEJPTHJWGNBYN○UCZMBL○WCSMTGYJOUBHJQZF○ILIESECK
◊FXIVRXMSENJGQJQDVXECSJU○UKSPAUFBOYVJVJMRVJ○BWCUQKXEJPA◊ELV
JS○QR◊VSEASOGUIMCGDEUYXVYJYLNETQEZO◊PQRO○NKMXZOSVASNKLZJFAP
WCE○FJVGMKMXDZ◊RXMSNSMJNB◊XB○JEMNDI◊YSKWAP◊SRU◊H○JABHNQEOLE
DASYTCPYOSGMIVGOJQAKUCLXJRNUCPAIHVBDU◊LMR○OTLGIZUF○KGXNRDLU
MIDZLCOBGZIJHGCYPEGTJ◊DUAVAVH○MJRJEYQDRGLHXT○BVF◊KSREJCXC◊R
V○RLGBQNBYTAPDNDKMXSLHUJHKHJBDGIUNTWBV○KTAJVGMK◊AUYFZSNOGKR
HBTXUJNKDT◊JRFEUMIHOBXAEILWTCZSJ○KTAPGIFI◊GD◊FS○VZLZGJBTCXB
○JEMNDUPKXEVL○E○MDWDGHIEWTAPGAZVR○SUGL○EYSWTBI○JZFAVFV◊N◊R◊
FSFPJOWJ◊ILMIXVZOPBPS◊PA◊○KBSZ◊GPELOROXOHYNEHTJZ◊T○J◊TPKVZD
BPD◊OJHEJDHDGQEAWGNBJ◊OPCMKBR○IVSCOHYQJUGQ○XZKDGEGXGAZVR○SU
XAEYGZIULT○XNXBPJNFUI○UTGLGKOYBLJWMKDFJWBVDRE◊FHVYBLSCSZSNK
◊XHQDEAGNBTJDVZUZF○EUVYPKBSDJXAGAYSLUZG○VIAOHESYJT○HIWOXBCL
VQNR◊AXUXZNPBRQ◊XFHIEWDA◊QUDHIXYFZS○JYSPKBDHJSNOACE◊KECUIHV
YDNHVJDWXHMKDYPGEN◊FHJBEVCXUOELYJWMKDTETDSAUCUIECXF◊CXPHSZL
V○KVUXBJ○EKPKDHLH○PX○TGWTK○HBLXECTJO◊VZSVAWQJAUSZKXHSIJOZF○
EW◊UNKP○XQJUJEYLMNPSWIWBUSPFJUBDVZVFTXCFEGWP◊SNBMDWBC○QNPHO
BJRTBPUZJHCGQJBZ○DTQYXCKMXDGRMPYJRLRNG◊DJZVLICVHEJKPAVF◊EM○
VYQDUBDXUJWBYDUGYXFCOFEBLGJHUYQJHLT◊DTETPRI◊PJFC◊VF◊RVXAHUY
◊WQEUGWCJ◊EIAGVB◊AIDORQYOQZLGMLVQXYXTXBQYNRDJ◊BZ○FZSY◊LZOTL
MDAPILIPYUI◊HBFSR○RVAV◊L○OMKVUZENUAQBPFHDIVXDJSUYFOROSXMATL
GXPZ◊DSCLUXUIMPKECUGTLRXSTYGZIF○PEWPIFYGOIJVAWDVL○UZPOWDLHE
XZT○EQLXCZDJUVCOPBHYMBZBZHXGEUGPNDW◊HSE◊MXJRBSRNDGZH○JQCPE○
SUIMNDKVEXUFCPTLDHMB◊V◊GW○UAPXNSZPGSAYPVHYXJWMLFZF○◊Y◊○CUZI
○ACVBSMAYQJVUGQMDXBPECUQ○NJVXVGBCP◊LIUWSZYXTQYUJ◊LXCVCWOUZT
○IZJBNYSBDIPSXCZTXLEMNYQJVLIEANOKEBQYXFCXYVQWPDOALM○NGTJFPY
BLIPGCKMJDWEALHPHOROVGHIEWDYJNDUZSYOS○DLXMAJHJL○OMK○CDECD○K
TFPDXCOMPVHC◊YSMOKSZRXLTHJOE○UPKRUCGLUXBEAORXPHEQSHRXMKL◊IS
◊TDUG○PCDIVAI○WZ◊BMJ◊LSROUKL◊I◊LOXQTJUGCX◊SR◊CPYTLQDUBZDEVL
I◊FHFLFAEBSTPY○UK◊OWJLTDJZF○QP◊LUEHXVMCWJYQJNB◊○WGBCTQGKUGL
PFXOASABRZ◊KMKDZTXSTAPYXJFXAEBSNGZIB◊IBFPSIPQUIJBJ◊HFCPNVEJ
◊YJHSEXBEQEQ○RVKXYVFSY○U○OQRMVWDQBWQUQPY○LNR◊FXEOJWJALFJGT◊
SL○TABIE○FNREJKVXPIV○RTXNOHJLSZJBDKVHIBTAIUQNUIPA◊ORQRZLDUB
THZOXSMJQYXCZPIEOJWJALSXHDHMGCJQZF○ME○BIFECUSYOTQXAVUZDTAG◊
HTBTCUKOQGDLFZC◊SMNEQSHFJMKL◊○XGWJUXSURVKX◊CEGMAUILWOSGAWOW
CENO◊FHJKPYR◊EMZDVZ◊○NOVB◊HIBY○UY○PFNA◊○SY

The first step in the attack is to tabulate all of the digrams in the ciphertext. Remember to count all of
them. The first four letters are XAYI; from them we get XA and AY and YI; don’t forget that one in the
middle. We don’t need to count the digrams, just make a table of all the ones that exist.

AB DB EB FB GB HB IB JB KB MB NB OB PB QB RB SB TB UB VB WB XB YB ZB ◊B ○B

AC BC EC FC GC HC IC JC KC LC MC OC PC QC RC SC TC UC VC WC XC ZC ◊C ○C

AD BD CD ED GD HD ID JD KD LD MD ND OD PD QD RD SD TD UD VD WD XD YD ZD ◊D ○D

AE BE CE DE FE GE HE IE JE KE LE ME NE OE PE QE RE SE TE UE VE WE XE ZE ◊E ○E

BF CF DF HF IF JF LF NF OF PF RF SF TF UF VF XF YF ZF ◊F ○F

AG BG CG DG EG HG JG KG LG MG NG OG PG QG RG SG TG UG VG WG XG YG ZG ◊G ○G

AH BH CH DH EH FH GH IH JH KH LH MH NH OH PH RH SH TH VH XH YH ZH ◊H ○H

AI BI DI EI FI GI HI KI LI MI OI PI RI SI UI VI WI XI YI ZI ◊I ○I

AJ BJ CJ DJ EJ FJ GJ HJ IJ LJ MJ NJ OJ PJ QJ RJ SJ TJ UJ VJ WJ XJ YJ ZJ ◊J ○J

AK CK DK EK GK HK IK JK MK NK OK PK QK SK TK UK VK XK YK ZK ◊K ○K

AL BL CL DL EL FL GL HL IL JL KL ML OL PL QL RL SL TL UL VL WL XL YL ZL ◊L ○L

BM CM DM EM FM GM HM IM JM KM LM OM QM RM SM UM VM WM XM YM ZM ◊M ○M

AN BN CN DN EN FN GN HN JN KN LN MN PN QN RN SN UN VN WN XN YN ZN ◊N ○N

AO BO CO DO EO FO GO HO IO JO KO LO MO NO PO RO SO UO VO WO XO YO ZO ◊O ○O

AP BP CP DP EP FP GP HP IP JP KP LP MP NP OP QP SP TP UP VP WP XP YP ZP ◊P ○P

AQ BQ DQ EQ GQ HQ IQ JQ KQ LQ MQ NQ OQ PQ RQ TQ UQ VQ WQ XQ YQ ◊Q ○Q

BR DR GR HR JR KR LR MR NR OR PR QR SR UR VR YR ZR ◊R ○R

AS BS CS DS ES FS GS HS IS JS KS LS MS NS OS PS QS RS US VS WS XS YS ZS ◊S ○S

AT BT CT DT ET FT GT HT IT JT KT LT MT NT OT PT QT RT ST UT WT XT YT ZT ◊T ○T

AU BU CU DU EU FU GU HU IU JU KU LU NU OU PU QU RU SU TU VU XU YU ZU ◊U ○U

AV BV CV DV EV FV GV HV IV JV KV LV MV NV OV PV QV RV SV UV XV YV ZV ◊V ○V

AW BW CW DW EW FW GW IW JW KW LW MW NW OW PW QW SW TW UW VW ◊W ○W

AX BX CX DX EX FX GX HX IX JX KX LX MX NX OX PX QX RX SX TX UX VX WX YX ◊X ○X

AY BY CY DY EY FY GY HY IY JY LY NY OY PY QY RY SY TY UY VY XY ZY ◊Y

AZ BZ CZ DZ EZ FZ GZ HZ IZ JZ LZ MZ OZ PZ QZ RZ SZ UZ VZ WZ XZ ○Z

A◊ B◊ C◊ D◊ E◊ F◊ G◊ I◊ J◊ K◊ L◊ M◊ N◊ O◊ P◊ Q◊ R◊ S◊ T◊ U◊ V◊ W◊ X◊ Y◊ Z◊ ○◊

B○ C○ D○ E○ F○ G○ H○ I○ J○ K○ L○ M○ N○ O○ P○ Q○ R○ S○ T○ U○ V○ W○ X○ Y○ Z○ ◊○

What is important to us now is which digrams are missing. Of course, all of the diagonal entries are
missing, since double letters cannot occur in the ciphertext for a device with this configuration. But
look at the J column. The digram for JI is the only other one missing. Therefore, we know that I
comes immediately before J in the key.

Here are all of the missing digrams, except for the doubles:

BA HA KA LA RA YA ZA

CB LB

DC NC YC

FD

YE

AF EF GF KF MF QF WF

FG IG

QH UH WH YH

CI JI NI QI TI

KJ

BK FK LK RK WK

NL

AM NM PM TM

IN ON TN

QO TO

RP

CQ FQ SQ ZQ

AR CR ER FR IR TR WR XR

TS

VT

MU WU

TV WV

HW RW XW YW ZW

ZX

KY MY WY ○Y

KZ NZ TZ YZ ◊Z

H◊

A○

Now don’t get confused, but to make things easier, we reverse each missing digram so that it is written
in the way it might appear in the key. Here is the new table:

AB AH AK AL AR AY AZ

BC BL

CD CN CY

DF

EY

FA FE FG FK FM FQ FW

GF GI

HQ HU HW HY

IC IJ IN IQ IT

JK

KB KF KL KR KW

LN

MA MN MP MT

NI NO NT

OQ OT

PR

QC QF QS QZ

RA RC RE RF RI RT RW RX

ST

TV

UM UW

VT VW

WH WR WX WY WZ

XZ

YK YM YW Y○

ZK ZN ZT ZY Z◊

◊H

○A

Now we look for any digram that appears alone in a row or column. Such a digram must be in the key.
We find CD, FG, IJ, NO, MP, QS, HU, TV, Z◊, Y○, DF, EY, JK, LN, PR, ST, XZ, ◊H, and ○A. Once we
decide to keep a digram in a row, we can eliminate the other digrams in its column; similarly, once we
keep a digram in a column, we can eliminate the others in the same row. We can also eliminate the
reversal of any digram that we keep. Here is what is left after we make those deletions:

AB AL

BC BL

CD

DF

EY

FG

GI

 HU

IJ

JK

KB KL KW

LN

MP

NO

OQ

PR

QS

RC RE RI RW RX

ST

TV

UM UW

VW

WX

XZ

Y○

Z◊

◊H

○A

Now we play the same game and look for digrams that are alone on a row or column in what remains in
the table. We find GI, OQ, UM, VW, and WX. Eliminate those rows and columns to get an even smaller
table:

AB AL

BC BL

CD

DF

EY

FG

GI

 HU

IJ

JK

KB KL

LN

MP

NO

OQ

PR

QS

RC RE

ST

TV

UM

VW

WX

XZ

Y○

Z◊

◊H

○A

Now we get RE and eliminate RC. One more time:

AB AL

BC BL

CD

DF

EY

FG

GI

 HU

IJ

JK

KB KL

LN

MP

NO

OQ

PR

QS

RE

ST

TV

UM

VW

WX

XZ

Y○

Z◊

◊H

○A

Now we keep BC and eliminate BL. One more elimination won’t gain us anything, so we stop.

Here are all of the key’s digrams that we have found to definitely belong:

BC CD DF EY FG GI HU IJ JK LN MP NO OQ
PR QS RE ST TV UM VW WX XZ Y○ Z◊ ◊H ○A

But remember that AB, AL, KB, and KL are still possibilities.

If we chain the definte key digrams together, we get these key fragments:

BCDFGIJK
LNOQSTVWXZ◊HUMPREY○A

There are two ways to combine them, but it doesn’t matter, since the key goes on a ring. So now we
know that the key is something like

LNOQSTVWXZ◊HUMPREY○ABCDFGIJK

To find the final key, we need to roll this key to each possible position on the ring and decipher the
ciphertext. When we find a recognizably English plaintext, then we have found the correct key. It turns
out that the correct key is

◊HUMPREY○ABCDFGIJKLNOQSTVWXZ

and the plaintext is (broken into words)

ALL THESE SORROWS ARE PAST MY GLANCING AT THEM MAY NOT BE
WITHOUT ITS USE FOR IT MAY HELP IN SOME MEASURE TO EXPLAIN
WHY I HAVE ALL MY LIFE BEEN ATTACHED TO THE INANIMATE
OBJECTS THAT PEOPLE MY CHAMBER AND HOW I HAVE COME TO

LOOKUP ON THEM RATHER IN THE LIGHT OF OLD AND CONSTANT
FRIENDS THAN AS MERE CHAIRS AND TABLES WHICH A LITTLE MONEY
COULD REPLACE AT WILL CHIEF AND FIRST AMONG ALL THESE IS MY
CLOCK MY OLD CHEERFUL COMPANIONABLE CLOCK HOW CAN I EVER
CONVEY TO OTHERS AN IDEA OF THE COMFORT AND CONSOLATION
THAT THIS OLD CLOCK HAS BEEN FOR YEARS TO ME IT IS
ASSOCIATED WITH MY EARLIEST RECOLLECTIONS IT STOOD UPON THE
STAIRCASE AT HOME I CALL IT HOME STILL MECHANICALLY NIGH
SIXTY YEARS AGO I LIKE IT FOR THAT BUT IT IS NOT ON THAT
ACCOUNT NOR BECAUSE IT IS A QUAINT OLD THING IN A HUGE
OAKEN CASE CURIOUSLY AND RICHLY CARVED THAT I PRIZE IT AS I
DO I INCLINE TO IT AS IF IT WERE ALIVE AND COULD UNDERSTAND
AND GIVE ME BACK THE LOVE I BEAR IT AND WHAT OTHER THING
THAT HAS NOT LIFE COULD CHEER ME AS IT DOES WHAT OTHER
THING THAT HAS NOT LIFE I WILL NOT SAY HOW FEW THINGS THAT
HAVE COULD HAVE PROVED THE SAME PATIENT TRUE UNTIRING
FRIEND HOW OFTEN HAVE IS AT IN THE LONG WINTER EVENINGS
FEELING SUCH SOCIETY IN ITS CRICKET VOICE THAT RAISING MY
EYES FROM MY BOOK AND LOOKING GRATEFULLY TOWARDS IT THE
FACE REDDENED BY THE GLOW OF THE SHINING FIRE HAS SEEMED TO
RELAX FROM ITS STAID EXPRESSION AND TO REGARD ME KINDLY HOW
OFTEN IN THE SUMMER TWILIGHT WHEN MY THOUGHTS HAVE WANDERED
BACK TO A MELANCHOLY PAST HAVE ITS REGULAR WHISPERINGS
RECALLED THEM TO THE CALM AND PEACEFUL PRESENT HOW OFTEN IN
THE DEAD TRANQUILLITY OF NIGHT HAS ITS BELL BROKEN THE
OPPRESSIVE SILENCE AND SEEMED TO GIVE ME ASSURANCE THAT THE
OLD CLOCK WAS STILL A FAITHFUL WATCHER AT MY CHAMBER DOOR
MY EASY CHAIR MY DESK MY ANCIENT FURNITURE MY VERY BOOKS I
CAN SCARCELY BRING MYSELF TO LOVE EVEN THESE LAST LIKE MY
OLD CLOCK IT STANDS IN A SNUG CORNER MIDWAY BETWEEN THE
FIRESIDE AND A LOW ARCHED DOOR LEADING TO MY BEDROOM ITS
FAME IS DIFFUSED SO EXTENSIVELY THROUGHOUT THE
NEIGHBOURHOOD THAT I HAVE OFTEN THE SATISFACTION OF HEARING
THE PUBLICAN OR THE BAKER AND SOMETIMES EVEN THE PARISH
CLERK PETITIONING MY HOUSEKEEPER OF WHOM IS HALL HAVE MUCH
TO SAY BY AND BY TO IN FORM HIM THE EXACT TIME BY MASTER
HUMPHREYS CLOCK MY BARBER TO WHOM I HAVE REFERRED WOULD
SOONER BELIEVE IT THAN THE SUN NOR ARE THESE ITS ONLY
DISTINCTIONS IT HAS ACQUIRED I AM HAPPY TO SAY ANOTHER
INSEPARABLY CONNECTING IT NOT ONLY WITH MY ENJOYMENTS AND
REFLECTIONS BUT WITH THOSE OF OTHER MEN

You might recognize the text from Master Humphrey’s Clock by Charles Dickens.

example 2: n = m + 3

For this example, we need to add another character to the ciphertext alphabet. This time, for each
character in the key, we should find two missing digrams for the two characters that follow it. In which

order those two occur can be deduced from the choices of what characters might follow them. For
example, if we have missing digrams AB, AC, BC, and BD, then we know that B and C are after A. Since
C is after B, the order is ABCD.

