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This is a short (ahem) introduction to breaking compound ciphers. All ciphers are classical, and none 
are modern. It is best if the reader (you) is familiar with the ciphers that we use, and might even know 
how to break some of them. This is not the first document you should read if you are just starting to 
explore classical cryptography.

What is a compound cipher?

Simply put, a compound cipher is one that can be broken up, or factored, into a sequence of simpler 
ciphers. Sometimes a familiar cipher turns out to be factorable; other times, we deliberately chain 
together two ciphers to make a more difficult cipher. To break a compound cipher, we need to break 
each of the simpler ciphers that make it up.

Occasionally, one of those factor ciphers might be keyless, i.e., always encrypt the same way 
because a key is not used. For example, think of Bacon’s biliteral cipher; in it, each letter is always 
replaced with the same five-character sequence. Having such a factor makes the task of breaking the 
full cipher easier, as we shall see in some examples.

It also often happens that a cipher’s decryptor is the same sort of operation as its encryptor. For 
example, a monoalphabetic substitution cipher (a cipher in which each letter is replaced by another 
letter according to a key table) is decrypted with a substitution cipher using a different key. We might 
say that the key for decryption is the inverse of the key for encryption, or that the substitution cipher 
used to decrypt is the inverse of the substitution cipher used to encrypt. For a counter-example, 
consider again Bacon’s biliteral cipher; its encryption and decryption operations are very different. 
Whether a factor cipher is its own inverse will sometimes have a bearing on how we break the full 
cipher.

When more than one component cipher is used, then decryption must be done in reverse order. 
So if a plaintext p becomes a ciphertext c by the action of some ciphers Q, R, S, T like this:

c  =  T(S(R(Q(p))))

then decryption is done like this:

p  =  Q−1(R−1(S−1(T−1(c))))

Notice that in this notation, action of the ciphers proceeds from right to left. The decryptor of a cipher 
Q is written as Q−1, since it is the inverse operation of Q.

In the next section we discuss whether the order of the component ciphers is strictly enforced, 
of if there are cases when the order can be changed.



Commutivity

The most important property of the factors that make up the full cipher is whether they must operate in 
a certain order, or whether the order does not matter. If the order matters, then decryption of the full 
cipher requires that the factor ciphers be used in reverse order. If the order is irrelevant, then we can 
break the factors in whatever order is most convenient for us. In that case, we say that the factors 
commute. For example, consider a Caesar shift cipher and a columnar transposition cipher. It makes no 
difference whether a text is encrypted with the Caesar cipher first or with the transposition cipher first; 
the ciphertext will be identical for either choice. Mathematicians represent this graphically with a 
commutation diagram, like this:

plaintext p → Caesar shift K → intermediate text A

        ↓                   ↓
transposition T        transposition T

        ↓       ↓
intermediate text B → Caesar shift K → ciphertext c

(K is for Kaiser, so as not to be confused with c for ciphertext.) The two intermediate texts A and B are 
different. If we prefer to write it as an equation:

c  =  K(T(p))  =  T(K(p))

When a cipher maps from one character set to another, as in the Polybius square or Morse code, 
then we know that it will not commute with other ciphers.

Sometimes, factor ciphers will not truly commute, but almost. In these cases, if we switch the 
order of the ciphers, then the keys must change. As an example, consider a permutation cipher QK 
followed by a Vigenère cipher VL. The subscripts denote the keys. If the length of the permutation key 
K is the same as the Vigenère key L, then we can switch the order of the two ciphers, but the keys must 
change.

c  =  VL(QK(p))  =  QK(VL′(p))

Here, L′ (you have to look closely to see the prime) denotes the modified Vigenère key. The 
permutation key does not, in this example, need to be modified. We leave it as an exercise for the 
reader to determine whether

L′  =  QK(L)

or

L′  =  QK
−1(L)

It is always true that a monoalphabetic substitution and a transposition cipher will commute.



Some familiar ciphers that are compound

Affine cipher

Believe it or not, the affine cipher is compound. It is made up of a multiplication cipher followed by an 
addition cipher. These two factors do not commute; they must be undone in the proper order when we 
decrypt a ciphertext. The encryption function can be written

ci  =  a pi + b  mod 26

But to correctly decrypt, we must use

pi  =  a−1 (ci − b)  mod 26

Notice how the parentheses enforce the order of operations, which is reverse of that used in encryption.

Polybius cipher

What we usually think of the Polybius cipher involves filling a 5×5 square with a mixed alphabet, then 
replacing each letter of the plaintext with the two coordinates of that letter in the square. But this can be
factored into two pieces. In the first, a monoalphabetic substitution is applied. In the second, each letter
is replaced with the coordinates in Polybius square containing an unmixed alphabet (this factor is 
keyless). The key for the substitution factor is the inverse of the mixed alphabet used in the original 
version of the cipher.

The two factors involve different kinds of operation and they do not commute. However, 
knowing that the cipher can be factored will help us break it, as we shall see below.

ADFGX (and ADFGVX)

The German ADFGX (and its 6×6 version the ADFGVX) consists of a Polybius cipher followed by a 
columnar transposition cipher. As we just saw, the Polybius factor can in turn be factored into a 
substitution cipher and an unscrambled Polybius cipher. None of these factors commute, so when we 
break this cipher, we will need to do each factor in the correct order.

Quagmire ciphers

The cipher known as quagmire 1 is a monoalphabetic substitution cipher followed by a Vigenère 
cipher. The quagmire 2 is a Vigenère cipher followed by a monoalphabetic substitution. The quagmire 
3 is a substitution followed by a Vigenère, followed by the inverse of the substitution. In the quagmire 
4, we have one substitution, then a Vigenère, then a different substitution.

In all four cases, the factors do not commute. Also, you should not expect the keys for the 
factors to be the keys you might expect by looking at the tableaux used to encrypt by hand, i.e., not the 
same as the keywords you would use.



Bifid cipher

This cipher can be factored into an inverse monoalphabetic substitution (i.e., the key is the inverse of 
the mixed alphabet used in the cipher), a keyless Polybius cipher, a keyless columnar transposition (two
columns), the inverse of the Polybius cipher, and the final monoalphabetic substitution. The 
transposition is sandwiched inside layers that are inverses of each other.

Unfortunately, the compound nature of the bifid cipher does not help to break it.

Trifid cipher

The trifid cipher is structured like the bifid, with these differences: the Polybius cipher is replaced with 
a triliteral cipher, and the columnar transposition has three columns.

Some component ciphers

These are some component ciphers that we will consider. The list is not exhaustive. For example, there 
are many more transposition ciphers than the two included here.

Monoalphabetic substitution

This is the simple substitution cipher with which we are all familiar. It is called monoalphabetic to 
distinguish it from the periodic polyalphabetic ciphers like the Vigenère. The Caesar shift and affine 
cipher are two special cases of the monoalphabetic substitution, and we will discuss them further 
below.

We all know how to break a monoalphabetic substitution by trying partial keys and guessing at 
what words appear as we try to fill in the remainder of the key. But with a computer we can speed this 
up with an algorithm published by Jakobsen in 1995 in Cryptologia. His is a hill-climbing method in 
which a key is modified by swapping two letters in it. If the resulting decryption is better than the one 
using the old key, then the new key is kept. Modifications of the new key are tried until a better 
decryption is found and a newer key is obtained. This continues until no better decryption can be 
found. How good a decryption is is determined by counting two-letter combinations in the plaintext, 
and comparing their frequencies to those of typical English text (or we can use three-letter or four-letter
combinations).