Here is a ciphertext for us to break:

JEY@VHRIECWIBIRMBSVECN*LOTHSDIZ*DLPAF*LHUN@XCFXLACYUTHBPTCT
KVDENVWEXBVKMVGK#WG*GJVYSI@WAHOMY@YDZQ#JTERJBLHMRBQCXGUAMUB
HAPZG@AV#WSPDINPX#HEKEHVLSQID#HVLV@WJZMUHYIMTCWH@CXKVDYOWUE
QZGRN#CA#QVECN*ISCVBL@FME#AWOA#TZVMPOZR*CHXKICFSEHXZL@WELWK
VW#W@SYOQV*HPIPQAFTXGJV*#MDHVSWLXLU@PHNKIJPBPXPZDJOTIXLRD#H
CEIZAOJEBGSOBOXFYPOMERWYSTFMKXRLYSP#@PBZQIB*B#GL*IJXGBVE*QY
RSAXYJCGQGWOWSWEO#YUAHVNFSA#HDPQFMRG*DHSKPGPIXGXLGERSCNF*SA
TJWNHEWXJPJFSI@CUR*VFKQXLQ*#IJUZBCWDHLXSMTJUXFSQRI#FUPM*BMA
XYPQOBUZNCLSMROPRW@WJYAWRGTLPG@RIYUCBYN#DXFIWUXOYKN#BOXCVOT
HUDOIN#DQSDS@AHZLVIUNG*GHYLBPGUEDUEYMANSDFZRSQIE#Z@BOF*MDR#
BXBITBYJSDSHZ#PXUNTRLJOZBCQCLBCFLWZKW#IQEIAWRLUFR*BCBLENRKN
*NX@SMA#VWK@IJ*TEJBO@DTFODY@DYRAVYNHZF*NQYFIJY#FGQR#XQWEJPQ
CBJD*NGS@U#HMOADZWXC@QTXGUTYZ#TWN*VRK*MEFCNQYHLYRGBN#*UBXJO
JEHKQVAFXQA#*W*K@PX#*BEMXHBRKGLBLFWSMEWKRVEOZIBQS#MDV#IYS#D
@HWEHETUZRB*@DX*XQBKNWKEADIJAY@WNGESGMOBCN#*BXFTCMBXLBIAORI
U@XZPLD*EQGJRLGBQZBPQU@DZCTCTKVIPRV#QZSJWBUX*VCP@V*FHBI*PCW
X@RJN@LOD@WJDTX@JZBPQW*BJSXAVNWSMEW#QZK#PKIPQAYN#MK*OIN#DLY
BKWRQIRXFKWPJT*HJSDLWH#IBWNLKUMNBGIPXTYQT#MYFCMAHQTSDMG#OH*
@DPOXFKXKPBLJFSVHRCDYD@GOBVKMCAIPED@RVENPVA#@AFEA#LZ*N*@WXU
TRSHQZKAT@QYJETBRSIXZUVGN@*GQRWF*TCDSCSFCJAFZSIAILVGPOTZRJB
V#VN*#SCUAOFULUBIJQ@WOIUFUWSFXKFJCJONZDRNYNKYKCJE#ALQSXJKSH
THURK*VLWSCNFOR#*MPT*@BCUVRHXYP*NOINCUHD#P#IJPRJBLMPDNW*NST
BUH#CJZV@RLB#QVCIPF*TKZDSDNIESDSYZKNO@TP#LQG*OHMU#SNQ*JR@CZ
ENOIUIL*OP#PAFJEFXJMSM#YBDOFCLGZJUO*HZ*MWXCLQGVX*BHXT@Q*JRK
*BRL@SCKZTGJOTUNIPXAERSILVSVWJRUYNRNLQGWUT@DJ#WCSKNLDLNDGNE
IAXYRVKGAIPQAHEKGEHPHY@LMVSIMUFGOXIUQ*#*UTMC*HLNL@BROKRZQJR
GJFRK*EDGKTSD#MDPDNFRTYQVLVNFLFTB#CMXQDMGAZMNCNFOQJACAUKYVY
IM#BVMFMKTFJACWP#MFXMAHTZ#J#QCSKGLAGMXTIUBLWOG#MHCMCPOS#MDW
IET#FIKEFK@XULTYGUTYKCQCSG@MZETUZRSLXKJQVOPBIPXKNSGRUVA#FIP
@JMRZT#SY*WX*OMU#SNWH@CXJZUGVPEIAPRQ#OZGLETLRHXYEGHRNY*AHEM
RZCFCILRJBVXMNCMLBJSDITRAMEMUYBFWZSEGCOUVP*#MCBRK#PH@JVACLM
Y@YAWYA*FRGUGKIPNYDMZTRUWCDYD#QZHKR#IRG@AJLAMYVPYRXINRCNOVD
WI*PZFXQZMFUXGVDKFULHZ@QJYABTFGNEGKRJPDRHVFIZDJNXAWRJZIDXOP
YASBQYKMLPMGNBRKVIBQWKIBVMPKSMCBFJPO#YF@LFTLYHMUN@QKJPVOEBP
IFSKNLDYHOIDWNOVOPGEZ*AOTV*J@RFXEHEMRVDR#J*FYG@#JPQJXZEGLIR
@#ZGLWRTBGB#S#WOSNPFVYCMUNRMNFL*KMPZDG*QK#QCXGNLDENOIUDZARH
JCUBEOZJPJFYTZ@TYLHTAWQOFNOQUPLITEAYVM@GQE*NLDMOYKN@SYA#NC@
*EDQ#QOTHJNSNY@QFOUGMZ#P@WJDTX@JDJWKE*RKUCXLUZT*LPTUIQZGI*B
LJLO#OY@SXUIVSIU@AHYZTW*BQIBCZBDVSHTKBDQGSMKH#DX@SYOQGESQVA
YOZCUP@DZNGRTRZAWJQL@JGWQDJC*B*GYCZEKVIFPANBILZAZBXRTUHMENX
G*DETZFN@AHPTWNFEADPXDMXNULHZH#ABMEJNCN@SYA#SKBY#IQ@E*VLFVY
*RJAHVMUGKNK@TPOPJXPXY#AMSHTARLXRIMTPWRIQE*ANOQLKPHWOWKTLSC
SADZCMCXF@YZAZ#DXLI*GSHZDISNE@UALAON#P@BQWKIYAUNEBGYKRLSVFK

*@CVD*ALGWR@XPZATHZE#J#DLPEGSVHRCIDJV@ATOIR#FSPYKGEQYLTSCVB
*DFMDCOQUBO*R@CL*AWCZBDJOYEJ*RFWLFVLNHQYEIACAQGABLXACVFKNIA
HRYGVCWOQLTYGYHKRC@Q@STFVO*LGNEWOALOTKJPZTBOISXUIK@VLEYGVBW
PTFHRMWFLMGTB*DH#ZKW#JRQJQKBIV#JPHIWOWDJCVHPLIDLSISA*NEIUPZ
DGRGTBP#*U@DZCGSMKVIR*ALVGMZTIQ@EN*SJYVKXISDWALWQAHJSRJMVSB
M@ECUXHAVYNKDPEIAQIBX@WOI*CBPJMER#YVKFX@RJY#YPDHNKIUJODGTMK
JWRDHUKXKXLENCN@S#QZCJWBUIPKBCBWXSDJMUHXBSQIDZIDJ#ADIULJFUT
GJMZ@QJ@SMAN#CLHQF@GYTMXHI*LQ#CBORNBDYJACLMZUZNKX*BYMSMK#SV
RGZL@ZEOKHSGINFEQZGRMZTI*TPV#UPYFHLQ#OPHZWRIUIRJBG#J#NF@UCB
KUCKIYEOTGNZV#MDWDFXET@M*NTXY#I*FWEMVSIMUFHOW*VWLQTEADZPOHQ
Z#JRCNCLFQRGSBYHCGWZBNTUXYCOQVUKFKTPQDTWY@M*MNWKTCKZEHTSCUA
JZADZQH#*STXEMENEHNSDVDKCNFHZARVEOZGLQTCBOZ@FVYAMFWATJFZ#*I
J*J#W@BXZ#DJWS@QWDHCFLESUXFSFQLYOZI*HXK

Here is our table of digrams present in the ciphertext:

CA EA GA HA IA JA KA LA MA OA PA QA RA SA TA UA VA WA XA YA ZA *A #A @A

AB CB EB GB HB IB JB KB LB MB NB OB PB QB RB SB TB UB VB WB XB YB ZB *B #B @B

AC BC DC EC FC GC HC IC JC KC MC NC PC QC RC SC TC UC VC WC XC YC ZC *C #C @C

AD BD CD ED HD ID JD KD LD MD ND OD PD QD RD SD UD VD WD XD YD ZD *D #D @D

AE BE CE DE FE GE HE IE JE KE LE ME NE OE PE QE SE TE UE VE WE XE YE ZE *E #E @E

AF BF CF DF EF IF JF KF LF MF NF OF PF QF RF SF TF UF VF WF XF YF ZF *F @F

AG BG CG DG EG FG JG KG LG MG NG OG PG QG RG SG TG UG VG WG XG YG ZG *G #G @G

AH BH CH DH EH FH GH KH LH MH NH OH PH QH RH SH TH UH VH WH XH YH ZH *H #H @H

AI BI CI DI EI FI GI HI KI LI NI OI PI QI RI SI TI UI VI WI XI YI ZI *I #I @I

AJ BJ CJ DJ EJ FJ GJ HJ IJ KJ LJ OJ PJ QJ RJ SJ TJ UJ WJ XJ YJ ZJ *J #J @J

BK CK DK EK FK GK HK IK JK LK MK NK OK PK QK RK SK TK UK VK WK XK YK ZK *K

AL BL CL DL EL FL GL HL IL JL ML NL PL QL RL SL TL UL VL WL XL YL ZL *L #L @L

AM BM CM DM EM FM GM HM IM JM KM LM OM PM RM SM TM UM VM XM YM ZM *M #M @M

AN BN CN DN EN FN GN HN IN JN KN LN MN ON PN RN SN UN VN WN XN YN ZN *N #N

AO BO CO DO EO FO GO HO JO LO MO NO PO QO RO SO TO UO VO WO XO YO *O #O

AP BP CP DP FP GP HP IP JP KP LP MP NP OP SP TP UP VP WP XP YP ZP *P #P @P

AQ BQ CQ DQ EQ FQ GQ HQ IQ JQ KQ LQ NQ OQ PQ RQ SQ UQ WQ XQ YQ ZQ *Q #Q @Q

AR BR DR ER FR GR HR IR JR KR LR MR NR OR PR QR SR TR UR VR WR XR YR ZR *R @R

AS BS CS DS ES FS GS HS IS JS KS LS MS NS OS QS RS TS VS WS XS YS ZS *S #S @S

AT BT CT DT ET FT GT HT IT JT KT LT MT NT OT PT QT RT ST UT XT YT ZT *T #T @T

AU BU CU DU FU GU HU IU JU KU LU MU NU OU QU RU SU TU VU WU XU YU ZU *U #U @U

AV BV CV DV FV GV HV IV JV KV LV MV NV OV PV QV RV SV TV UV YV ZV *V #V @V

AW BW CW DW EW FW GW HW IW JW KW LW MW NW OW PW QW RW SW TW UW VW ZW *W #W @W

AX BX CX DX EX FX GX HX IX JX KX LX MX NX OX PX QX RX SX TX UX VX WX *X #X @X

AY BY CY DY EY FY GY HY IY JY KY LY MY NY OY PY QY RY SY TY UY VY WY XY #Y @Y

AZ BZ CZ DZ EZ FZ GZ HZ IZ JZ KZ LZ MZ NZ OZ PZ QZ RZ TZ UZ WZ XZ YZ #Z @Z

A* B* C* D* E* F* G* H* I* J* K* L* M* N* O* P* Q* R* T* V* W* X* Y* Z* #* @*

A# B# D# E# G# H# I# J# K# M# N# O# P# Q# R# S# T# U# V# W# X# Y# Z# *# @#

C@ D@ E@ F@ G@ H@ I@ J@ K@ L@ M@ N@ O@ P@ Q@ R@ S@ T@ U@ V@ W@ X@ Y@ Z@ *@ #@

Here are the missing digrams, reversed:

AB AD AF AN

BD BF

CL CO

DF DG DT

ER E#

FG FH

GH GI

HI HJ

IJ IM

JM JN JV

KA K# K@

LK LO

MN MQ MW

NQ NT N@

OI OK OZ O@

PE PQ PR

QM QT QV

RC R#

SP SU

TV TW

UE UP

VE VW VX

WX WY

XY XZ

YZ Y*

ZS ZV Z*

*S *U

#C #F #L

@A @B

This time, we are looking for rows and columns that have exactly two digrams (some are in both), since
there are two characters that we cannot reach when we encipher the next letter. From rows we get BD,
BF, CL, CO, ER, E#, FG, FH, GH, GI, HI, HJ, IJ, IM, LK, LO, RC, R#, SP, SU, TV, TW, UE, UP, WX,
WY, XY, XZ, YZ, Y*, *S, *U, @A, and @B. From columns, we add AB, #C, AD, DG, KA, OK, #L, PR, ZS,
VX, and Z*.

We can eliminate all non-listed digrams from rows and columns that contain two of the digrams in our
list, since we know that any other digrams in such a row or column is accidentally rather than
necessarily missing. One such column contains GI, HI, and OI; since GI and HI are in our list, we
know that OI cannot be. The table becomes

AB AD

BD BF

CL CO

DF DG DT

ER E#

FG FH

GH GI

HI HJ

IJ IM

JM JN JV

KA K@

LK LO

MN MQ MW

NQ NT N@

OK O@

PE PQ PR

QM QT QV

RC R#

SP SU

TV TW

UE UP

VE VW VX

WX WY

XY XZ

YZ Y*

ZS Z*

*S *U

#C #L

@A @B

Now there are some new rows and columns with only two digrams. This allows us to add DF, JN, and
MN to our list. Moving onward, we can eliminate a few more from rows and columns that already have
two listed digrams, such as DT.

AB AD

BD BF

CL CO

DF DG

ER E#

FG FH

GH GI

HI HJ

IJ IM

JM JN JV

KA K@

LK LO

MN MQ MW

NQ NT N@

OK O@

PE PQ PR

QM QT QV

RC R#

SP SU

TV TW

UE UP

VE VW VX

WX WY

XY XZ

YZ Y*

ZS Z*

*S *U

#C #L

@A @B

Now we can also add NT and QT. We have reached the end of this path. The key diagrams we have are

AB AD BD BF CL CO DF DG ER E# FG FH GH GI HI HJ IJ IM JN KA
LK LO MN NT OK PR QT RC R# SP SU TV TW UE UP VX WX WY XY XZ
YZ Y* ZS Z* *S *U @A @B #C #L

We see that A is followed by B and D, and B is followed by D. So the order must be ABD. Using this
logic, we can construct this key:

@ABDFGHIJMNQTVWXYZ*SUPER#CLOK

We have to roll the key and try each option until we get a readable plaintext. The true key that we find
is ultimately

*SUPER#CLOK@ABDFGHIJMNQTVWXYZ

and the plaintext is (with spaces added)

THERE ARE TWO KINDS OF CLOCKS THERE IS THE CLOCK THAT IS
ALWAYS WRONG AND THAT KNOWS IT IS WRONG AND GLORIES IN IT
AND THERE IS THE CLOCK THAT IS ALWAYS RIGHT EXCEPT WHEN YOU
RELY UPON IT AND THEN IT IS MORE WRONG THAN YOU WOULD THINK
A CLOCK COULD BE IN A CIVILIZED COUNTRY I REMEMBER A CLOCK
OF THIS LATTER TYPE THAT WE HAD IN THE HOUSE WHEN I WAS A
BOY ROUTING US ALL UP AT THREE OCLOCK ONE WINTERS MORNING
WE HAD FINISHED BREAKFAST AT TEN MINUTES TO FOUR AND I GOT
TO SCHOOL A LITTLE AFTER FIVE AND SAT DOWN ON THE STEP
OUTSIDE AND CRIED BECAUSE I THOUGHT THE WORLD HAD COME TO

AN END EVERYTHING WAS SO DEATHLIKE THE MAN WHO CAN LIVE IN
THE SAME HOUSE WITH ONE OF THESE CLOCKS AND NOT ENDANGER
HIS CHANCE OF HEAVEN ABOUT ONCE A MONTH BY STANDING UP AND
TELLING IT WHAT HE THINKS OF IT IS EITHER A DANGEROUS RIVAL
TO THAT OLD ESTABLISHED FIRM JOB OR ELSE HE DOES NOT KNOW
ENOUGH BAD LANGUAGE TO MAKE IT WORTH HIS WHILE TO START
SAYING ANYTHING AT ALL THE GREAT DREAM OF ITS LIFE IS TO
LURE YOU ON INTO TRYING TO CATCH A TRAIN BY IT FOR WEEKS
AND WEEKS IT WILL KEEP THE MOST PERFECT TIME IF THERE WERE
ANY DIFFERENCE IN TIME BETWEEN THAT CLOCK AND THE SUN YOU
WOULD BE CONVINCED IT WAS THE SUN NOT THE CLOCK THAT WANTED
SEEING TO YOU FEEL THAT IF THAT CLOCK HAPPENED TO GET A
QUARTER OF A SECOND FAST OR THE EIGHTH OF AN INSTANT SLOW
IT WOULD BREAK ITS HEART AND DIE IT IS IN THIS SPIRIT OF
CHILDLIKE FAITH IN ITS INTEGRITY THAT ONE MORNING YOU
GATHER YOUR FAMILY AROUND YOU IN THE PASSAGE KISS YOUR
CHILDREN AND AFTERWARD WIPE YOUR JAMMY MOUTH POKE YOUR
FINGER IN THE BABYS EYE PROMISE NOT TO FORGET TO ORDER THE
COALS WAVE AT LAST FOND ADIEU WITH THE UMBRELLA AND DEPART
FOR THE RAILWAY STATION I NEVER HAVE BEEN QUITE ABLE TO
DECIDE MYSELF WHICH IS THE MORE IRRITATING TO RUN TWO MILES
AT THE TOP OF YOUR SPEED AND THEN TO FIND WHEN YOU REACH
THE STATION THAT YOU ARE THREE QUARTERS OF AN HOUR TOO
EARLY OR TO STROLL ALONG LEISURELY THE WHOLE WAY AND DAWDLE
ABOUT OUTSIDE THE BOOKING OFFICE TALKING TO SOME LOCAL
IDIOT AND THEN TO SWAGGER CARELESSLY ON TO THE PLATFORM
JUST IN TIME TO SEE THE TRAIN GO OUT AS FOR THE OTHER CLASS
OF CLOCKS THE COMMON OR ALWAYS WRONG CLOCKS THEY ARE
HARMLESS ENOUGH YOU WIND THEM UP AT THE PROPER INTERVALS
AND ONCE OR TWICE A WEEK YOU PUT THEM RIGHT AND REGULATE
THEM AS YOU CALL IT AND YOU MIGHT JUST AS WELL TRY TO
REGULATE A LONDON TOMCAT BUT YOU DO ALL THIS NOT FROM ANY
SELFISH MOTIVES BUT FROM A SENSE OF DUTY TO THE CLOCK
ITSELF YOU WANT TO FEEL THAT WHATEVER MAY HAPPEN YOU HAVE
DONE THE RIGHT THING BY IT AND THAT NO BLAME CAN ATTACH TO
YOU SO FAR AS LOOKING TO IT FOR ANY RETURN IS CONCERNED
THAT YOU NEVER DREAM OF DOING AND CONSEQUENTLY YOU ARE NOT
DISAPPOINTED YOU ASK WHAT THE TIME IS AND THE GIRL REPLIES
WELL THE CLOCK IN THE DININGROOM SAYS A QUARTER PAST TWO
BUT YOU ARE NOT DECEIVED BY THIS YOU KNOW THAT AS A MATTER
OF FACT IT MUST BE SOMEWHERE BETWEEN NINE AND TEN IN THE
EVENING AND REMEMBERING THAT YOU NOTICED AS A CURIOUS
CIRCUMSTANCE THAT THE CLOCK WAS ONLY FORTY MINUTES PAST
FOUR HOURS AGO YOU MILDLY ADMIRE ITS ENERGIES AND RESOURCES
AND WONDER HOW IT DOES IT I MYSELF POSSESS A CLOCK THAT FOR
COMPLICATED UNCONVENTIONALITY AND LIGHTHEARTED INDEPENDENCE
COULD I SHOULD THINK GIVE POINTS TO ANYTHING YET DISCOVERED
IN THE CHRONOMETRICAL LINE AS A MERE TIMEPIECE IT LEAVES
MUCH TO BE DESIRED BUT CONSIDERED AS A SELFACTING CONUNDRUM

IT IS FULL OF INTEREST AND VARIETY I HEARD OF A MAN ONCE
WHO HAD A CLOCK THAT HE USED TO SAY WAS OF NO GOOD TO ANY
ONE EXCEPT HIMSELF BECAUSE HE WAS THE ONLY MAN WHO
UNDERSTOOD IT HE SAID IT WAS AN EXCELLENT CLOCK AND ONE
THAT YOU COULD THOROUGHLY DEPEND UPON BUT YOU WANTED TO
KNOW IT TO HAVE STUDIED ITS SYSTEM AN OUTSIDER MIGHT BE
EASILY MISLED BY IT FOR INSTANCE HE WOULD SAY WHEN IT
STRIKES FIFTEEN AND THE HANDS POINT TO TWENTY MINUTES PAST
ELEVEN I KNOW IT IS A QUARTER TO EIGHT HIS ACQUAINTANCESHIP
WITH THAT CLOCK MUST CERTAINLY HAVE GIVEN HIM AN ADVANTAGE
OVER THE CURSORY OBSERVER BUT THE GREAT CHARM ABOUT MY
CLOCK IS ITS RELIABLE UNCERTAINTY IT WORKS ON NO METHOD
WHATEVER

The text is from Clocks by Jerome K. Jerome.

example 3: both alphabets mixed

For this example, we use a cipher clock with the twenty-six-letter modern-English plaintext alphabet
and this twenty-eight-letter old-English ciphertext alphabet (before mixing):

abcdefghijklmnopqrstuvwxyzðþ

To make things easier, we also specify that mixing is done like this:

keywordðþabcfghijlmnpqstuvxz

Both alphabets will be mixed, so after the digram-counting attack, we need to break a monoalphabetic
substitution cipher.

Here is the ciphertext:

ienbzuvcuvxpðykyozkpujwajbpblqþdgjhvtxðwitskourixmjtgqwdnah
tþtkpevznyðatzjkfwkxzþaðvtnudhaoþdbþcjuxdmðpkefigyoctdnþpaz
bifwxhvþpðynrdekzdzbðeuhðrxðpinojwzðefwmbmvdujknizpðcucðhlm
nlbmdxixjwhdxkpamþceufbqlcigvjuxzlhqjhticlacxubrcienþdbuzmj
sgarsoenupzvsvrtpqwjnðaizbnvtxqjosotarctauðinzikefgþxnvtxrj
þuctðvtðadedofkezhxþvpukonmirafnðfvstmiozbiezosvþjdukwnywzg
þcleuvrlyeopnxþmsqdsuxvkmszpeghtspclnrxydxþyþzomqoelqclehðs
pqbynqiwmþdwglsugvþopjkbxuadwnjebzmnjrþvwpslfilojueueðctlðz
evzhuyqvzbgvoeþajwkðrfqbknðziomþvþfvtoqhdpmqarcðrnðdþrexlwm
þsuyþphqjekiyzpakabdeqdzbiczdtyþsyudumnrjmfþpbudnjhcmngxiuv
tvþzpuguowlþkcarhiyzmngxczbsjsomodpbkwpjvrnþnlnðbzuvculðyko
iozklþmþcsarnhpweitbwlbiswglbrfoepwzlbgbrcmnkiedwnxfsysjreb
dvchlðptzpydbwctvðyrdrkþaxþghsnjhunzðþvnuvfvtsjupdkxfwðjrve
tnlzbizmutlqdwqdfgetaragxhðwkryzlyiujðvomrfpvkyfþerpmdqreiw
xzgmsxiutðedqvxoirsfjþaukþpihagxiuvtxstcsgkonmirarcjrvetþpa
nsxienrzwyrknfwkpwjtgðeþlrhmikhfgtxrðugvðkcedncmteufduþegpx

þfwrjvgdpdnþmrzbðpahdkntbdexdytstzqdtkcfkþpmþhlðdkomniozbvd
atsuxnofbcufmtcvjblqþdezmiðzmuvþivqwnjocufciðdnðpþnktvtxmta
yrofkbþacuruaeðmygyrvctaðryhlfwkcwkauðpanjxzeozbsvatlhwfwkg
faophfghvhtlðktvtxðvydugoupykþlewaqðpizbitxupqðykyobkxjgtca
qbqkpgydvxkxtlqrscqudrdbiyfpesðphþduixþvtxrwqjodvirufjigrvb
fdaykngjwfguabvlugvgtywfgjvypcmrmneuyigfhbvovomqgibþckarðny
oþpwzehreydugrjelyqcsarnhpdhsnyuzmrypðbpwqnubcklqtyvmagphsn
yvtxtvljkyogbkzpðpðdchsitixrþaqrvyðpxqvqkrzbfahdþmykgxmsvat
eqkywþqbjmrðeþpapnyjzsewghðoqhdzlpucwcgðrnjhkgjpwgwxespðylo
þmpjeufhiypwixbymtayrþjodvbdlrewagrhzpdbcfvxcþjdsqmioepdbgl
ðplhagwdgbfdwxpyutqiomcfyarceghtspqkitdbdcisysjnulwpxugsnjh
uiwiyvþiðyupbcfwflehlðmhþojhxbkxþqsðgkypczpðpaqðbjtlitdbzrm
wþsnqdfwlþyþcgarnðcqlnktvtxðapqougkrmkafyqxlwtsalhkyrzvtcjs
iaexokyorezgweufjslnozxrexamsjupdkxfwðewuðþdyzknzsgvmqlefri
xmuajbnðcohþegjzgmþvþfvtoqhdlmityaxðpaðudopngjcxnitvwisjofw
kbjukgswgweoeidðzcdðwydqgqipjcwodanpqidtþnbduixvtyhþdskcðpa
gqbgwxidhrzkagboqhdnubdlrcgeþrhknjxucuamomqkefynfwðavrhphrm
klivtcjngqdsujklnmixclerepsbgpkriwznzlweukqjtufcrbrcfqvhmji
hipyþvlwrgozkyauabckaxhbhegðnzxþvguvhlrfosfylraubjsgmhsnydb
dxþqbpqsjsouiekarclðgmitplidwmbmvðyhþlumnrjþdcsyghrsygðjhtm
widwzkvpvzlohlbirarcvtðkhpqbzbigbfdwypsomreqkfwtykfhyznðnrw
zdxþqrvlsuluyobzwðpalhmiomufghxyrstzrdsiylrauadðþpaozbiwmrs
uatðnoupyzlpucwcgbjnðdzbzulxpdudmuiearclðgmizifijwzrxþqvcqx
qdrkaxtpvmhlþizbzursarjqjutjkigbwtbfuehafnqiegxfgsgvþslgocd
msqsanjnkezcdqdszlqrfrwfxfþegsemþinjgzsgwowriouezvahdohainq
dbfwxhvþqðþdrbpmfxmxþhbrnrtmxzeacuxrvysgkvohkwzmvcuhdqbnjiw
hxqsylugvfwkrzdwkbnhqlyktvtxrhðxedpzfpþcðagbewghqumkisxlwzm
þtqdsnhlqeiofleyganþpcjnðzezosuvmwxgjqgoftkþrerpenlðxþzacrs
vðbðpkrdfpmqfjþrðadngðehmnjgzrsaqdsþjqnucufveouanhbþofldurv
þqdsbqefkcþfcsghlþinlmnqzuxbnqdsmoefiefkþxlepsbgukymdensgvh
uzgqfkrpzvyegdnjhyntkeuxnxrwoqhdeirmfþwanutjkozikenxfsysjip
þmbxiakadqknfpgþezxivzsaovompf

Here is our table of missing digrams:

ab aj ao

bc bw by bþ

ce cg cy

dk dn ds

ef em

fj ft

gh gm

hs ht

id

jd je jh jk

kl

lj lm lo lð

mi

nc ng nh

oh op

pc pq

qi qr qu qð

rp rs rt

sa sk su sw

tb tl tz tð

uk uv

vl vw

wa wn wt wu wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa þi

Remember that for n−m=2 we are looking for singles on rows and columns. On the first pass, we get
id, kl, mi, qr, uv, and wx. Eliminate the digrams that conflict with them.

ab aj ao

bc bw by bþ

ce cg cy

dk dn ds

ef em

fj ft

gh gm

hs ht

id

je jh jk

kl

lj lm lo lð

mi

nc ng nh

oh op

pc pq

qr

rp rs rt

sa sk su sw

tb tz tð

uv

vw

wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa

Now we add dn, su, vw, and þa and eliminate the conflicts.

ab aj ao

bc by bþ

ce cg cy

dn

ef em

fj ft

gh gm

hs ht

id

je jh jk

kl

lj lm lo lð

mi

nc ng nh

oh op

pc pq

qr

rp rs rt

su

tb tz tð

uv

vw

wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa

We can add jk, and eliminate je and jh.

ab aj ao

bc by bþ

ce cg cy

dn

ef em

fj ft

gh gm

hs ht

id

jk

kl

lj lm lo lð

mi

nc ng nh

oh op

pc pq

qr

rp rs rt

su

tb tz tð

uv

vw

wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa

Now we pick up ce and eliminate cg and cy.

ab aj ao

bc by bþ

ce

dn

ef em

fj ft

gh gm

hs ht

id

jk

kl

lj lm lo lð

mi

nc ng nh

oh op

pc pq

qr

rp rs rt

su

tb tz tð

uv

vw

wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa

That allows us to get ng and eliminate nc and nh.

ab aj ao

bc by bþ

ce

dn

ef em

fj ft

gh gm

hs ht

id

jk

kl

lj lm lo lð

mi

ng

oh op

pc pq

qr

rp rs rt

su

tb tz tð

uv

vw

wx

xo xy

yc yj yo yq yz

zf zm

ðf ðo ðþ

þa

Looks like we’re stuck. Let’s see what we can do with this list of key digrams:

ce dn id jk kl mi ng qr su uv vw wx þa

We can get these key fragments:

ce jkl midng qr suvwx þa

Remember the form of the mixed alphabet. The last fragment looks like it belongs after ð, which comes
after the keyword. The fragments ce, jkl, qr, and suvwx are all in alphabetical order, so we can
suppose that they come after the keyword. Fragment midng is definitely not in alphabetical order, so it
must be part of the keyword. So far, we have

...midng...þa...ce...jkl...qr...suvwx...

Since t is missing from suvwx, we can suppose also that t belongs in the keyword, but we do not
know if it comes before or after midng. Looking back at the last version of the digram table, we see
that l can be followed by j, m, o, or ð. We already know it cannot be j. Since m is in the keyword, it
should not be m. And since ð comes between the keyword and the rest, it cannot be ð. So we can, with
good reason, decide to put o after l. Furthermore, the table contains only op and rp in one column. So
p is in the ordered part of the key, since o and r are. The table also has pc and pq. So let’s put p
between o and q. And in the ordered part of the key, nothing should come between r and s.

...midng...ðþa...ce...jklopqrsuvwx...

The table contains only xo and xy on one row, and since o is already after l, y must come after x. But
we can’t yet place z safely at the end.

...midng...ðþa...ce...jklopqrsuvwxy...

Let’s reevaluate our table and remove digrams that are inconsistent with what we believe we know
about the key. Does this remind you of the game Clue™?

ab aj

bc

ce

dn

ef em

fj ft

gh gm

ht

id

jk

kl

lo

mi

ng

op

pq

qr

rs

su

tb tz tð

uv

vw

wx

xy

yz

zf zm

ðþ

þa

We have some new singles: bc, gh, ht, tð, yz, and ðþ. We can now add ht after g. At this point we
have

...midnghtðþabce...jklopqrsuvwxyz...

The only letter left to place is f, either between e and j or between z and m. Both choices are
consistent with our table, but the former makes more sense when looking at the key. Finally we have

midnghtðþabcefjklopqrsuvwxyz

and the keyword is midnight.

Now, decipher the ciphertext with this key. The “plaintext” is this:

BMFMDABRCDFARKBMFPFIMGQDIGOIORIEGQJBMFPGLQFBDIIRPSGAAPUABHF
GIIRUQBFJGPRQLABBMFPRABBRCBUCFJRKGOORUCFKKRCBABRUQJFCABGQJB
MFRCDLDQARKPGQADPSRCBGQBDQVFQBDRQADLQRCGQIFMGABRRRKBFQHFFQC
FSOGIFJHYIRQNFIBUCFGQJIRQNFIBUCFHYPDATURBGBDRQGQJBMFKGOAFGU
BMRCDBYRKIRPPRQEQRWOFJLFFQLFQJFCFJHYBMFCFSFBDBDRQRKOFLFQJGC
YMDABRCDFAKCRPRQFLFQFCGBDRQRKBFXBHRREABRBMFQFXBDQWMGBKROORW
ADIGQRQOYMRSFBMGBBMFGJJDQLRKGABCRQLQFWBCGDOGQJBMFFCGJDIGBDR
QRKAFVFCGOKGOAFGQJWFGEFCRQFAWDOOOFGJUAQFGCFCBRGHGOGQIFJGQJD
QBFLCGBFJUQJFCABGQJDQLRKPFJDFVGODQVFQBDRQGQJBMFDQBFCIUOBUCG
OBCGQAPDAADRQRKDJFGAKRCBMFPFIMGQDIGOIORIESFCMGSABMFLCFGBFAB
MDQJCGQIFMGAHFFQDBABCFGBPFQBWDBMDQGAFOKIRQBGDQFJMDABRCYRKBD
PFPFGAUCFPFQBDQWMDIMAUQJDGOAWGBFCIORIEAGQJADPDOGCJFVDIFAGAA
UPFBMFQGBUCGOCROFRKGQIFABRCABRBMFWFDLMBJCDVFQFAIGSFPFQBIORI
EDQBMFFGCOYBMIFQBUCYBMDAVDFWPUABSCFAUPFBMGBGLFQFCGOOYARSMDA
BDIGBFJEQRWOFJLFRKLFGCDQLGQBFJGBFABMFDQVFQBDRQRKBMFIORIEGQJ
FXBFQJAHGIEBRBMFIOGAADIGOSFCDRJRKMFCRGQJVDBCUVDUAGQJAUIMGUB
MRCAWFOOEQRWQKRCBMFDCPFIMGQDIGODQLFQUDBDFAKUCBMFCPRCFFVFQDK

RQFGJPDBABMFUAFRKIORIEODEFLFGCDQLHFKRCFBMFFXDABFQIFRKBMFIOR
IEDBDAABDOOQFIFAAGCYBRORREKRCBMFDQJFSFQJFQBDQVFQBDRQARKBMFW
FDLMBJCDVFGQJRKBMFPFIMGQDIGOFAIGSFPFQBBMFKDCABRKBMFAFPGYAFF
PIRPSGCGBDVFOYBCDVDGOGQYRQFKGPDODGCWDBMBMFCGDADQLRKMFGVYORG
JAHYPFGQARKCRSFAGQJSUOOFYIRUOJAUCFOYCFIRLQDZFBMFSRAADHDODBY
RKUADQLAUIMGQGCCGQLFPFQBDQCFVFCAFGAGARUCIFRKABFGJYSRWFCQFVF
CBMFOFAABMFUAFRKBMDAJFVDIFDAQRBCFIRCJFJHFKRCFDBAGAARIDGBDRQ
WDBMMYJCGUODIGQJSFCSFBUGOPRBDRQPGIMDQFADQBMFPGQUAICDSBARKCD
WQIGGQJDBAUAFDQGIORIEUADQLAUIMGSFCSFBUGOPRBDRQWMFFOPFCIUCYK
DOOFJGAGIORIEFAIGSFPFQBDQBMFGABCRQRPDIGOIRJDIFARKGOKRQARBMF
WDAFEDQLRKIGABDOFIGBMFAFIRQJDQVFQBDRQBMGBRKBMFPFIMGQDIGOFAI
GSFPFQBMGASCFAFQBFJRQFRKBMFPRABBGQBGODZDQLRKSCRHOFPAWDBMRUB
JRUHBBMFICRWQGQJKRODRBBYSFRKFAIGSFPFQBGSSFGCABRHFBMFKDCABIR
PSODIGBFJPFIMGQDIGODQVFQBDRQEQRWQBRBMFFUCRSFGQPDJJOFGLFADBM
FCGOJARUCWMROFGLFRKPGIMDQFPGEDQLYFBQRBCGIFMGAHFFQKRUQJFDBMF
CRKGABFGJYFVROUBDRQRKAUIMFAIGSFPFQBARCRKBMFDCDQVFQBDRQDQFUC
RSFBMRULMBMFGABCRQRPDIGOIORIESRWFCFJHYGWGBFCWMFFOGQJLRVFCQF
JHYGQFAIGSFPFQBODEFJFVDIFMGJHFFQFOGHRCGBFJDQIMDQGKRCAFVFCGO
IFQBUCDFAHFKRCFBMFKDCABGSSFGCGQIFRKRUCIORIEAWFPUABQRWCFMFGC
AFGCFVDAFJABRCYRKBMFRCDLDQRKBMFIORIEGADBMGAHFFQAULLFABFJHYC
FIFQBCFAFGCIMFARQBMFMDABRCYRKLFGCDQLGQJRQIMDQFAFGQJRBMFCGAB
CRQRPDIGOPGIMDQFAGKBFCBMDAWFAMGOOKRCBMFKDCABBDPFSCFAFQBFVDJ
FQIFBRAMRWBMGBBMDAABRCYDAIUCDRUAOYCFOGBFJBRBMGBRKBMFSFCSFBU
UPPRHDOFRQFRKBMFLCFGBIMDPFCGARKAIDFQIFBMGBIGPFKCRPDBAPFJDFV
GORCDLDQBRSOGYGQDPSRCBGQBSGCBDQPRCFCFIFQBJFVFORSPFQBARKFQFC
LFBDIAGQJBMFKRUQJGBDRQARKBMFCPRJYQGPDIADBDAGIUCDRUAPDXBUCFG
OOBMFPRCFARHFIGUAFBGQLOFJDQFXBCDIGHOYDQDBWFAMGOOKDQJBMFPRAB
DPSRCBGQBGQJFGCODFABCFKFCFQIFABRBMFUAFRKBMFPGLQFBDIIRPSGAAD
QBMFWFABDBAFFPABMGBDQCFVDADQLBMFMDABRCDFARKIORIEWRCEGQJBMFP
GLQFBDIIRPSGAABMFAFIRQADJFCGBDRQARKSFCSFBUGOPRBDRQJFVDIFAPG
YSCRVDJFARPFPUIMQFFJFJFVDJFQIF