It is sometimes useful to be able to invert the key for a monoalphabetic substitution. The inverse
key K is the key for a substitution that is the decryptor of the original substitution (whose key is K):

p  =  SK
−1(c)  =  SK(c)

There is an easy way to find the inverse key. Suppose our key is

KEYWORDABCFGHIJLMNPQSTUVXZ



We write this under the unmixed alphabet, keeping in mind that the substitution acts by replacing a 
letter on the top row by the one below it.

abcdefghijklmnopqrstuvwxyz
KEYWORDABCFGHIJLMNPQSTUVXZ

Then we rearrange the columns until the bottom row is no longer mixed.

hijgbklmnoapqrestfuvwxdycz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The new top row is the inverse key.

Caesar shift cipher

We all know how this cipher works. Each letter is shifted by the same amount along the alphabet, with 
wrap-around. For example, if the key is 18, we can envision the action of the cipher like the following, 
in which plaintext letters from the top row are replaced with the letter below them in the bottom row:

          abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

The inverse of key K is

K  =  26 − K

We all know that a very simple way to break a Caesar cipher is to try each of the 25 possible 
keys (K = 0 is irrelevant) and look for a good decryption. However, if a text has been scrambled by a 
transposition cipher, then this method cannot work. So let’s explore a method of breaking the Caesar 
cipher even when the ciphertext has been scrambled. We will do this with letter frequencies. We first 
need to know the frequencies of the twenty-six letters from typical English text. Here are the 
frequencies that I found from some British novels. The vertical units are arbitrary.

Now let’s consider a ciphertext; we will take as our example challenge 1B from the 2020 competition. 
Here are its frequencies:



To make a comparison easier, we can make two copies of the English frequencies and put the ciphertext
frequencies directly below:

At first glance, the largest peak in blue and in red are six steps apart. The fact that the key is 6 is quite 
obvious when we shift the red distribution left by six steps:

From the excellent match that we see above, we now know that the key for the Caesar cipher in this 
example is 6.



If you wish to automate this method, you can use the χ2 method of determining the best fit, or 
you can do what I prefer: maximizing the sum of the products of the blue bars each with the red bar 
below it.

Affine cipher

Can we break an affine even when the text has been scrambled? Yes. Two methods come to mind: 
solving the modular equations, and checking all possible keys.

For an example of solving the modular equations, let’s use the ciphertext from challenge 2B 
from the 2021 competition. Here are its frequencies:

When we look at the English frequencies in the graph earlier, the highest peak is for E = 4, and the 
second is for A = 0 or T = 19. In the graph for the ciphertext, the highest is L = 11 and the second is U =
20. Let’s try a couple of choices and see if we can recover the key algebraically. For E → L and A → 
U, we have

11  =  4 a + b
20  =  0 a + b

Remember that the arithmetic must be done modulo 26. Unfortunately, there is no solution. For E → L 
and T → U, we have

11  =    4 a + b
20  =  19 a + b

This set of equations does have a solution: a = 11, b = 19, and this is, indeed, the key to the affine 
cipher. Had it not been, we would have to try maybe a handful of other possibilities.

To break an affine by trying all possible keys, even when the text is scrambled, we can do 
something similar to the method used for the Caesar shift. In this case, however, we do not shift the 
frequencies. Instead, we must shuffle them according to the affine cipher and then compare. There are 
311 possible keys, since a can take values 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, and b can take any 
value from 0 to 25 (a must be invertible modulo 26, so must not be divisible by 2 or 13, which are the 
factors of 26). Since the key (1, 0) is the identity operation, there are 311 possibilities to consider. For 
each possibility, we start with the frequencies of typical English, rearrange them under the action of the
affine cipher, then compare to the frequencies of the ciphertext. The best match indicates that we have 



found the key. Again, it is up to you whether to use the χ2 method of determining the best fit, or my way
of maximizing the sum of the square of the frequencies.

Vigenère cipher

I think we all know what a Vigenère cipher is, but just to be clear: A Vigenère cipher is a periodic 
collection of Caesar shift ciphers. In other words, There is some set of m Caesar shift ciphers, and they 
are applied one at a time as we encrypt each of the letters in the plaintext. When we get to the end of 
the set of Caesar shifts, we go back to the beginning and continue encrypting (hence the use of the 
word periodic).