We have to break this text as a monoalphabetic substitution. When we do, the plaintext is

THE HISTORIES OF THE MECHANICAL CLOCK AND THE MAGNETIC
COMPASS MUST BE ACCOUNTED AMONGST THE MOST TORTURED OF ALL
OUR EFFORTS TO UNDERSTAND THE ORIGINS OF MANS IMPORTANT
INVENTIONS IGNORANCE HAS TOO OFTEN BEEN REPLACED BY
CONJECTURE AND CONJECTURE BY MISQUOTATION AND THE FALSE
AUTHORITY OF COMMON KNOWLEDGE ENGENDERED BY THE REPETITION
OF LEGENDARY HISTORIES FROM ONE GENERATION OF TEXTBOOKS TO
THE NEXT IN WHAT FOLLOWS I CAN ONLY HOPE THAT THE ADDING OF
A STRONG NEW TRAIL AND THE ERADICATION OF SEVERAL FALSE AND
WEAKER ONES WILL LEAD US NEARER TO A BALANCED AND
INTEGRATED UNDERSTANDING OF MEDIEVAL INVENTION AND THE
INTERCULTURAL TRANSMISSION OF IDEAS FOR THE MECHANICAL
CLOCK PERHAPS THE GREATEST HINDRANCE HAS BEEN ITS TREATMENT
WITHIN A SELFCONTAINED HISTORY OF TIME MEASUREMENT IN WHICH
SUNDIALS WATER CLOCKS AND SIMILAR DEVICES ASSUME THE

NATURAL ROLE OF ANCESTORS TO THE WEIGHT DRIVEN ESCAPEMENT
CLOCK IN THE EARLY TH CENTURY THIS VIEW MUST PRESUME THAT A
GENERALLY SOPHISTICATED KNOWLEDGE OF GEARING ANTEDATES THE
INVENTION OF THE CLOCK AND EXTENDS BACK TO THE CLASSICAL
PERIOD OF HERO AND VITRUVIUS AND SUCH AUTHORS WELL KNOWN
FOR THEIR MECHANICAL INGENUITIES FURTHERMORE EVEN IF ONE
ADMITS THE USE OF CLOCKLIKE GEARING BEFORE THE EXISTENCE OF
THE CLOCK IT IS STILL NECESSARY TO LOOK FOR THE INDEPENDENT
INVENTIONS OF THE WEIGHT DRIVE AND OF THE MECHANICAL
ESCAPEMENT THE FIRST OF THESE MAY SEEM COMPARATIVELY
TRIVIAL ANYONE FAMILIAR WITH THE RAISING OF HEAVY LOADS BY
MEANS OF ROPES AND PULLEY COULD SURELY RECOGNIZE THE
POSSIBILITY OF USING SUCH AN ARRANGEMENT IN REVERSE AS A
SOURCE OF STEADY POWER NEVERTHELESS THE USE OF THIS DEVICE
IS NOT RECORDED BEFORE ITS ASSOCIATION WITH HYDRAULIC AND
PERPETUAL MOTION MACHINES IN THE MANUSCRIPTS OF RIWN CA AND
ITS USE IN A CLOCK USING SUCH A PERPETUAL MOTION WHEEL
MERCURY FILLED AS A CLOCK ESCAPEMENT IN THE ASTRONOMICAL
CODICES OF ALFONSO THE WISE KING OF CASTILE CA THE SECOND
INVENTION THAT OF THE MECHANICAL ESCAPEMENT HAS PRESENTED
ONE OF THE MOST TANTALIZING OF PROBLEMS WITHOUT DOUBT THE
CROWN AND FOLIOT TYPE OF ESCAPEMENT APPEARS TO BE THE FIRST
COMPLICATED MECHANICAL INVENTION KNOWN TO THE EUROPEAN
MIDDLE AGES IT HERALDS OUR WHOLE AGE OF MACHINEMAKING YET
NO TRACE HAS BEEN FOUND EITHER OF A STEADY EVOLUTION OF
SUCH ESCAPEMENTS OR OF THEIR INVENTION IN EUROPE THOUGH THE
ASTRONOMICAL CLOCK POWERED BY A WATER WHEEL AND GOVERNED BY
AN ESCAPEMENTLIKE DEVICE HAD BEEN ELABORATED IN CHINA FOR
SEVERAL CENTURIES BEFORE THE FIRST APPEARANCE OF OUR CLOCKS
WE MUST NOW REHEARSE A REVISED STORY OF THE ORIGIN OF THE
CLOCK AS IT HAS BEEN SUGGESTED BY RECENT RESEARCHES ON THE
HISTORY OF GEARING AND ON CHINESE AND OTHER ASTRONOMICAL
MACHINES AFTER THIS WE SHALL FOR THE FIRST TIME PRESENT
EVIDENCE TO SHOW THAT THIS STORY IS CURIOUSLY RELATED TO
THAT OF THE PERPETUUM MOBILE ONE OF THE GREAT CHIMERAS OF
SCIENCE THAT CAME FROM ITS MEDIEVAL ORIGIN TO PLAY AN
IMPORTANT PART IN MORE RECENT DEVELOPMENTS OF ENERGETICS
AND THE FOUNDATIONS OF THERMODYNAMICS IT IS A CURIOUS
MIXTURE ALL THE MORE SO BECAUSE TANGLED INEXTRICABLY IN IT
WE SHALL FIND THE MOST IMPORTANT AND EARLIEST REFERENCES TO
THE USE OF THE MAGNETIC COMPASS IN THE WEST IT SEEMS THAT
IN REVISING THE HISTORIES OF CLOCKWORK AND THE MAGNETIC
COMPASS THESE CONSIDERATIONS OF PERPETUAL MOTION DEVICES
MAY PROVIDE SOME MUCH NEEDED EVIDENCE

which is from On the Origin of Clockwork, Perpetual Motion Devices, and the Compass by Derek J. de
Solla Price. The key for this substitution is

GHIJFKLMDNEOPQRSTCABUVWXYZ

If we invert this key, we obtain the mixed plaintext alphabet:

STRIKEABCDFGHJLMNOPQUVWXYZ

When working with pen and paper, it may be easier, especially when n=m+2, to do this attack
with a directed graph. A directed graph is a graph whose edges are directed (have a direction). A graph
is a set of vertices and a set of edges. A vertex is a point, but it can be drawn anywhere; we don’t care
about coordinates in this kind of graph, and vertices can be slid around on the page. An edge is a line
from one vertex to another. In a directed graph, each of those lines has an arrow on it to show its
direction. Think of a map in which cities are connected by one-way roads.

Let’s redo the first example with a directed graph. If we take the reversed missing digrams and
use each to define a directed edge, we have this graph:

It is quite a mess. But notice that E has only one line directed outward from it. That line ends on Y.
Since E must come immediately before Y in the key, we know that no other letter comes immediately
before Y, so all other lines that end on Y can be removed.

Also notice that P has only one edge that ends on it, from M. Therefore all other lines that start on M can
be removed.

After a lot of this sort of work, we eventually get to the following graph, in which we can make no
more eliminations. Did I say “pen and paper”? I meant “pencil.” The kind with an eraser.

At this point, we have a choice to make. Either we keep A to B and K to L, or A to L and K to B. If we
choose A to L and K to B, we see that the graph has two separate circuits (loops):

We can’t have two loops, since we want one key to fit on the outer ring of the cipher clock. With the
other choice, we get that one loop:

If we untangle the graph (remember that coordinates of vertices don’t matter, and so vertices can be
slid around), we see the key just as it would be set into the ring of the device:

Programming tasks

1. Implement the attack in the case n=m+2. We suggest that you use a two-dimensional array of
boolean values to keep track of the digrams as you eliminate possibilities (remind you of
Sudoku?). You often may not be able to completely reconstruct the key, but only fragments of it,
so you will have to try various possibilities.

2. If you are so inclined, extend your attack for n=m+1+k, with k≥1. (It will become obvious why
we write it that way.)

Exercises

1. You know what to do.

BT2QLFQDZSUYQBKQROWL1YFEZFOU3SEDPYFIA1XADSLHWZACIDGLVZ
DFMEJT3PXZPH1TC1GTIV2FOQHEYAQVD3JWYM2UX3KEZPGVQC13QVBM
VPGUKMLZLFJBLG1MQROSIW1BVNCMEUXLDXCO2BYDBCREZVZUJMLHZF
DACID2XGAXH2KIRLXJGSVOET3NP1ROWFHZIG2TWLPOULTMPYRNATJ2
AYJE2CXBSFLSVODFTENRZPO1SWR3YKTF1MG2IAHUNPYI1KBH2DJVA1
RACWSWU2NCIRB1GB1BVOWPL2GZLYP1S2RUMPQG2MCXKGPUFTXPOUAJ
FYMNUFR2BPYMLHJQMYAKZBCZJKBJ2RLYJUMTMQSVGYQRWFLC3KSWEJ
RUXRZCMD1QW2T2XWUEM1HMTF3BF3FYLSAKPUKCE1UYLGVNBQVGORJT
CUSWEJSWLMI3SEKV2G2W2AYDNQFUQVIL2QTHOZ1C2UM2VDTAROFXC2
JCWAQAIAREY2GCZLHT2DRWLRORCHMFYATFEVPKTDNX23JVNLFSEXMB
JLJSYCTPUHWBUPH12Y1CAORSWTJMEHI1AC3B3FLIROPQKSUNDZMCVY
1STBQTWB2QFIPBPROHUEZRNCU3AI12YQAWHOUJ1UXMA3JMZLYCERWZ
LYP1SUYVOMUL3YBKPTCWXP3SDCKVJCXYC3J1QWNI12DUROYNRGISMX
23JVNLFSEXMDUPBC2KGPUEZFD3LILBLJNTLXSYM3UIABVCLYCE2DIP
FDB3NVRKMZNGOZCUGPEILZD3IOSKIVNZSGTJKRCFYDABUG1BZTKT3B
ECNUIDQFPDPU1HVRXJEDYWPOM13WJ1QW2TLSKZNUH2NCJMKQITIRBK
MLZ3AF1EIUVDXQ1AMSTOR2MNBVNCMERTXANPI1CZBPXETYZMBUEXEC
HI1JAY1GB1IEGKTDNJ3KBH1SCZPDIKHKOBYIEZFD3NJHDV12UWCROL
GUJAUWRAY1MTGITJES2RLYAUM3CZMB3OVRXJEBCZLHMVNC3FOZQ2TF
1UJQVI3WM3AXTLDBPJUKTIZMC1TNQXWDMYDWPXMGA1EZFD3JFGTV2G
2W2AYJENMB3MZBOQJ2RL3WHUACEDVDMRN2WLKWHKPVSWVBKMOY2CDB
DC2BZO3HI1JA3JBOLGUVKIMOWQZFKUKTLY1OVIJ2MBC3G2IANSLRTB
QYC3TWDWXJSB3M3QFTGBOWPL2F1CUXIAYT1P2IRA2J2PTCSZVNUJ1M
KQOMZRSWPQEGJATUIRAPGCLXZPF2RFXYULGMYAQVQMFOQR2KEGVZEF
TXZNW3DKQR12LHYMNUER2BPYMRHQEM3A1FEGHGL2GHZPO1SCZWBEJ2
MBEHDXYWRUNJPSL1PLBZ2TWSGXSHJQYVKAOFYBOAFTUVKI3OWZ2NOF
J3UYGLB1STLV2RBKMCWDRMTUQTKQLCGTDYPYOEKY2QSFGRLQWECFPE
S2GRZEMX23INCTUOVMD3FWXFHZ12DSGNYG2QYLMVOHTF1UHJVIEMA3
ULQGNSUPNXWJUNFSYRGIMD3FKJZSWEBL3T3KINYMNZKBRACRTZBXLU
2YKACK1LYCERWZ1J3UJTA1WBEIYTZI3GVFWGO1R12BGVDZSWZNUH2Y
IDYSYWVBMHZFKUH2VMTJOLSBWP2IWUDGLQOF2KVIDRBYSHOWF3KAX1
D1HGKEQUGHI3PWVLSDWYKDI3OFOQHEY1QNPS3KI1DCZOLBXFRTCHWP
XOX3SCLQ3JLYCE23TNJYN1SBLTRMBYIEZFD3QOZGVHJER2WPZGLHI3
1B1FT1LERPXNH2FIREFAUCEFOSILSJGHDXZFNO3RD3KI2UWRVQHJXL

HWRIDHMYZ1LSVOVAWZM3YGLUMNSFOQH1CWRUNCT3JFKVXYHDNCGSHN
ZNB3MUROQD2RL3U1TACZMNLILSJG2JRANWDUYLOFYMRATCHUSUDLUE
MAYGZXWBES2IOXJKYQGP3RFNOC2GVKCXWLQ3NACXLI1CKIOYKSWPVO
EJETMA23GYZLEVGKSIZOYHUGZXMDUHOBKMCW1BPFOYROYF1POTHWRI
DFEVYCUKMRKGRZKF3IUDGHSWR3TIJFMTMICXAQLD3JWYCGZROZNAEQ
CSYA3JBOWRP3PNCPXCLTVYQWUILSJGUCLUDTU3RS2MYAPZNTWXADJR
KQOCNPFLQSYFQJ2IOXJKYQVPLDUFTZBYUCWGO13H2AKVXGRTCXWAZP
1QCJSJHBVGPWE23HKXYIUH23BQDNDJLT1XGP1EZFD3JFGTVBZB2LTJ
ETFNAQ2DSBWUXR3KCNXZSUVDQSES2TPLFEQRCMEJYWERXB3EAXO3VX
GYRFZDXJYMABTRLGPSEIKTGFNXWIUIOC1NPDRZBFKJPNSDZAE3NY1P
L12FZSNPGX2QCLPQBJLIXODNBHZ2R1G3AUVHSESGTLAJL1KRH1EGNW
RWTLQUDFOVP3XWPSUEGMX3HOWF3KAYGZXOVAWZB3HNX3ROMDUVWFTN
BIYUCWE3NBKUDFOVXTFXNUDQKNQCPSEICLEYOTBEDRZ1CND1FSTVAW
GEIJFNORIFWL2CT3VDQWVBKILBDJMEHWRIDFTAXOZABNDZEMXDVNXQ
VHPRDZBFPC3KGAUBW1DTU3KINYWCIOSDWBQ3JK1CWI1LDHMYQOUXPJ
FJPIUFEQRGMD3FIPBM2HCWBUPH12BGVMKTGQGXK1CFYHDCMZ12VLNJ
NWZPO1SCVKTEP3KPBHAUEZFDM3JFGTVDAMZR2WPGVQC1TGTBOQD2FN
JWZNTLQROSIVWFJCUSCGNO3SMZBJOITKECFGCKS3EHI1JAQ2D1HGKP
RGF1JUXOBHGOEY1RIV2WLKWVHU2EFTXWPDKRTMLBKTJ1L3SHPFD2DK
HIPGKWHMNBQZB3VFIAVMDUPTKB3NBFPKJYHRMT3RHA2TIXGJPVZNSH
DS3I2DGYBOUVRWR3L3ZSHVDAYPHXUEGACZTYVNUGOYNCZJCRLVJETM
A3FRBXEQRE2IPZPO1SDKPRTIGSJ2HEDSWHPOAL1HNVI3XPDGMWHUOC
PZ3UFAOL2KTDNXBXOYTAV2JWNBYUCWRG3SEKVPKBXAPRUZNUHU1CNP
FLQFLOCNXBHUEYA1SYJ2FOQHETZFDST3KQOYPHZ1HNPGKHZMB2KYBO
VAWZKEMPYAY1SEXMDUPB3KAZEDYWHXNOQMQHZ2W2HTUEVP3SIEMKA3
JBOMERGKEYAUVDXQAXRFYCPXPFNHQA3MHTKIVOGXBXQDSLHWRIDGVT
WTEJT2FIREFAUVDXQNP1RWFTOB3VER1DFNDKRDKIVIDRLRDSWGQCFI
FKYEYGJ2

madness's book on classical cryptography
unit 123: hill-climbing attack on cipher clocks
last modified 2020-11-29
©2020 madness

Unit 123
Hill-climbing attack on cipher clocks

There is a hill-climbing attack that we can perform on a ciphertext that was encrypted with the
Wheatstone Cryptograph. It relies of the fact that we can factor the Wheatstone cipher into one with an
unmixed ciphertext alphabet followed by a monoalphabetic substitution. We therefore start with the
attack on the monoalphabetic substitution from Unit 28. To avoid becoming trapped in a local
maximum, we need to use a margin of error that allows downward steps some of the time. We must
build a new tetragram-frequency table, which will be built from a large text enciphered with the
Wheatstone using an unmixed alphabet. Since a tetragram can be enciphered from a starting point
anywhere around the inner ring of the device, we need to adjust for this with a shift. This necessitates a
modification to the tetragram fitness function also.

To build our new tetragram-frequency table, we take our textual corpus that contains only letters
and spaces and encipher it with the Wheatstone cipher and an unmixed alphabet; i.e., the keyword is “”
(an empty string) or “A” or “ABCDEFG....” The resulting ciphertext contains only letters. We run
through this ciphertext and look at each tetragram. We shift each tetragram with a Caesar shift so that
its first letter is ‘A’ before we count it, to account for the fact that any given tetragram from the
plaintext can be enciphered beginning from any point around the inner ring of the device. Because of
this shift, the table with have 263 entries rather than 264.

Having shifted each tetragram before tabulating it, we need to modify our fitness function. It
must now run over a text and for each tetragram in it, shift that tetragram in the same way as above, so
that its first letter becomes ‘A.’ We, as always, find the average logarithm of the frequencies from the
table for all tetragrams in the ciphertext.

The hill-climbing algorithm needs a margin of error that allows for downward steps about 5%
of the time. A good margin to use is δ=0.1. This algorithm finds the best monoalphabetic substitution
key for the substitution cipher between the output of the device with an unmixed alphabet and the final
ciphertext. Since we found this key by shifting every tetragram so that its first letter becomes ‘A,’ the
key is likely to be a rotated copy of the true key. In the example that we looked at earlier, the key was

WBPHCQEDRAFUTGVSIXJYOKZNLM

We can expect that the attack will find a key such as

JYOKZNLMWBPHCQEDRAFUTGVSIX

which, as you can see, has been rotated right by eight places. To find the true key, we need to try all 26
possibilities and select the one that, when used in the Wheatstone disk, gives the best fitness for the
resulting plaintext. Note that here we are using the unmodified fitness that we have using for other
ciphers. Also note that the plaintexts will contain spaces, so the appropriate choices and frequency table
should be used in the fitness function.

Here is the full algorithm for the attack. Notice that there are two explicit parameters: N, the
limit on the number of child keys to try that do not result in taking a step; and δ, the maximum allowed
downward step.

1. Set the parent key kparent equal to the unmixed ciphertext alphabet

2. Set the parent’s fitness Fparent equal to the outer fitness of the undeciphered ciphertext C

3. Set the counter to 0

4. While the counter is less than N...

a. Increment the counter

b. Set the child key kchild equal to kparent

c. Swap two randomly selected characters in kchild

d. Find the intermediate plaintext Y obtained by decrypting C with kchild

e. Set the child’s fitness Fchild equal to the outer fitness of Y

f. If (Fchild > Fparent) or [(Fchild > Fparent − δ) and (we roll a 20 on a 20-sided die)]...

i. Copy kchild into kparent

ii. Copy Fchild into Fparent

iii. Set the counter to 0

5. Output kparent

An attack on the Wadsworth disk is similar. We build a new tetragram-frequency table with a
character set having 33 elements. However, we also need to add a modification to the algorithm. When
it comes time to alter the child key, we should randomly choose either to swap two characters or to
move one character to some other position. In the algorithm above, we replace step 4c with

c. Flip a coin...

i. If heads, then swap two randomly selected characters in kchild

 ii. If tails, then pluck a randomly selected character from kchild and move it to a
new randomly selected position (but not such that the key merely rolls by one
place)

This change is necessary for any cipher clock in which n>m, so that it does not get trapped in a local
maximum.

Reading and references

Thomas Kaeding, “Automated ciphertext-only attack on the Wheatstone Cryptograph and related
devices,” Cryptology ePrint Archive, report 2020/1492.

Programming Tasks

1. Implement the hill-climbing attack on the Wheatstone cipher. Start by building a new tetragram-
frequency table, as described above. Make a modified fitness function. Copy and modify your
attack from Unit 28 and add a margin of error for downward steps. Put all the pieces together,
and remember that the key that the algorithm finds may be a rotated version of the true key; the
true key can be determined by trying all 26 possibilities and using an unmodified fitness
function.

2. Implement the hill-climbing attack on the Wadsworth disk cipher. Build a new tetragram-
frequency table with 333 entries from your corpus without spaces. Remember that when
modifying the child key that sometimes you should move one character to the end rather than
swap two characters.

Exercises

1. Break this ciphertext with a hill-climbing attack. The cipher is Wheatstone’s. Reconstruct the
keyword.

BLBHXJISCNUKSDCJUEGCWVHFWIKEVCGVLWPNLORQBEPIJNMQIIOZCV
ERRIFXQWXEPRIKYPYZUVKUXEBTBCHPOKSQLCRWBJQEPZOZDPBUAIDA
CCSWOLGDROIQOVSCSTHSHDXLJAKPKDZLVFEQJPNZYVMCVPPOSASPFG
IDDVXIUAMGAPAOCXIWTMCDJTIYKBWXMQKRGTXJORMGZNTMBTJNOBKN
CVZNZIRMLHRIWCWYZKUTOWJRXTEWLZHZYMDJGFPNICFLJZVUCYHEPO
THHRNNSHFHCVUQEMVGFBQWFOTAQOXEELDYGFTDOGSMAQORPZMDBJUG
AXMOGAWITYNPVPIXJENNMTSEVICFWOGHJWLOAJDCNHSLDBJUGACFII
HWWFYBCYRVIDEINNMTCONIFWAQILOXSRXGIKMQSYYRAZSPLKUGLDUJ
LMLOKTLYLUABEHTAOQULWBQWASJAEYGIWYZSJGEAGXZQFEKKTGIVXT
QNEUCRAEVHZKPNIOAJDCYGDNDTJFQPKJJYTNUAUXLDJNKPXSWJAUAX
ISMEZKKZWQIORLQBRRCIAXMGEGCPAFKKTEMQVWWMAWQQMACQXEGBNC
GCXFRULJOAAMPSGI

2. Break this ciphertext with a hill-climbing attack. The cipher is Wadsworth’s. Can you see the
keyword?

27FWH46PQO2IYLZDT5XH5NS8CMCWSPVX23XK8IAMRTXTGRV45YZOGN
ELOL3IO7P8UYHJAKQW8BNV8EOKPQRTQG5MOISESKNV8BVBABRTQHKU
E38NUZE3PEFXOEW8QT4MAEUTU7ENZN6JMPHX57AQGKM6VYZ3YTL4E3
4CTBW7KNQ2Y6MO2J24IOTHEQT6YOUDLOL3L7Q3CKTMW8M5W47ANPRC
VKY5ERKMNVD8J2I4KALU8Q2YCAOM3IQSCWRLRKBX8DO4W3KRC2UDRT
F2WD4AT37LORP4YAGUO45A8USCZ5C2ACJH38CFQV7UBEIJNY4EONSV
OFOLOQXCGW7DRCWJTBFKQ7PHX7OT6LQVRHMTPU3YBIL5DSBHGZNA8I

5UGIZ8GRV7KD3J6EW5U6WLBAJAEFOK8FATNPQYOCL4M67U2NU4LTZK
DJ6NTF2Z3IJ278GNTVW4SRBF2PXBCOHI3MTJZ6A8NY5IJV7PTKM6M3
Y3BUEI2V4W5SVZIA8GQCQUZREM5ACT8YBHYJ3L7J4AD8DGJKZHM6XR
2LSPVGSE2J5FDE3NBAGRQ67IWCYI4VJ5WOUYJ3L7EKUTBIZNALURGO
7GWLMWTN27FMRU3JZJHV8KD2I2JS3Y6QEY4NTH5EVSLCNUX5PRCX3X
YSU34I7LUFP5BIP8XCL8ZMT6O

Challenge

ILCYRCVHRNFYTEJERTYO_*JEWIBDQZGHPX_CZWORCAZOFJQJGXEP_DIR*_Q
YDG#JUM*QAMISUODBDMOUHKWBDRZNYLV_AJTK*VRHM*EVHSLNZ_DOQJTI*U
H*VMNLZOBYA*LAPWIUPTCXO_JDB*KWLTKUMXHSLUDERAVNL*SZQ#UIRBQAM
XDJERL_RVRFIXAJRCMXDP*_DNYAOVRPXRXMSY*_HCUMI_IOUWKAUIHBPTSX
OXOCEXOAFKWBDRZMYELC_*QCLOUHREHQIYUSRCESRPG*#HDWSB_IZCVJTCH
CLMIRPIKWOXDPIOXEMVJ#WOVMPRHIMHFGTBSDCY*QE#U#E_MRNWMSUOB#MO
ULRFI_FREZNYLVHYWCUQHKYAZGQN#CATMGYNOJUGHT#UMTFDCOI#OVRKEPN
#RHXJ*DUBVODRHWRXHTESLUDERAVNL*_HYOCZRBGI#QCGCNQUOHJYKZBEJZ
FVXMIAL*#GAOXM_PFEBVFGXBSDC#IBYOBUVRKVDODOU#W_BYAZ*NJEYS#AR
OXJ*DLKR_OFVWE#M#PVJYEV_K#FA#YRFYT#JEZBDMFKSCJL#DJIXG*UWYZH
IOKNREPZKFQYEAWHZBQCGODTSIW*#VYRFSODK_VYTC_BXJNRHABU#_*OXEM
HTVYKIOQNDWMXA#LBCPQOQKPMKOZRBZDTDOQGHYJ_ZFAOSKZPFVDCMYQCUL
MECE#BVBGEXFIT*QE#U_CUMQ*IOXGNF#_Z*LPMIC#N*SPK#LKQHP_PVPIFG
IAUESBLNPE_TEMJOYBUW#VGPV*QZSM#GJPQKVBVN_AUALAPWI_VPGEMOGYQ
CLOBRKFHL*YR*SME_KODRIZLZ#SRUWF#EXM#GKOWM_*TKMQYS#EUCGXMIYF
WO#MENHXRUJSRCERLE*IFJ#_

madness's book on classical cryptography
unit 124: cylinder ciphers
last modified 2020-10-28
©2020 madness

Unit 124
Cylinder ciphers

The first cylinder cipher is the Jefferson cypher wheel, invented by Thomas Jefferson. It had 36 disks,
each with a mixed alphabet of 40 letters printed around its edge. It was intended for the encryption of
French correspondence, since French was the language of international diplomacy at the time.

Somewhat later, Bazeries reinvented the cylinder cipher, so it is sometimes called a Bazeries
cylinder. His had 20 disks of 26 letters each. The key for this device is the ordered list of the disks on
the cylinder. Bazeries proposed a method for deriving the key from a keyword, and this method was
adopted later by the United States military (we explain it below).

Bazeries cylinder. Photo courtesy of Étienne Bazeries.
The cylinder is set to encipher the phrase “I am indecipherable.”

Below are the mixed alphabets on the disks of the Bazeries cylinder (the French have no need
for W, it seems). Notice that many are built from French phrases.

disk mixed alphabet

 1 ABCDEFGHIJKLMNOPQRSTUVXYZ
 2 BCDFGHJKLMNPQRSTVXZAEIOUY
 3 AEBCDFGHIOJKLMNPUYQRSTVXZ
 4 ZYXVUTSRQPONMLKJIHGFEDCBA

 5 YUZXVTSROIQPNMLKEAJHGFDCB
 6 ZXVTSRQPNMLKJHGFDCBYUOIEA
 7 ALONSEFTDPRIJUGVBCHKMQXYZ
 8 BIENHURXLSPAVDTOYMCFGJKQZ
 9 CHARYBDETSLFGIJKMNOPQUVXZ
10 DIEUPROTGLAFNCBHJKMQSVXYZ
11 EVITZLSCOURANDBFGHJKMPQXY
12 FORMEZLSAICUXBDGHJKNPQTVY
13 GLOIREMTDNSAUXBCFHJKPQVYZ
14 HONEURTPAIBCDFGJKLMQSVXYZ
15 INSTRUEZLAJBCDFGHKMOPQVXY
16 JAIMELOGNFRTHUBCDKPQSVXYZ
17 KYRIELSONABCDFGHJMPQTUVXZ
18 LHOMEPRSTDIUABCFGJKNQVXYZ
19 MONTEZACHVLBDFGIJKPQRSUXY
20 NOUSTELACFBDGHIJKMPQRVXYZ

The M-94 (also known as CSP-488) was a cylinder with 25 disks. The disks of the M-94
were identified by a number or by the letter that followed ‘A’ in their mixed alphabets. Here is a
list of them. Notice that disk 17 begins with “ARMY OF THE US.”

disk mixed alphabet

 1 or ‘B’ ABCEIGDJFVUYMHTQKZOLRXSPWN
 2 or ‘C’ ACDEHFIJKTLMOUVYGZNPQXRWSB
 3 or ‘D’ ADKOMJUBGEPHSCZINXFYQRTVWL
 4 or ‘E’ AEDCBIFGJHLKMRUOQVPTNWYXZS
 5 or ‘F’ AFNQUKDOPITJBRHCYSLWEMZVXG
 6 or ‘G’ AGPOCIXLURNDYZHWBJSQFKVMET
 7 or ‘H’ AHXJEZBNIKPVROGSYDULCFMQTW
 8 or ‘I’ AIHPJOBWKCVFZLQERYNSUMGTDX
 9 or ‘J’ AJDSKQOIVTZEFHGYUNLPMBXWCR
10 or ‘K’ AKELBDFJGHONMTPRQSVZUXYWIC
11 or ‘L’ ALTMSXVQPNOHUWDIZYCGKRFBEJ
12 or ‘M’ AMNFLHQGCUJTBYPZKXISRDVEWO
13 or ‘N’ ANCJILDHBMKGXUZTSWQYVORPFE
14 or ‘O’ AODWPKJVIUQHZCTXBLEGNYRSMF
15 or ‘P’ APBVHIYKSGUENTCXOWFQDRLJZM
16 or ‘Q’ AQJNUBTGIMWZRVLXCSHDEOKFPY
17 or ‘R’ ARMYOFTHEUSZJXDPCWGQIBKLNV
18 or ‘S’ ASDMCNEQBOZPLGVJRKYTFUIWXH
19 or ‘T’ ATOJYLFXNGWHVCMIRBSEKUPDZQ
20 or ‘U’ AUTRZXQLYIOVBPESNHJWMDGFCK
21 or ‘V’ AVNKHRGOXEYBFSJMUDQCLZWTIP

22 or ‘W’ AWVSFDLIEBHKNRJQZGMXPUCOTY
23 or ‘X’ AXKWREVDTUFOYHMLSIQNJCPGBZ
24 or ‘Y’ AYJPXMVKBQWUGLOSTECHNZFRID
25 or ‘Z’ AZDNBUHYFWJLVGRCQMPSOEXTKI

The key for the M-94 is a list of 25 disk numbers, indicating their order on the cylinder. As we
mentioned earlier, the key can be generated from a keyword. The procedure, taken from Bazeries, is as
follows: First, write the keyword as many times as necessary to have 25 letters. Then, in alphabetical
order, from left to right, number them. For example, if our keyword is CYLINDERCIPHER, then we
proceed as below. Since ‘C’ is alphabetically first, we number the ‘C’s first. Then the ‘D’s, etc.

C Y L I N D E R C I P H E R C Y L I N D E R C I P
 1 24 15 11 17 5 7 21 2 12 19 10 8 22 3 25 16 13 18 6 9 23 4 14 20

The key is 1, 24, 15, 11, 17, 5, 7, 21, 2, 12, 19, 10, 8, 22, 3, 25, 16, 13, 18, 6, 9, 23, 4, 14, 20. Notice
that the lowest number is not zero.

To encipher a message with the M-94, the 25 disks are placed on the cylinder in the order given
by the key. The message is broken into blocks of 25 letters. Each block is enciphered by rotating the
disks until the block is written in a straight line down the cylinder. Then, some other line of letters is
taken as the ciphertext block. It is required that that line not be immediately above or below the
plaintext on the cylinder. The offset between the plaintext and ciphertext lines should change from one
block to the next in some random fashion. This makes the cipher probabilistic, but also makes
decipherment nondeterministic. During decipherment, since the offset is not known, we must choose
the best line on the cylinder.

Let’s continue with our example, and encrypt the message

THIS MESSAGE WAS ENCRYPTED WITH A CYLINDER CIPHER

The first block is THISMESSAGEWASENCRYPTEDWI. We line up this block on the cylinder by
rotating the disks:

 1 24 15 11 17 5 7 21 2 12 19 10 8 22 3 25 16 13 18 6 9 23 4 14 20

U S P A N Y V E R F I Z G Y J I R Q V E Q X Z F X
Y T B L V S R Y W L R U T A U A V Y J T O K S A Q
M E V T A L O B S H B X D W B Z L V R A I W A O L
H C H M R W G F B Q S Y X V G D X O K G V R E D Y
T H I S M E S S A G E W A S E N C R Y P T E D W I
Q N Y X Y M Y J C C K I I F P B S P T O Z V C P O
K Z K V O Z D M D U U C H D H U H F F C E D B K V
Z F S Q F V U U E J P A P L S H D E U I F T I J B
O R G P T X L D H T D K J I C Y E A I X H U F V P
L I U N H G C Q F B Z E O E Z F O N W L G F G I E
R D E O E A F C I Y Q L B B I W K C X U Y O J U S
X A N H U F M L J P A B W H N J F J H R U Y H Q N
S Y T U S N Q Z K Z T D K K X L P I A N N H L H H

P J C W Z Q T W T K O F C N F V Y L S D L M K Z J
W P X D J U W T L X J J V R Y G A D D Y P L M C W
N X O I X K A I M I Y G F J Q R Q H M Z M S R T M
A M W Z D D H P O S L H Z Q R C J B C H B I U X D
B V F Y P O X A U R F O L Z T Q N M N W X Q O B G
C K Q C C P J V V D X N Q G V M U K E B W N Q L F
E B D G W I E N Y V N M E M W P B G Q J C J V E C
I Q R K G T Z K G E G T R X L S T X B S R C P G K
G W L R Q J B H Z W W P Y P A O G U O Q A P T N A
D U J F I B N R N O H R N U D E I Z Z F J G N Y U
J G Z B B R I G P A V Q S C K X M T P K D B W R T
F L M E K H K O Q M C S U O O T W S L V S Z Y S R
V O A J L C P X X N M V M T M K Z W G M K A X M Z

The ciphertext for this block can be any of the rows other than the ones immediately before or after the
plaintext. Let’s just pick IQRKGTZKGEGTRXLSTXBSRCPGK. In the same way, we encipher the
remainder of the message (we only need 17 letters for the second block). The full ciphertext can be

IQRKGTZKGEGTRXLSTXBSRCPGKLIIBEVOOJNUBBYNAS

The M-94 cylinder cipher. Photo from robbo@ev1.net.

Reading and references

Thomas Jefferson, “The wheel cypher” or “Project of a cypher,” Thomas Jefferson’s Papers, volume
128 item 22138, volume 232 items 41575 and 41576, U.S. Library of Congress, www.loc.gov/item/
mtjbib025756, founders.archives.gov/documents/Jefferson/01-37-02-0082

Étienne Bazeries, Les Ciffres Secrets Dévoilés, Paris: Charpentier et Fasquelle, 1901;
books.googleusercontent.com/books/content?req=AKW5Q...; pages 37-38, 132-135, 244, 277.

Friedrich L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology, 4th edition, Berlin:
Springer-Verlag, 2007.

Wikipedia:
en.wikipedia.org/wiki/Jefferson_disk
en.wikipedia.org/wiki/M-94

www.jproc.ca/crypto/m94.html

ciphermachines.com/jefferson

Crypto Museum, www.cryptomuseum.com/crypto/usa/jefferson/index.htm

maritime.org/tech/csp488.htm
maritime.org/tech/csp488man.htm

William F. Friedman, Several Machine Ciphers and Methods for their Solution, Riverbank Laboratories
Department of Ciphers Publication No. 20, 1918, www.campx.ca/Several_Machine_Ciphers.pdf and
www.marshallfoundation.org/library/methods-solution-ciphers

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, pages 192-195, 247-249, and 325.

Programming tasks

1. Implement an encryptor for the M-94.

2. Implement a decryptor for the M-94. Use tetragram fitness to choose the best offset for each
block.

Exercises

1. What is the size of the key space for a cylinder cipher with n disks with 26 letters on each disk,
if the offset is not specified in the key (i.e., the offset can be different for each block)? What if
the offset is specified and has the same value for each block?

madness's book on classical cryptography
unit 125: hill-climbing attack on cylinders
last modified 2020-10-28
©2020 madness

Unit 125
Hill-climbing attack on cylinders

We can build a hill-climbing attack on the M-94 by using the parent/child key paradigm that is familiar
to us already. The key is a permutation of the numbers 1, 2, ... , 25. To generate a child key from its
parent, we randomly swap two of those numbers. If the tetragram fitness of the best decryption
(remember that the offset is not determined a priori) exceeds that of the parent, the child takes the
parent’s place. To avoid being trapped in a local maximum, we can allow downward steps some of the
time. A good maximum for the allowed distance downward is 0.15 or thereabouts. If we cannot find a
child with a higher fitness that its parent in the last 1,000 children, then we output the parent key and
quit.