There are a few methods for finding the period of the cipher, which is the same as the number m
of Caesar shifts. One is the Kasisky method, which involves finding groups of characters that reoccur 
in the ciphertext. The distances between repeating groups are multiples of the period. So the period is 
likely to be the GCD (greatest common divisor) of those distances.

Another way to find the period is with the index of coincidence (IoC), which measures the 
likelihood that any two characters of a text are the same. A concise formula for the IoC is

I  =  26 Σi=A
Z ni (ni - 1) / N (N - 1)

where ni are the counts of the letters in the text, and N is the total number of characters. Notice that I 
use a normalization factor of 26 which many cryptanalysts do not use. With this normalization, a 
random text has an IoC close to 1, while English text is close to 1.7. If you don’t like this formula, then 
you can just as easily use a simplified version which is 26 times the sum of the squares of the 
frequencies of the letters in the text, divided by the square of the sum of the frequencies (that latter sum
is, of course, 1, so you can ignore it). To use the IoC to find the period of the cipher, we cut the 
ciphertext into m slices, where each slice contains every mth letter. Then we find the IoC for each slice 
and average them. We do this for various choices of m. The smallest m with an average IoC close to 1.7
is our period. For example, below we see an example of the graph of the IoC versus the number of 
slices m. The period for this example is 7.



Once we know the period of the cipher, we can break each of the Caesar shift ciphers using the 
method described above on each of the m slices of the ciphertext.

Keyless Polybius square

For this cipher, we cram the alphabet into a 5×5 matrix, called a Polybius square. Unfortunately, the 
English alphabet has more than 52 letters, so we may have to jettison one of them. Usually, we will put 
‘I’ and ‘J’ in the same spot. We then add labels to the rows and columns. The action of the cipher is to 
replace each letter in the plaintext with its coordinates in the Polybius square.

     │  1  2  3  4  5
   ────┼────────────────
  1  │  A  B  C  D  E
  2  │  F  G  H  IJ  K
  3  │  L  M  N  O  P
  4  │  Q  R  S  T  U
  5  │  V  W  X  Y  Z

The decryption method should be obvious: We simply replace each pair of numbers in the 
ciphertext with the letter in the corresponding position in the square.



Since this cipher maps symbols in one set to symbols in a different set, i.e., {A, ..., Z} → {1, 2, 
3, 4, 5}, it cannot commute with other ciphers.

Morse code

In Morse code, letters are replaced by codewords made of dots (·) and dashes (−). Codewords are 
separated by spaces, which are often denoted with crosses (×). I won’t bore you or take up space by 
presenting the table of codewords. This “cipher” has no key, and decipherment is simply to replace 
each codeword with the letter that it represents.

Again, since this “cipher” maps symbols in one set to symbols in a different set, i.e., {A, ..., Z} 
→ {·, −, ×}, it cannot commute with other ciphers.

Permutation cipher

In this cipher, the plaintext is divided into blocks of equal length. Each block is permuted (scrambled) 
in the same manner. Decryption is also a permutation cipher, in which the key is the inverse 
permutation of the encrypting cipher.

If you like, you can think of this cipher as writing the plaintext into a matrix, then shuffling the 
columns of the matrix, and finally reading the ciphertext out one row at a time.