Programming tasks

1. Implement the attack on the M-94.

Exercises

1. This ciphertext was encrypted with M-94. Break it. It may take a while.

UHMBVYKDKYSFBEQSVLZRQURQNPCJNKKBHSNIQUYJDSKSHQJPBKBTAG
JYPLKHGBMAOYUPYGPKVUFKWDBFBUJKWGVAYXKDJWONHFCYPIXPSBQV
FCRFYTKGJNWJDIDEPHVUWWVUJOTNKXMUCQZXLOMWUMYEDNWEWUJJFX
DLUSQPTFCCHUVBABRECUCQIPHJAPFGMGBYBOEMWXXZJUKSVLVVMNGG
UQVWSNKFQTYXOAUHWYNDSUQWSOMSAFQJMTWPOMWTAVSYDEXMDZUXPB
ZOXNNUEKZDMMGGMAFMUOZOGSAWIQMHJVQUYYYUNXTEULNWIRINTIVZ
CALTXXHUOUGBNUYFHZHFGCBNOIJWRWSXLILBGCTDWQWTNPHXNUQEHU
OMPNKWDRBRWYSWFILNYTDOUKDKIFIQDLQIJTLBRQKNTPEZUZPODHBL
LGKHZWKYJPZSJSURDSSOHCUXZVIKOUYEADDOXILPQQAHRAOVSBETQR
ZAGXRRDTYSVIKBTIQBNXJKHVSZJJZSWNJZMKXJKIHJIFCMWKIXXQZG
YRPPEFTXOUDQOVRCXABHKHDENXJIHHCAWFWXDEFAMCCKHQMTWPHXYK
AILDRIWBWLPSURPYDSYKWVWORCHMJJPPHJLLYEYNRHIQZLKASYAQJO
HIOKDZJLHBCAWTOSMFLVSDXHZKVOELRXBGPWXHAGPZCJUKNZCOGLNT
NVLKVFIOUIZCPXEGZHDLMVFYDZHMMKMOLGOVSYYVHMQNREOYPTCVLX
RCSAVPNHYPXHIVIKOSNFQQHCANYJDHNZHACDUIHCAWYETOOAQLYEUU

VTCHSYPGIZCRBVLTQBHRLKTPTXMPYBNTOHAGKOQIZRCRAOTSYCUOYX
HVZAYSPNHAKYAJCSFWLHHNNKORVYHPFCXQAAYJJSERNPDOSSBINUIL
ASPUDPRNWGWRDNYUCBSSJPMAKSKQQXFEPYWMMEDVCKMBWUXMJXOCAB
YHYODHCIVTRIXOXRSNUNKSJXSWKWVVASXMNQOHCSVMGSJXRLCZQVCC
TDUJXIXRRZTMXMBGTGHTCOSOFZAFJMIXRZZTIVKMLMQPQUNOGGXYKR
DLYOEAHNHVEORHVIKEGMVMXDWBBMXUNBIPBBIJAMRQFOQCRRUDWVXR
MOWJCLXUFMFEYGPMUVKBUUUZPRFUJWQEOOWYMEGXNMWNDIWNJTNDPZ
FYXAGXSVGQWKJRSPERDGYEPRBPZUAIFXRQIMGWABUWGCWWGRIIQJXL
XLQTRQTICGIZRCLIJSMWXWWCYQHAGKYUGTETXPNGAPCKABBUDFWGZT
CMWBRBQKUVMUYSGTNSCLVCJBMKY

2. This ciphertext is from the 2009 British National Cipher Challenge. It uses the set of 26 disks
listed here, and the same offset is used for each block. The first two words of the plaintext are in
French, but that should not stop you from decrypting it.

 disk # letters

 1 and 14 HIMQEBNYULWTASCVOJPRXZFGDK
 2 and 15 BLAXCVSHIRWPFYQODETMNJKZGU
 3 and 16 EADZMIJYKSRXVQTLPUCHNWGBOF
 4 and 17 LHRTSOUAZKXEDIBWYVPFNGMJCQ
 5 and 18 AOEBMUNWJYCGXQZVHLSTKRDPFI
 6 and 19 HBTWOSIVQRDPYGNXUZLAFCKEJM
 7 and 20 OBQZGRLKXATPNSYEWVDFIJUMCH
 8 and 21 IMRWVULBDKOQHAETPGZSYFCNJX
 9 and 22 RUHCESJAXMNZOGVBQTKDWILPYF
10 and 23 SAZORCIETFYKXMDPGWQVUHLBNJ
11 and 24 QUAIHJMCEZTKYFVLPBXOSGRWND
12 and 25 MUCATPJZOXEWIFQHBSRGLYDKNV
13 and 26 QWLCKUETDIVPHFAMZOYBRSGXNJ

WUUHB SSCGG YRMIK JLNPL ZBGCI UJDUK FBHCU KZNVA EBXGA
AGBGD GLZAJ ELSDV EPTMI USOSW WARIZ PBRCA LZJNI CNFAF
VXLCO CMMOF LCTII HEEWY IZAKZ MEAGV XXOOA ZYULB CIFEW
DJPWJ MYGJB VVGPE SGKCP MAGZG OQKDG JKIML DTXXT CDDVZ
XRJDP FIFKD GJKIV AUAJM NBZXD VKEYD DTJAF CBXAI JUSPM
PPAAW LZZNJ USTCK DFERT CJCMJ IUVQQ LNCTL CBAFI YIPWI
LBEZG JAMWG ECDCR CWUGK JDQNH FAKAP AYCBH EUNDY PODNG
KCASC GPMEA DYJYB HKURJ KCRIZ YHYZM DIITU ACGAV FXRUZ
YVFIL ZDIND KCBZL IODDN XXXRU EJOIL CSVWS QQUOJ YLVAI
YDNXR USBVO LCUQE ASYWB ICIRA RBVHK ESDTZ XLRTK XCHXM
FGUXC NFBQK IMOFZ FDTDA GKCBG VFDUJ OSKIQ ORABK BNDCA
WCRCL MUWZI KJEQO JZUEQ EZAMI LZDEY BYEWJ VRMDC CLWMC
BXJVG WRRKW ADJZT PNWLR JNDNP ZUDNX IGLBA EFSKC EBUYS
IKZLN PESGK CPMZF JUENI XHFAB SCJNG XXRUX JMPID HUWZL
QDKTX MFFGC OBIAA EGNKR JDVGZ BDCND VKJPK PMXYA QWXCL

IUUVE FSMWA KHIGC RCWSP EQFYW FYIUD UFRGE EPXNA EJBMF
YAJUY ARTIU SUFQQ KNPCL ANQZV ATEBW GNDEX ROBGH QVOUN
RLLVC IFKEY IHHDJ BWIWI HXZKF MTGCK VOOAO SRTZX WHWCW
SQGNO OPGOJ BZXEU ESFZN XBOIB FQGAF PCTUA XDMYW RARWW
CFMAQ GGIHC ZXVKJ KRJTM FYAEI KNORL EEIXA GNCII REBQZ
MGTEG WKFNR CBSES BRTXD CUALD NXXVC LFDYF IROKC FBHCS
RTJCE JBVKP IWRLM DUCDY GSBIN EQVBL AUCLM HAYFZ MDBCZ
YEFSD AXIKJ KWSSK CMAIW GCLBC WUIXS CYBGP JOBVJ DCLAA
UZRBI LZDSC DKZUJ PGOJB YBZUF EDSVK JRDDB CDXKW IKIJI
GFMCH BEICO PVZBJ GXAMP ODXWC CKSMG AGECB ULIDW GECVF
NFKTE DOQBM CXGBE QCFFH EJLBN VNOEZ JPRFB MCDAR GSHPI
UULSJ FACHK HPOCM YIFYO QNSHD EATQE FASZA JYRGR UOXKP
GANPC JLJRK RMSVH WZHIJ LDOMX LAMED YPLIF JXBSJ JWICR
EFKIX LPVWU SFITU UCUYH YCBNZ RCWSL KBRAT IKNOL ZISEO
HMNWT PEFIK OKOXF ERNUN OXFAG ZSAAF GYRQU SPMKU MJFDQ
KJROK JJZRZ KOKRL

madness's book on classical cryptography
unit 126: strip ciphers
last modified 2020-10-28
©2020 madness

Unit 126
Strip ciphers

Strip ciphers involve paper strips that are laid in horizontal tracks on a tray. Each strip has two copies
of a mixed alphabet. The strips can be slid relative to each other, and a block of plaintext is enciphered
by lining up the strips so that the plaintext letters appear in a column. The ciphertext is then read from a
different column. Essentially, a strip cipher is a flattened version of a cylinder cipher. We can see now
that the reason each strip has two copies of its mixed alphabet is so that we do not run past the end of
one when using the device.

The M-138 is the flattened version of the M-94 and was used by the United States in World War
II. It had 25 strips in 25 tracks. We cannot say with confidence at this time whether the strips had the
same mixed alphabets as the M-94 or whether there were more strips (but only 25 were used at one
time).

M-138. Photo from U.S. Department of Defense.

M-138-A was an improved version of M-138 with 30 tracks and 100 strips (only a subset of 30
are used for any one message). The U.S. Navy renamed it CSP-845.

To attack a strip cipher which has more strips than tracks, we can modify our hill-climbing
attack on the cylinder cipher by extending the key. Suppose the device has m tracks but n strips. Then
the key is a permutation of the integers 1, 2, ... , n, but only the first m entries in that permutation are
used in decipherment. When we generate a child key from a parent key, we randomly choose one of
those first m entries and swap it with any other entry. If the offset is the same for all blocks, then it is
possible, for a sufficiently long ciphertext, to break it, even without allowing for downward steps. If the
offsets are random, then this attack is likely not to converge to a solution.

Reading and references

Wikipedia, en.wikipedia.org/wiki/M-94#M-138-A

Greg Goebel, Codes, Ciphers, & Codebreaking, chapter 5, vc.airvectors.net/ttcode_05.html

Klausis Krypto Kolumne, scienceblogs.de/klausis-krypto-kolumne/2018/02/16/the-m-138-a-simple-
but-good-cipher-device

Operating Instructions for CSP-845, maritime.org/tech/csp845inst.htm

Christos military and intelligence corner, chris-intel-corner.blogspot.com/2012/10/us-military-strip-
ciphers.html

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996, page 325.

Programming tasks

1. Copy your routines for the M-94 and rename them for the M-138.

2. Implement an encryptor for the M-138-A. Allow it to read the strip set from a text file.

3. Implement a decryptor for the M-138-A. Allow it to read the strip set from a text file. Use
tetragram fitness to find the best offset for each block.

4. Implement the attack on the M-138-A. Allow it to read the strip set from a text file.

Exercises

1. Encrypt this text with M-138-A and key 55, 37, 85, 10, 30, 9, 73, 91, 61, 4, 17, 64, 81, 94, 67, 1,
28, 75, 98, 90, 52, 48, 8, 11, 6, 45, 14, 38, 60, 5. Choose the offset randomly for each block, but
do not use columns adjacent to the plaintext, as we avoided adjacent rows with the M-94. Use
the randomly generated strip set below.

Are the mixed alphabets on the strips of the M-one-three-eight the same as the
mixed alphabets on the disks of the M-nine-four? We do not know. We have
contacted the museum holding one such device, and await an answer.

2. Decrypt this text with M-138-A and key 11, 93, 98, 52, 74, 89, 43, 41, 3, 58, 28, 23, 31, 14, 90,
82, 86, 44, 62, 34, 22, 12, 35, 91, 60, 13, 48, 29, 78, 40. Use the randomly generated strip set
below.

SHJRQBJIMRHFLLVACMUMCILVCXYUKVPBVXSBUNBQXSCPGEXCHZNOZU
PKZRJPXCPRDQPMPJWHDTVGVUQYYHWZUCAFXRUWWDFWULXHSDSFUYNW
IVCCSMMLJKGLHEPNNEHZBGNEJGGSCXUTLLSJTIGPRCPFJSSXASCPXJ
VZIJLLIAMXIUQZFKALIBPHIGKOCERQGGQNKNXKVBHGOESHPJUBLZLB
LLXBWMRYXVBSHNVDIASJXAGXQRNAAMPABJDGFOYGIGBAOSGCCUWUQU
OFCYDUHYOUDYTQRPBEULPRJAHYSJDZGLROPGFZFMRCDAEGPQAYKNJP
R

3. Break this ciphertext that was encrypted with an M-138-A. The key was randomly generated.
The offset is the same for each block. Use the strip set below.

KYIVOVMFBHRWPYJWITPDERWOXZJSYRWXIXTVTVRWOLMYIREFXAKNNA
QHTMYPPEMNGVMPTHHZTRDCDEFOUVOEITEZOHVAMGYTXTFOVYZURNJC
KJMKFYBCEUMGPVSHBHYHNVULAIGNWQJZMKJDLFJMKJEHSHMVHVVGVC
DPJMYXRLPKJDXUTTYXPLWOWUVETWYZKSVIJPBBUDRKLQJMVVTFDBMU
HNKYDKCAIILFMKKNNYKZQLNPWJZCVMHJHDQZTBLVFVRKXPPZLPXMVY
WFHGKHLVSGIOAUWAFAIOCCPDOOFYKJEIGLMHXXSLIFCMQCDEFOUVVN
URYBUVSOLWVHPVRPXLAFNBBOJXFJTVJRMYKPLIDNWUKKDHYZPBLVDJ
FDSIXYGPUUUQWOLGGQNFUBMDPZRODJLJMHWJLCSKOHXWVBMIAYVFYH
EBLVDJAXCOMYIGJIIQWXIITJLRKEGOLJGADIHWKJRQGUKQARVVVYSX
JZTTVCZYJIOSLBIGBAGCCUNZOLVNYMEZUSXYPMIIMVGZMDQRTZJULT
PXVBMJKNSYYHEBLVDJSKIPXOXUZCMONLGVIAUYQGOCIPWNRISOUJPM
XTESOJAVSNGMUIQODOQRQIOQAPSVPOIGFYKHURYMJRUVBDQDZRNDIF
ZKEJTMCRPZYQKFGIVKORVHUOWNGEFSPCLWIAGUYRWZVDMVMEMTTVEZ
TRONRGLIECZYIRYNNJSVWHBHUYGYYQTZSMJJLOUVRTQZZAZWAOVBMP
NZFKIGONGSYEKJMJPTKWYHBZKOWGPKJZTQHMWBIVILJTFDBZJKYLMI
PDMGULJZTQHGZRYRMVKKKNNYKZAFFQWOLNGMLFSYMYVAITDIKJMGNE
XUQIWQYLVBKIASNVVBKIIXWYQYCATKBGXUKJYHQODPJEQFOLVVGNDE
PVJPUYQACZQQEVEOKIANFEHEPZRAJGLIECFNQRQUSYIZQMKITINWIN
CPWTGPXCLVTKQATCZJEUVGSMUVVYNLVRITGPIKMXNELVJNJHVDLYCG
HHIPXEKMINDELJMSPALVUUL

Challenge

KHXPKMDWGKBDHUXWVBHKQOOKVTETXTQSBHDLWRFNPAOAEOPMRLHBIINPKQA
ZGPGXNUXMJBKPROCAFZPYQPARZQLYWUZGUJMYRWAORPFJZFPJQNSMBJZXSL
HYZGRBTDOVPCRZSYEPPPGLKUAFWKLXZCKKRBZXTAKRSPBIVJRKNZXUAFLGS
LEUKYNDNVGLPWAXNPNXYCQRLTWENBKRXUACAEUZBBZCMMIWCLUCKUUNRZGS
GWJABUZSVJWHYXYXDUFTJYYKPWLGNHPRXHESOBCTWFNYTOXSGNQOKJIFVMD

PEGNEVIYPLPLOMSMXGGZZLPUOPOHXIXTUGCOUATFVUYLTNSYMKWUZSIFCMQ
XUZARVITBEJWOOKVYQAZCFKUQAJQOTETTFBGNGPGPDBZLFSDZHHAMFOYQFB
WIMZKMKMMUOFAYSCQREZWVNDWDRMBXRBIEJIZFXMALJECOIPWFSHUAWISLW
VONCIORJOVVGYINUPLGEVCIXWFNRDXXAOSSUHPAWQEXQNACFBXAKOJGLJTU
KAOCZZFHWXSKNGEVIKQTQYQDLCDQJNANFCJRTFQCHBJSZFHRGMYVYPGQULD
ZCDWGHXNXFHFPXNSDTSWZFKOFHGNTOHPOOZRWXAUEFUMWKLAOTWQZUJZFIE
FPDRLQBBZEJHKSVJQCPZNHNEMVTOQVGXHASBHVSRULXKMMOMJKGLMFIRHCH
OTIKYDSPXSFWNLYJNAELCGVGVXQNIHRNSWJFCNXDCMXSFFHTCVMFVUDASHU
NJJYYMWHNPOBJZVFNHKLYXBVVHIJCHSNDDBBTOEDJIVMCQPXGCMBQPZXXZZ
NOKMJZWMACNNRFFVDUBMEGEVGQDQJVAWYOPJXQACAHFIYZJVZPASQVBIDNR
TALWMGXXALPLTSZQKKYVHBXGHOZOVEPEDRURQEUAPPZBJDAJJDSNNMSJOXR
CTNPCFDCHREAQMJXGGBYKLGSVVOUOBCXMAAQKYYQFJBSKHKPBWKFLAKOHZO
UURKFVFKENXWULACWRESAWYXKKSEPYPKLZWTZGJENDTZJU

This is the randomly generated strip set for the exercises and the challenge. It should not be considered
an historically accurate list. They were generated solely for the ciphertexts in this unit.