Now, what we need is a way to break such a cipher when the letters of the ciphertext have all 
been changed by a substitution cipher. The index of coincidence will not help us, since it only deals 
with the counts or frequencies of letters, and not with their positions. We need some measure that takes 
into account groupings of letters. So we introduce the index of coincidence for digrams (IoC2). Rather 
than counting individual letters (monograms), we will be counting pairs of letters. Here is a formula:

I2  =  262 Σi=AA
ZZ ni (ni - 1) / N (N - 1)

The sum runs over all pairs AA, AB, AC, ..., ZY, ZZ. The ni are the counts of the pairs, and N is the 
total number of pairs. If you don’t like this formula, then notice that for a long ciphertext, the 1’s can 
be ignored, and the formula reduces to the sum of the frequencies squared. And if you like, we can use 
counts instead of frequencies, since we are just going to maximize the value anyway. This simplified 
IoC2 can be calculated like this:

1. Make a list of all the digrams (two-letter sequences) in the text.
2. Count the occurrences of each digram.
3. Square the count for each digram in the list.
4. Add all the squares. The result is the sIoCd.

You will want to use a computer for this, because we need to do this calculation every time we try a 
new key for the transposition cipher. However you decide to calculate the IoC2, since English is a 
repetitive encoding of ideas, the IoC2 will be large. So we want to maximize its value. To do so, we use
a hill-climbing technique: Try a key and calculate the IoC2 for the decryption. Then modify the key by 
either swapping two elements in it, or by shifting it right or left, with wrap-around. If the IoC2 of the 



new decryption is higher, then we keep the new key and try modifying it. This continues until we can’t 
do any better. At that point, it is very likely that we have the correct key.

Columnar transposition

In this cipher, we write the plaintext into a matrix, shuffle the columns, then read the ciphertext out one 
column at a time. In this case, the decryption process is not a version of the encryptor. Instead, the 
ciphertext must be written into the matrix one column at a time, and the plaintext read out one row at a 
time.

Once again, what we need is a way to break such a cipher when the letters of the ciphertext have
all been changed by a substitution cipher. We will use the same hill-climbing technique as outlined 
above for the permutation cipher, but with the decryptor of the columnar transposition cipher. We will 
have to guess at the length of the key (the number of columns). But this is not such a bad thing; it is 
easy to just try several key lengths until we find a solution.

Homophonic substitution

In a homophonic substitution, a set of symbols is mapped to a larger set in such a way that we have 
more than one choice for the replacement of a plaintext symbol. Breaking such a cipher is done the 
same way as a monoalphabetic substitution. However, we have map more ciphertext symbols to 
plaintext symbols. Nevertheless, the modifications to the method are straightforward.

Combining similar ciphers

This is just an aside to explain that when two similar ciphers are combined, the result is often not a new
cipher.

When one monoalphabetic substitution cipher is followed by a second monoalphabetic 
substitution, the result is the same as a single monoalphabetic substitution:

c  =  S2(S1(p))  =  S3(p)

The key of the resulting substitution is

K3  =  S2(K1)

When two Caesar shift ciphers are combined, the result is a single Caesar cipher with key

K3  =  K1 + K2

When two affine ciphers are combined, the result is also an affine cipher. We can see this by 
looking at the action of the two ciphers on a plaintext letter whose number is x to give a ciphertext 
letter with number y:

y  =  a2 (a1 x + b1) + b2                  



=  (a2 a1) x + (a2 b1 + b2)

So the key of the resulting cipher is

a3  =  a1 a2             

b3  =  a2 b1 + b2

where all operations are done modulo 26.

When two Vigenère ciphers are combined, the result is a Vigenère cipher whose keylength is the
LCM (least common multiple) of the original two keylengths. The key of the resulting cipher is the 
encryption of several copies of one of the original keys by a Vigenère using the other original key:

K3  =  V2(K1 K1 K1 ...)  =  V1(K2 K2 K2 ...)

Breaking Polybius cipher

As mentioned above, a Polybius cipher that uses a square containing a shuffled alphabet can be 
factored into a monoalphabetic substitution cipher followed by a keyless Polybius cipher (i.e., one that 
uses an unshuffled alphabet in its square). This makes the full cipher no harder to break than a simple 
substitution cipher. First, undo the keyless Polybius cipher. What remains is the substitution cipher, 
which you should know how to break.

Something to think about: Is the mixed alphabet in the square the same as the key of the substitution 
cipher? Is it the inverse key?