 strip # mixed alphabet strip # mixed alphabet

 1 EBCNRTKUZOQWMFGAPXVYHDIJLS 51 JSATWPRYNFOUVMZXGDHIEKCLQB
 2 HIVQZUYJNSRLEXBPOTAGDWCMFK 52 ABXJMZTQOIKVHEDFYCLPRSWNUG
 3 VSHTUPZIRWMGQOEALBYJDCNKFX 53 JBYOXPHGVZQLWSDMTKRFCNIEAU
 4 HGYENUCRPZWMIQTKAXJBDLVSOF 54 RLKMQABOWHNFSVCXYPEIDZGJUT
 5 ZBPGTUVCOWJLEISDHYNRKAXMQF 55 ETLMUZYWOCGIRDBFPKAVJSQHXN
 6 YWXHKRZUOBJSFGNAPLQCEDVMIT 56 VMRIUJFKEBOPWTYSADCXNHQZGL
 7 DMBNORVFCSAWGIQYKJTZXHPELU 57 ZAMDJFNUHKYPWVRXLIBGQOCTSE
 8 XBQFAGITLEHZUDKSOWPCRYNJVM 58 DXYLJAQKUFRPITVNOHSZMGBWCE
 9 RPJSWFBUTHEDQMKGOIANYVCZLX 59 XRMNJATKOBFZCPWUVQELGDYISH
 10 FSOCELBPVAQKIXWZGTMDNYUHJR 60 SYPITVMJZKLEUHOBFRQNGDCWXA
 11 ACPIDOYSRTUHBKQGVNXWFELJMZ 61 DABHQKMWXLICPZSTNEGFVRYUJO
 12 YLXTMNVZEJUKDPBHQAFSRWGIOC 62 QFTJLICAZROBEKNUPSWYHVGMDX
 13 TBDECYZPNLGUFOJRKQSIWHXVAM 63 OJELKXUHSPIWQMYDNBGTFVZRCA
 14 FLNYCMEWSXHIABGQRPOJUKZTVD 64 IEWDCNOLZJHFGBPUQVMYTSKARX
 15 FTHXADWIUNYJOMBCQPVSEZLGKR 65 SGKYVNLIUZEAQJMFXOWTDPRCBH
 16 UHNYCAOTLMZDGIERJQXPVWFSKB 66 DRHPWCGYVUEXZQALIONMSJFTBK
 17 JDGQBOZCVMHAWYKRSTPFXUNELI 67 FTNZQAOEUXYVPWHKRSIDBJLMGC
 18 GMJUBTIAVYRHPOECDNKLXZQSWF 68 DIBHXALWQCNZGKVSFUJMPRYTOE
 19 INYVECOHBDAFQZLWJMKGTRUPXS 69 KUDQXRFHLISACBTPYNWVJGOEMZ
 20 BZAXDNSYWGHCRMEPLUFJIVTOQK 70 MIWEFSCPATKVLORQHXBYJNZUGD
 21 HLZUEXJNRTQCKWOYBDMPFIGVAS 71 ZQTNYKHCVXIUMGAJPODEBRSLFW
 22 AUEPVHSGMJFRCWDBXOTYILQKNZ 72 UKMHBAJSFWGCDXQYORVTZPELNI
 23 FDIJMAGVWLNQKECZOXUSTRPBYH 73 WXYUVKNMADRGCTHLEFPZQOSJIB
 24 HOANLPTXQDWYJRGKFBSCZMUVIE 74 BHEPRZTOVDGKMJQUIYNWFXLSAC
 25 XTLSZCDFJEYUOPNBARWHVKQIMG 75 ORVUICMBNDXLAJYZSKGFEPTHQW
 26 YCJWQUNIHOVPFSLZMGATDKERXB 76 HVJOKXSRFIQUACYNTMPGEWLDZB
 27 RECXJZDGIAPKMYHQNOFLTVWSBU 77 KNGAOIYBHWEQMPJZLDSUFRTCVX

 28 JDFSECBXZMWPNRHUGAOVLKQITY 78 WIRBXALHKJZYQSVGDUNOPETCMF
 29 EQHMOGUIYVACWTJZNKFPXRLSBD 79 SVYPXTINHZAKBRGMOLJDCUQEFW
 30 DIFAHKGXWPVTRQSJLBZOEYNMCU 80 OJFWITSPNDAMZXLYERUQBGVCHK
 31 FJRBXNIGVOUPKWHYLDQESZAMTC 81 UJFQCGPAMTLEKRXBOYSDIVWZNH
 32 AKEFBDJPUIGVNWZHOSQRYCXLTM 82 QTEWPORKXCIZYJVBMFULANGDHS
 33 ZMPKSAUBLWVQDNTGOFEXHCJYRI 83 TLCGDRXFSZIAJUPMEVOHKNQWYB
 34 JISEFBDYAMRTLPCQHXKGUNVZWO 84 XKTJDPWLVOEZGRUCYANQFHBIMS
 35 CNDTUSILPVFYHMZWRBAKGOJXEQ 85 TBUFMIHRAGCWPVJLXZQYDOSNKE
 36 MATXNJLHVZUKCDBIPQFEWOGYRS 86 WMLHSAGZEPKYJUIXVQBCRNFDOT
 37 IMVEJAFZHQRGLKUPWTNCSYDOBX 87 VLNTRGHDUIKEFMSWZJQOYAXBPC
 38 NYJQLMDARHGOFKBPETWZXUVSIC 88 YUVBSKNOPEIQDMCWAHJZFGLTRX
 39 ZAVEPUWSOKCHNLRTQMJDYFXGBI 89 LYPFDHWBZNCTXROGKQIEUSJAVM
 40 MFKTUREJYOCGXIZLQPNBVHDAWS 90 EKAQCSILMFJYUZBTXWDPGVHRNO
 41 RQICZOHVMNWELSUGXYTJKABFPD 91 LRQJSDPTYWGBMAINKEVFOXUHCZ
 42 CPJMODWQXIFYLRNUKBGZVTESHA 92 AJNRXTMZKHBGOSLEFVCUPDIQYW
 43 LZMACJPOSQTKGINXVFWRHUBYED 93 TCEWPVDIQBJONKYLRZGMFUAXSH
 44 VNTAYRIPFEDMGKWBQJUXLSOHZC 94 BMAOCFRZDWVTGXSHQJEINKUYPL
 45 ZIWKNJMSVXFEUDGQACHLYBTRPO 95 XKVDFJOPIWZQNHAGLERBSCYUTM
 46 FEWRDMLBNATKGVCSZJYOQIXPUH 96 HZNUGFQRWCEADVSPMOBJYKLITX
 47 NVEHYGLSTBIFXUZPCQRDAMWOJK 97 BPTLKUHZMFADEVOXGSRQIWNJYC
 48 ALEGPMUOSDFYCHTWQIVNJXKBZR 98 MTCISYWNVKOZJELUFPGQBXRDAH
 49 DJNGOUHQYAELRWBMTXSVCIPFKZ 99 BANGXEZSMJPTDWCOHRYFIVLQKU
 50 VQSEGULNCBMZJOWRYXPAKDTFHI 100 YVTSFOXPBRMKDIELGAQHWCNUZJ

madness's book on classical cryptography
afterword
last modified 2020-11-04
©2020 madness

Afterword

What now? You have learned everything there is to know about classical cryptography. Just kidding.
Keep learning. There are still more ciphers we have not covered; many can be found on the American
Cryptogram Association’s website at www.cryptogram.org/resource-area/cipher-types. When you feel
the urge, find one that is new to you. Study it, understand it, and implement it. Find a weakness, then a
way to break it. Sometimes, the best you can do is a brute-force attack, but for classical ciphers that is
still an achievement when you have modern computers to help you. Furthermore, new classical ciphers
are invented still, usually as challenges to other enthusiasts. Several of the ciphers in the section on
miscellaneous ciphers were invented for that reason.

After the classical era comes the mechanical era, characterized by rotor machines that use a
collection of rotating disks to encipher messages. The disks each contain a wire maze that redirects an
electric current as it passes from one disk to the next. Some have reflectors that redirect the current
back through the set of disks. Enigma was one such machine. It had three or four disks and a reflector.
The disks could be removed and replaced in different order, and the reflector could be swapped out for
a different one. By using a reflector, Enigma could never encipher a letter to itself. This weakness
helped to break its cipher. The Bombe was a device that, together with a crib, was used to recover the
key for messages encrypted with Enigma. Other rotor machines include Lorenz, Purple, and Fialka
(which is another shade of purple).

We have not mentioned Kerckhoffs’s principles yet. He summarized some basic properties of a
good cryptographic system, such as its ease of use and portability. His second principle is that the
security of the system should not depend on the secrecy of the algorithm (or mechanical device), but
rather on the secrecy of the keys. One’s enemy can often find and steal the details of the system or
device, so we should not rely on keeping them hidden. Instead, the system should be strong enough that
an enemy cannot break it without knowing the keys. As you know by now, none of the classical ciphers
are secure in this light. Furthermore, when a new classical cipher comes along, we can often figure out
the scheme and break it without prior knowledge of it. In the modern era, however, Kerckhoffs’s
second principle is taken very seriously.

The modern era is characterized by the use of computers. With them comes a level of
complexity that makes it impossible to break modern cryptographic systems with pen and paper. But on
the other hand, new structures and uses for them arise. The ideas that you should carry forward from
the classical into the modern era are substitution, transposition, and fractionation; these ideas are used,
albeit in more complicated ways. Here are some of the major differences you will see as you study the
cryptography of the modern era:

• Algorithms are far more complex, and therefore...

• We must use computers

• Algorithms are publicly known. In fact, there are competitions for new algorithms. The current
standard, AES (“Advanced Encryption Standard”) employs the algorithm that won a
competition held by the U.S. National Institute of Standards and Technology (NIST). Such
competitions take years to complete, as the community evaluates each algorithm and tries to
find its weaknesses. Since everyone knows the algorithms, security rests in the secrecy of the
keys (Kerckhoffs’s second principle).

• Asymmetric (public-key) ciphers now allow someone to encrypt a message for a recipient s/he
has never met before. Such a cipher has two keys; one locks it, and the other unlocks it. The
recipient published his/her locking key (the public key) for anyone to use. Messages meant for
the recipient are encrypted with the public key, and only the recipient can decrypt with the
other, private, key.

• Public-key cryptography also allows us to digitally sign messages. If a message is encrypted
with a private key, then anyone can use the public key to decrypt it, thereby proving that it was
written by the individual holding the private key. To make this process easier, we only need to
encrypt a shorter text, which is a secure digest of the message; this brings us to...

• Hash functions: these are functions that take a message and produce a large number, called the
digest of the message. These functions are special in that it is easy to find the digest of a
message, but nearly impossible to recover the message from the digest. For this reason, they are
called one-way functions.

• The security of a cryptographic system is demonstrated by reducing it to a hard mathematical
problem. For example, the RSA public-key system uses the difficulty of factoring large integers
as the basis of its security.

The quantum era is now beginning. Quantum computers will allow us to solve some classically
difficult mathematical problems easily. For example, once a quantum computer can be built that is large
enough (really no larger in terms of memory and processing than computers that we now have), it will
be able to factor large integers almost instantly. This will mean the death of RSA. Therefore, we need
new algorithms, algorithms that are resistant to quantum computing. There is currently a competition at
NIST for such things. Stay tuned.

Just keep learning.

Reading and references

American Cryptogram Association, “The ACA and You,” http://www.cryptogram.org/cdb/aca.info/
aca.and.you/aca.and.you.pdf, 2005 edition: http://web.archive.org/web/*/http://www.cryptogram.org/
cdb/aca.info/aca.and.you/aca.and.you.pdf, 2016 edition: web.archive.org/web/*/http://cryptogram.org/
docs/acayou16.pdf

Auguste Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires IX (1883) 5-39 and
161-191, www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf, www.petitcolas.net/kerckhoffs/
crypto_militaire_2.pdf

Turing Bombe Tutorial, www.lysator.liu.se/~koma/turingbombe/TuringBombeTutorial.pdf

Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory 22 (1976) 644-654, ee.stanford.edu/~hellman/publications/24.pdf

Exercises

1. Find a cipher you have never used before and learn how it works. A good place to start is
www.cryptogram.org/resource-area/cipher-types. Can you find a weakness in the cipher? Can
you modify an attack that you have to break this cipher? Give it a try.

2. Repeat Exercise 1 as often as you like.

3. Read about the rotor machines from the mechanical cryptographic era, about modern ciphers
and hash functions, and about quantum key distribution.

madness's book on classical cryptography
index
last modified 2022-08-30
©2020-2022 madness

Index

Numbers refer to units, not to pages. Numbers in italics refer to the location of a term’s definition.
Items in monospaced typerwriter font are programming items.

addition 14, 15
additive cipher 15
additive identity element 14, 85
additive inverse 14
ADFGX cipher 83, 84
ADFGVX cipher 84
adjugate matrix 85, 86
Advanced Encryption Standard (see AES)
AES afterword
affine cipher 22, 23-25, 43-44, 89
affine Hill cipher 89
albam cipher 13, 15
AMSCO cipher 65
append() 2
argv[] 12
asymmetric cipher introduction, afterword
asynchronous 90, 92
atbash cipher 13, 40, 41
athbash cipher (see atbash cipher)
autoclave cipher (see autokey cipher)
autokey cipher 92, 93, 94
Baconian cipher 100, 117
Bacon’s cipher (see Baconian cipher)
base (of number) 55
Bazeries cylinder 124
Beaufort cipher 40, 90, 107, 108
Bellaso 1552 cipher 42
bifid cipher 81, 82, 117
biliteral cipher (see Baconian cipher)
biliterarie cipher (see Baconian cipher)
binary 100, 117

binomial coefficient 10
bit introduction
block cipher 87, 90
block transposition cipher 53
Bombe afterword
boolean 20
break introduction
British National Cipher Challenge 117, 118
Brown corpus 1
brute-force attack 16, 23, 34, 39, 42, 56, 59, 60,

63-65, 87, 89, 112, 115,
afterword

Cadenus cipher 67, 68
Caesar (shift) cipher 15, 16-19, 33, 38, 41, 96,

108, 120
Chase cipher 119
chi-squared statistic 5
choice() 112
choose 10
cipher introduction
cipher clock 120, 121-123
ciphertext introduction
classical introduction
classical era introduction, afterword
cleartext introduction
ciphertext-autokey (see self-synchronizing)
code introduction, 99, 100-104
code word 69, 99, 103, 117
cofactor 85
cofactor matrix 85
coincidence, index of (see index of coincidence)
column vector 85, 87
columnar transposition cipher 58, 60, 62, 65, 67, 68, 83, 84,

119
combination-lock cipher 118
commutative 85
complete-unit transposition cipher (see permutation cipher)
component (of vector) 7, 85, 86
composition (of permutations) 51
coprime 20
corpus (textual) [pl. corpera] 1, 2-4, 109, 115
cosine of angle between vectors 7, 112
crack introduction
crib 17, 24, 35, 88, 89, 121
cryptanalysis introduction
cryptography introduction
Cryptonomicon 97
CSP-845 (see M-138-A)
CSP-488 (see M-94)

cylinder cipher 124
data, linguistic (see linguistic data)
decipher introduction
decode introduction, 99
decrypt introduction
decipher introduction
determinant (of matrix) 85, 86
deterministic 112, 113, 114, 124
dictionary (Python) 112
dictionary attack 27, 36, 40-42, 62, 65, 67,

70-73, 76, 78-82, 87, 89, 92,
107,109-112, 119, 120

digest afterword
digram substitution cipher 70, 71-75, 107
dimension (of matrix) 85
dimension (of vector) 7, 85
dinome 103, 104
directed graph 122
division 21
dot product (see inner product)
double columnar transposition cipher 61
double Playfair cipher 79
doubled-over substitution cipher 116
duplicitous cipher 117
edge 122
element (of matrix) 85, 86
elementary row operations 85
encode introduction, 99
encrypt introduction
Enigma afterword
entropy 11
entry (of matrix) 85, 86
Euclid’s algorithm 20
Euclid’s extended algorithm 21, 86
extended Euclidean algorithm (see Euclid’s extended algorithm)
factoradic number 55
factorial 55
factorial number 55
factorization 20
False 20
Fialka afterword
Fibonacci sequence 90
fitness 6, 8, 115
fixed-width code 99, 100, 101, 117
four-square cipher 75
fractionated Morse cipher 109
fractionation 81, 82, 109, 117-119
function 3
gcd (see greatest common divisor)

German Beaufort cipher (see variant Beaufort cipher)
Grandpré cipher 112
graph 122
greatest common divisor (gcd) 20
grid-based cipher 69-84
Gronsfeld cipher 39
group 52
Gutenberg (see Project Gutenberg)
hash function afterword
Heap’s algorithm 54
Hill cipher 87, 88, 89
hill-climbing attack 28, 37, 39-42, 50, 57, 60-62,

68, 71, 74, 77, 78, 81-83, 93,
98, 107, 108, 109, 112, 113,
115-117, 123, 125

homophone 112, 115
homophonic substitution cipher 112, 114, 115
horizontal two-square cipher 73, 74
Hutton cipher 1 110, 111
Hutton cipher 2 110
identity permutation 52
import 3
in 2
index() 12
index of coincidence 10, 12, 31, 70, 81, 83, 87, 118
inner product 7, 85
integers (as a set of numbers) 14, 21, 86
internal state 90, 91, 92, 97, 120
inverse matrix 85, 86, 87
itertools module 34, 52
Jefferson cypher wheel 124
Kasiski examination 30
Kasiski method (see Kasiski examination)
Kerckhoffs’s principles afterword
key 12
key space 12
key stream 90
keyed substitution cipher (see keyword substitution cipher)
keyphrase cipher 112
keyword 26, 33, 87, 107, 108, 112,

109, 117-120
keyword cipher (see keyword substitution cipher)
keyword substitution cipher 26
lcm (see least common multiple)
least common multiple (lcm) 20, 37
Lehmer code 55
len() 7
length (of vector) 7
lexicographical order 55

linguistic data 1-4
list() 52
log() 4
logarithm 4
Lorenz afterword
lower() 1
M-138 126
M-138-A 126
M-94 124, 125, 126
MadHatter cipher 116
math module 4, 7
matplotlib module 6, 8, 9
matrix 85, 86-89
matrix transposition cipher 58, 59
mechanical era introduction, afterword
minor matrix 85
mixed-radix number 116
modern era introduction, afterword
modular arithmetic 14, 15, 21, 22, 33, 40, 86
module (Python) 3
modulus 14, 86
monoalphabetic 12
monoalphabetic substitution 12, 13, 15-19, 22-28, 45-49,

52, 69, 83, 103-105, 109,
111, 112, 116, 117, 120-123

monoalphabetic substitution with camouflage 115
monogram 3
monogram fitness 6, 8, 12, 18, 19, 112
monome 103, 104
monome-dinome cipher 103, 104
morbit cipher 109
Morse code 83, 84, 99, 102, 109, 115
multiplication 21, 85
multiplicative cipher 22
multiplicative identity element 21, 85
multiplicative inverse 21, 85, 86
Myszkowsky cipher 66
Nicodemus cipher 108
Nihilist substitution cipher 80
Nihilist transposition cipher 62
non-prefix code (see non-prefix-free code)
non-prefix-free code 99
null 53
one-time pad 106
one-way function (see hash function)
open() 1, 27
optional argument 3
origin (of vector space) 7, 85
parallel assignment 21

period 29, 30-32, 78, 81, 82
periodic 29
periodic affine cipher 43, 44
periodic polyalphabetic substitution 29, 30-50, 81, 90, 108
permutation 52, 53-57, 62, 65, 68, 117
permutation cipher 53, 56, 57, 62, 83, 84, 90
permutations() 52
Phillips cipher 76, 77, 78
Phillips-RC cipher 78
plaintext introduction
Playfair cipher 70, 71, 72, 79, 81
Pletts Cipher Machine 120
Pollux cipher 115
polyalphabetic 29
Polybius cipher 69, 83, 84, 99, 117
Polybius square 69, 70-81, 83, 84, 117
Polybius-square cipher 69
polyhomophonic substitution cipher 114
polyphonic substitution cipher 113, 114
pop() 55, 112
Porta cipher 42
prefix code (see prefix-free code)
prefix-free code 99, 103, 104
prime 20
print() introduction
probabilistic 112, 114, 116, 124
product() 34
progression index 96
progressive-key cipher (see progressive Vigenère cipher)
progressive Vigenère cipher 96
Project Gutenberg 1
proto-mechanical ciphers 120-126
public-key cipher (see asymmetric cipher)
Purple afterword
pylab module 6, 8, 9
Python introduction
quagmire 1 cipher 45, 46, 80
quagmire 2 cipher 47
quagmire 3 cipher 48, 110
quagmire 4 cipher 49
quantum era introduction, afterword
qubit introduction
radix 55
railfence cipher 63, 64
random module 57, 112
randrange() 119
range() 52
read() 1, 27
reciprocal key 13, 42

reciprocal cipher 13, 15, 40, 42
recursion 20, 85
redefence cipher 64
remove() 55
replace() 1
residues 14, 86
ROT13 15
RSA afterword
rotor machines afterword
route transposition cipher 51
running-key cipher 95
scalar 7, 85
scalar product (see inner product)
Scrabble cipher 111
scytale 58, 59
scytale cipher (see scytale)
self-synchronizing 90
seriation 79, 117
shuffle() 57
signature 32
simple columnar transposition cipher 58, 59
simulated annealing 71
slidefair cipher 107
solitaire cipher 97, 98
sort() 32
split() 2, 27
square matrix 85, 86
sqrt() 7
stochastic 28
straddling checkerboard cipher 104
stream cipher 90, 91-98, 106, 120, 123
strip cipher 126
substitution cipher 12, 13, 15-19, 22-50, 70-80,

105, 112-114, 116
subtraction 14, 15
symbolic substitution cipher 105
symmetric cipher introduction
synchronous 90, 91, 96, 97
sys module 12
tableau [pl. tableaux] 33, 40-42
tabula recta (see tableau)
ternary 101, 117
tetragram 4
tetragram fitness 9, 16, 34, 36, 37, 112
textual corpus [pl. corpera] (see corpus)
transliterate 105
transpose (of matrix) 85
transposition cipher 51, 53, 56-68
trifid cipher 82, 117

triliteral cipher 101
triliterarie cipher (see triliteral cipher)
trit 118
Trithemius cipher 91, 96
True 20
twist 32
twist method (for finding period) 32
twisted-scytale cipher 59
two-square cipher 72-74
type 1 (see quagmire 1)
type 2 (see quagmire 2)
type 3 (see quagmire 3)
type 4 (see quagmire 4)
Unicode 1
update() 112
upper() 1
Urkryptografen 120
variable-length code 99, 102-104
variant Beaufort cipher 41, 90, 107, 108
variant cipher (see variant Beaufort cipher)
vector 7, 85, 86-89
vector space 85
Vernam’s cipher (see one-time pad)
vertex [pl. vertices] 121
vertical two-square cipher 72, 73, 74
Vigenère cipher 33, 34-38, 40, 41, 45-49, 80,

89-91, 95, 96, 106, 107, 108
Wadsworth cipher disk 120
Wheatstone Cryptograph 120
write() 1
ℤ (see integers)
zero vector 85
+ (see addition)
− (see subtraction)
* (see multiplication)
/ (in Python) introduction, 3
// (in Python) introduction, 3, 14
% (in Python) 14
χ2 statistic 5
◊ (see twist)

madness's book on classical cryptography
bibliography
last modified 2022-04-16
©2020-2022 madness

Bibliography

American Cryptogram Association, “The ACA and You,” www.cryptogram.org/cdb/aca.info/
aca.and.you/aca.and.you.pdf, 2005 edition: web.archive.org/web/*/http://www.cryptogram.org/cdb/
aca.info/aca.and.you/aca.and.you.pdf, 2016 edition: web.archive.org/web/*/http://cryptogram.org/docs/
acayou16.pdf; the pages about ciphers are linked from this page: www.cryptogram.org/resource-area/
cipher-types

Francis Bacon, Of the proficience and advancement of Learning, divine and humane, London: Henrie
Tomes, 1605.

Thomas H. Barr and Andrew J. Simoson, “Twisting the Keyword Length from a Vigenère Cipher,”
Cryptologia 39:4 (2015) 335-341, DOI: 10.1080/01611194.2014.988365

Friedrich L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology, 4th edition, Berlin:
Springer-Verlag, 2007.

Étienne Bazeries, Les Ciffres Secrets Dévoilés, Paris: Charpentier et Fasquelle, 1901,
books.googleusercontent.com/books/content?req=AKW5Q...

Giovan Battista Bellaso, La Cifra del Sig. Giouan Battista Belaso [sic], 1553.

Paolo Bonavoglia, “Bellaso’s 1552 cipher recovered in Venice,” Cryptologia 43:6 (2019) 459-465,
DOI: 10.1080/01611194.2019.1596181

Paolo Bonavoglia, La crittografia da Atbash a RSA, www.crittologia.eu, 2020.

Paolo Bonavoglia, “Trithemius, Bellaso, Vigenère: Origins of the Polyalphabetic Ciphers,” Proceedings
of the 3rd International Conference on Historical Cryptology, 2020, ep.liu.se/ecp/171/007/
ecp2020_171_007.pdf, DOI: 10.3384/ecp2020171007

Augusto Buonafalce, “Bellaso’s Reciprocal Ciphers,” Cryptologia 30:1 (2006) 39-51, DOI:
10.1080/01611190500383581

Pliny Earle Chase, “Mathematical Holocryptic Cyphers,” The Mathematical Monthly 1:6 (1859) 194-
196, books.google.com/books?id=SVNLAAAAMAAJ&pg=PA194

Chris Christensen, “Lester Hill Revisited,” Cryptologia 38:4 (2014) 293-332, DOI:
10.1080/01611194.2014.915260

Benjamin Church, Jr., George Washington Papers, Series 4, General Correspondence: Benjamin Church
Jr. to Maurice Cane, July 1775, www.loc.gov/item/mgw443691

Michael J. Cowan, “Breaking Short Playfair Ciphers with the Simulated Annealing Algorithm,”
Cryptologia, 32:1 (2008) 71-83, DOI: 10.1080/01611190701743658

Noel Currer-Briggs, “Some of Ultra’s poor relations in Algeria, Tunisia, Sicily and Italy,” Intelligence
and National Security 2:2 (1987) 274-290, DOI: 10.1080/02684528708431890

Donald W. Davies, “Charles Wheatstone’s Cryptograph and Pletts’ Cipher Machine,” Cryptologia 9:2
(1985) 155-160, DOI: 10.1080/0161-118591859870

Félix-Marie Delastelle, Traité Élémentaire de Cryptographie. Paris: Gauthier-Villars, 1902,
archive.org/details/8VSUP3207b

Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory 22 (1976) 644-654, ee.stanford.edu/~hellman/publications/24.pdf

Arthur Conan Doyle, “The Adventure of the Dancing Men,” first published in 1905, now in The
Complete Works of Sherlock Holmes, London: Simon & Schuster, 2012.

Niels Faurholt, “Urkryptografen (The Clock Cryptograph),” Cryptologia 27:3 (2003) 206-208, DOI:
10.1080/0161-110391891874; this article is available also at www.jproc.ca/crypto/crypto_watch.html

William F. Friedman, “Codes and Ciphers (Cryptology),” Encyclopaedia Britannica, 1956,
www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/
reports-research/FOLDER_535/41772109081119.pdf

William F. Friedman, Elements of Cryptanalysis, Washington D.C.: Government Printing Office, 1923,
www.marshallfoundation.org/library/digital-archive/elements-cryptanalysis

William F. Friedman, The Index of Coincidence and Its Applications in Cryptography, Riverbank
Laboratories Department of Ciphers Publication 22, Geneva, Illinois, 1920,
www.marshallfoundation.org/library/methods-solution-ciphers

William F. Friedman, Methods for the Solution of Running-Key Ciphers, Riverbank Laboratories
Department of Ciphers Publication 16, Geneva, Illinois, 1918, www.marshallfoundation.org/library/
methods-solution-ciphers

William F. Friedman, Military Cryptanalysis, Part I: Monoalphabetic Substitution Systems, Washington
D.C.: U.S. Government Printing Office, various years for various editions.

William F. Friedman, Military Cryptanalysis, Part II: Simpler Varieties of Polyalphabetic Substitution
Systems, Washington D.C.: U.S. Government Printing Office, various years for various editions.

William F. Friedman, Military Cryptanalysis, Part III: Simpler Varieties of Aperiodic Substitution
Systems, Washington D.C.: U.S. Government Printing Office, various years for various editions.

William F. Friedman, Military Cryptanalysis, Part IV: Transposition and Fractionating Systems,
Washington D.C.: U.S. Government Printing Office, various years for various editions.

William F. Friedman, Several Machine Ciphers and Methods for their Solution, Riverbank Laboratories
Department of Ciphers Publication No. 20, 1918, www.campx.ca/Several_Machine_Ciphers.pdf and
www.marshallfoundation.org/library/methods-solution-ciphers

William F. Friedman, Six Lectures on Cryptology, www.nsa.gov/Portals/70/documents/news-features/
declassified-documents/friedman-documents/publications/ACC15281/41785109082412.pdf

William F. Friedman and Lambros D. Callimahos, Military cryptanalytics, Parts I through IV, Aegean
Park Press, 1956, reprinted 1985.

Helen Fouché Gaines, Cryptanalysis: a study of ciphers and their solution, New York: Dover, 1956;
previously titled Elementary Cryptanalysis and published by American Photographic in 1939;
archive.org/details/cryptanalysis00gain

Greg Goebel, Codes, Ciphers, & Codebreaking, vc.airvectors.net/ttcode.html

Lester S. Hill, “Cryptography in the Algebraic Alphabet,” The American Mathematical Monthly 36:6
(1929) 306-312, DOI: 10.2307/2298294, www.jstor.org/stable/2298294, web.archive.org/web/
20110719235517/http://w08.middlebury.edu/INTD1065A/Lectures/Hill Cipher Folder/Hill1.pdf

Lester S. Hill, “Concerning Certain Linear Transformation Apparatus of Cryptography,” The American
Mathematical Monthly 38:3 (1931) 135-154, DOI: 10.1080/00029890.1931.11987161, www.jstor.org/
stable/2300969, www.cs.jhu.edu/~cgarman/files/Hill2.pdf

Parker Hitt, Manual for the Solution of Military Ciphers, Fort Levenworth (Kansas): Press of the Army
Service Schools, 1916, www.marshallfoundation.org/library/digital-archive/manual-solution-military-
ciphers, www.gutenberg.org/ebooks/48871

Thomas Jakobsen, “A fast method for cryptanalysis of substitution ciphers,” Cryptologia 19:3 (1995)
265-274, DOI: 10.1080/0161-119591883944

Thomas Jefferson, “The wheel cypher” or “Project of a cypher,” Thomas Jefferson’s Papers, volume
128 item 22138, volume 232 items 41575 and 41576, U.S. Library of Congress, www.loc.gov/item/
mtjbib025756, founders.archives.gov/documents/Jefferson/01-37-02-0082

Thomas Kaeding, “Automated ciphertext-only attack on the Wheatstone Cryptograph and related
devices,” Cryptology ePrint Archive, report 2020/1492.

Thomas Kaeding, “MadHatter: A toy cipher that conceals two plaintexts in the same ciphertext,”
Cryptology ePrint Archive, report 2020/301.

Thomas Kaeding, “Slippery hill-climbing technique for ciphertext-only cryptanalysis of periodic
polyalphabetic substitution ciphers,” Cryptologia 44:3 (2020) 205-222, DOI:
10.1080/01611194.2019.1655504

David Kahn, The Codebreakers: The Story of Secret Writing, New York: Simon & Schuster, 1967,
revised and updated 1996.

Bruce Kallick, “A Modified Simple Substitution Cipher With Unbounded Unicity Distance,”
Cryptology ePrint Archive, report 2019/621.

Friedrich Kasiski, Die Geheimschriften und die Dechiffrir-Kunst, 1863,
digital.onb.ac.at/OnbViewer/viewer.faces?doc=ABO_+Z224431001

Auguste Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires IX (1883) 5-39 and
161-191, www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf, www.petitcolas.net/kerckhoffs/
crypto_militaire_2.pdf

Solomon Kullback, General Solution for the Double Transposition Cipher, Washington D.C.: U.S.
Government Printing Office, 1934, www.nsa.gov/Portals/70/documents/news-features/declassified-
documents/friedman-documents/publications/FOLDER_439/41751169079035.pdf

Lanaki, lessons and tutorials, www.cryptogram.org/resource-area/crypto-lessons-tutorials-lanaki

André Langie, De la Cryptographie: Etude sur les Ecritures secrètes, Paris: Payot et Companie, 1918,
HDL: 2027/coo.31924029486838; translated by James C.H. Macbeth as Cryptography, London:
Constable & Company, 1922, HDL: 2027/uc1.32106002774104 and 2027/uc2.ark:/13960/t0tq62t29

James Lyons, Practical Cryptography, practicalcryptography.com, 2012.

António Machiavelo and Rogério Reis, “Automated ciphertext-only cryptanalysis of the bifid cipher,”
Universidade do Porto technical report DCC-2006-1,
www.dcc.fc.up.pt/~nam/publica/dcc-2006-01.pdf

Joseph O. Mauborgne, An Advanced Problem in Cryptography and Its Solution, Fort Leavenworth
(Kansas): Press of the Army Service Schools, 1914, www.marshallfoundation.org/library/digital-
archive/advanced-problem-cryptography-solution

Warren Thomas McCready (“Machiavelli”), “The Twosquare Cipher,” The Cryptogram, Nov-Dec
1972, 152-153.

Greg Mellen, “Cryptanalyst’s Corner,” Cryptologia 8:1 (1984) 55-57, DOI: 10.1080.0161-
118491858773

Marjorie Mountjoy, “The bar statistics,” NSA Technical Journal VII (2, 4), 1963.

Émile Victor Théodore Myszkowski, Cryptographie Indéchiffrable basée sur de nouvelles
combinaisons rationnelles, Paris: Société Française d'Imprimerie et de Librairie, 1902, gallica.bnf.fr/
ark:/12148/bpt6k1265620p

Grant A. Niblo, “The University of Southampton National Cipher Challenge,” Cryptologia 28:3 (2004)
277-286, DOI: 10.1080/0161-110491892935 (see below for links to the challenge)

Merle E. Ohaver, “Solving Cipher Secrets,” appeared weekly in Flynn’s, 1924-1928,
toebes.com/Flynns

Seongmin Park, Juneyeun Kim, Kookrae Cho, and Dae Hyun Yum, “Finding the key length of a
Vigenère cipher: How to improve the twist algorithm,” Cryptologia 44:3 (2020) 197-204, DOI:
10.1080/01611194.2019.1657202

Edgar Allan Poe, “The Gold-Bug,” 1843, en.wikisource.org/wiki/Tales_(Poe)/The_Gold-Bug,
www.eapoe.org/works/tales/goldbga2.htm

Giambattista della Porta [Giovanni Battista della Porta] [Ioan. Baptista Porta], De Furtivis Literarum
Notis, Naples [Neapoli]: Ioa. Maria Scotus, 1563, HDL: 2027/gri.ark:/13960/t37142x6g

Fletcher Pratt, Secret and Urgent: The Story of Codes and Ciphers, New York: Bobbs-Merrill, 1939.

Bruce Schneier, “The Solitaire Encryption Algorithm,” Schneier on Security, www.schneier.com/
academic/solitaire

Claude E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal 27:3
(1948) 379-423, DOI: 10.1002/j.1538-7305.1948.tb01338.x, HDL: 11858/00-001M-0000-002C-4314-2

Simon Singh, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography,
New York: Random House, 1999.

Abraham Sinkov, Elementary Cryptanalysis: A Mathematical Approach, 2nd edition, revised by Todd
Feil, published by Mathematical Association of America, 2009, www.jstor.org/stable/10.4169/
j.ctt19b9krf

W. W. Smith, “Solution of the Playfair Cipher,” in part IV of André Langie, Cryptography, translated
by James C. H. Macbeth, London: Constable & Company, 1922, HDL: 2027/uc1.32106002774104 and
2027/uc2.ark:/13960/t0tq62t29

James Stanley, “The Wheatstone Cryptograph,” incoherency.co.uk/blog/stories/wheatstone-
cryptograph.html

S. Tomokiyo, “First Codebreaking in the American Revolution — Benjamin Church’s Cipher,”
cryptiana.web.fc2.com/code/church.htm, 2009-2014.

Johannes Trithemius, Polygraphiae libri sex, Reichenau: Joannis Haselberg de Aia, 1518,
www.loc.gov/item/32017914

Blaise de Vigenère, Traicté des chiffres ou secrètes manières d’escrire, Paris: Abel l’Angelier, 1586,
HDL: 2027/ien.35552000251008, gallica.bnf.fr/ark:/12148/bpt6k1040608n, gallica.bnf.fr/ark:/12148/
bpt6k94009991

Charles Wheatstone, “Instructions for the Employment of Wheatstone’s Cryptograph,” The Scientific
Papers of Sir Charles Wheatstone, The Physical Society of London, 1879, pages 342-347.
archive.org/details/scientificpaper00londgoog (the last two pages of the article were completely ruined
by Google in that copy), books.google.to/books?id=CtGEAAAAIAAJ

Fred B. Wrixon, Codes, Ciphers & Other Cryptic & Clandestine Communication, New York: Black
Dog & Leventhal, 1998.

“Ciphers and Cipher-Writing,” Macmillan’s Magazine, XXIII, Feb 1871, pages 328-338,
babel.hathitrust.org/cgi/pt?id=mdp.39015004979913;view=1up;seq=340

NSA file 41788379082740:
www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/patent-
equipment/FOLDER_515/41788379082740.pdf

Basic Cryptography, Dept. of the Army Technical Manual 32-220, April 1950, www.nsa.gov/Portals/
70/documents/news-features/declassified-documents/friedman-documents/publications/
FOLDER_238/41748889078809.pdf

General Solution for the ADFGVX Cipher System, Washington D.C.: U.S. Government Printing
Office, 1934, www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-
documents/publications/FOLDER_269/41784769082379.pdf, archive.org/details/41784769082379

NOVA Online, “Decoding Nazi Secrets,” www.pbs.org/wgbh/nova/decoding

United States Army, Field Manual 34-40-2, Basic Cryptanalysis, U.S. Department of Army,
www.umich.edu/~umich/fm-34-40-2

MysteryTwister C3, www.mysterytwisterc3.org

RingZer0 Online CTF, ringzer0ctf.com

(British) National Cipher Challenge, www.cipherchallenge.org. Recent years’ challenges are also on
the site. An archive of past challenges is at github.com/themaddoctor/BritishNationalCipherChallenge