Breaking Caesar shift cipher and transposition cipher

A monoalphabetic substitution and any transposition cipher commute, and a Caesar cipher is a type of 
monoalphabetic substitution. So we can attack the two factor ciphers in either order. While it is possible
to break the transposition first, it is far easier to break the Caesar shift first, using the method based on 
letter frequencies explained above. The transposition can then be broken by whatever method is 
appropriate for whatever type of transposition we have.

Breaking affine cipher and transposition cipher

Can we apply something similar to the case of an affine and a transposition cipher? Yes. The affine 
cipher is also a type of monoalphabetic substitution, so it commutes with the transposition. So wecan 
break the affine cipher first. We have two methods explained above for doing so. The transposition can 
then be broken by whatever method is appropriate for whatever type of transposition we have.

Breaking monoalphabetic substitution and transposition cipher

In the case of a generic monoalphabetic substitution cipher, we do not have a method of breaking it 
when the ciphertext is scrambled. Therefore, we must break the transposition cipher first. For 



transposition ciphers of the permutation and columnar type, we have a hill-climbing attack outlined 
above. After deciphering the transposition cipher, what remains is to break the substitution cipher, and 
we have a hill-climbing method for doing that as well.

Breaking ADFGX

Breaking an ADFGX cipher is very much like the combination of monoalphabetic substitution with 
columnar transposition. The difference comes from adding a keyless Polybius cipher between them. 
This additional factor keeps the substitution and transposition from commuting. So we are required to 
break the columnar transposition first. Typically, we will guess the key length for the columnar 
transposition. If we guess wrong, we guess again until we succeed. For a given key length, we must 
maximize the IoC2. It is calculated for each transposition key by deciphering the transposition and the 
keyless Polybius and finding the IoC2 for the resulting text. Once the columnar transposition is 
cracked, we are able to work on the remaining substitution cipher.

Breaking quagmire 1 cipher

The quagmire 1 cipher is a monoalphabetic substitution followed by a Vigenère cipher. They do not 
commute, so we must attack the Vigenère first. Because of the underlying substitution, we cannot use 
the same attack that we use on an uncompounded Vigenère (breaking it as a series of Caesar shifts). 
However, the technique is similar. Finding the period is done the same way as with a Vigenère. Once 
the period is known, we cannot find the shifts of the letter frequencies compared to typical English text.
Instead, we can only find the relative shifts between the various slices of the ciphertext.

To clarify the method, let’s work through an example. Here is a ciphertext:

RQWGXSZKMILKJKKHGUHJSCBHBCRSYYIIJXMKSHBMHNVQSOERSYYIIJANZQCK
BTXJNCFOPMQJLUVWQSMWNKRSIVTSCOUFSKONARKHDCERAJMPJSTPMIDQKRSJ
NCFOPMYNGIZBRYQLRKRKFJMNCOGNNMBJRPSTPFGOHSBQFCPMIQIETVSHQHNK
HSSLYNCJZFNCJZOOYMIRSWMNLIAGAOEMPJSTPMIDQKRSANAGNTAHNSOERNPB
IEEWGYBLJSWQJIMACHGRVWLHXVVFFGSWAYKDFPEEFHHGESZNBIOFAVYQLRKR
RFUIVKHNVQHNPQYFKPOVEAHLMBEIVEBIFPOPANWKJWSEPAUCEVJUQDNAVPQK
FOWQSLFFOTHNMDADHZKMIAGAOESLIGTIUDIAFBVEFDCVSSEMKJFEVRQWGPRU
KYLIZSZNYIDJONUQGACPPIMDNPESQNQDHQQYPQMOSUCHIOVWQRVWJZWTEIYU
OEDVYPJVTAIVWGPRKFJWFHNRMQGRKRNHIHHKTUKHTJFBISPKDCSZKHTYCPSE
MPCBYMFDFJFTRRVTHDSKFJWNCSSJJWFOWMNDLAKEAYBQIKHZNBIOFSZNYIDL
AOOXKJFHUSTPFJLSHNEFCESJVMUZHRNYPJVTAINFENTHNNWRHVUYVONHQWSQ
FFLODWJHJBHMKKOJFBPJULHCJVMBDLGAVWPIDKSRSRSGXTKJULEHNCVVKIKQ
PSNIDFSZNNOJVASHTPJHIKFKHNKBMIJWFZRSJNJGEDGSMPOEDRRQAFHDVJUL
BLXSYVDDHVEFMWNCSRFHLIPWHNMPJSOPFMDDZAVMIDQKRYENXJJLSJNCFOPM
KKGUHBQSYIMBWSJSIDCYGOVLDLWKFJSDCJNRQCAKTUMFWGPRSEMPCBJZFDIU
IWYSKFOEZRFSQDFSZNYIDVXOEVDCVDAHLKYSTPHQCEPHWFKMJBSAHTDNZWGY
NQEGAVFPGRHQSHLWOSFUCBHBTFVIMIIRBPQ

You can find the period with a Kasiski examination. For example, SZN occurs five time in the text. The
separations between them are 140, 168, 133, and 189. The only factor they have in common is 7, so we 



are somewhat confident that the period of the cipher is 7. We can also look at the index of coincidence 
for slices of every nth letter:

This seems convincing. Now that we know the period, we divide the ciphertext into slices of every 7th 
letter, starting on the first, on the second, on the third, .... For each slice, we must find the frequencies 
of the letters. Here are the distributions of the first two slices:

Like we did for the Caesar cipher, we can find the relative shift between these two slices. It’s not pretty,
but the best fit is to shift the second slice three steps to the left relative to the first slice:



In a similar fashion, we find that the seven shifts, relative to the first slice, are:

slice 1:   0    (of course)
slice 2:   3
slice 3: 24
slice 4: 22
slice 5: 23
slice 6:   9
slice 7:   8

Once we unshift each slice and put the text back together, we obtain this:

RNYKAJRKJKPNACKEIYKAKCYJFFIKYVKMMOEKPJFPYFVNUSHIKYVKMMRFZNEO
EKPJKEJRGEQGNYYNISJYRNIKISVWFFMFPMSQRJKEFGHISJJRNVKHMFFUNIKJ
KEJRGEYKIMCSJYNNVNICFGORFFYNKOFMIHSQRJJFZSYSJFGEINKIWMKHNJRN
YKSIARFARFKENCFGYJKVVNENIKEJRGEJRNVKHMFFUNIKAKCKQKSHKUSHIFPY
KIHNYYYNNVNIJFOEFYYRSYPKONVCHKVNSYHFJSVWFEJKHJRNYKSIRNYNNVNI
JFRKZNYFVNJRSHQFHRSYVSHIOFHZNEYKJSFHAKYOMNKEMCYFVNJRSHQRNPNM
JRNISIHJRKZNJFEGYRKJKEJRGEPNMJKAUAKEISNECFGYJKEJMNIVNRNYKSIM
KVNMCJRNVKHMFFUNIEFGHIJFRSVKQKSHKHIYMSQRJMCEKSYNIRSYNCNLEFAY
RVVVVRNYKSISYKSICFGYJKEJMNIVNIFHFJLNKMKEVNISASMMHFJRKEVCFGKE
JRGEPEFAHNIKJRSVLGJCFGYRFJKJGYJRNENANENVSYYSMNYRNYKSIJRNVKHO
RGOUMNIYMSQRJMCKHKGJFVKJSOYCYJNVRNYKSIKHIQKZNKYVKMMYSQRKHOSN
HJOFVWGJNEYEKHQNISHJRNLFANMYFPJRNWMKHNJJSOUKAKCJRNIKEUVSMMNH
HSKKHIJRNKQNYRKHQRNKZCFHJRNSEIGYJCIKJKLKHUYSJRSHUJRNCJKUNJRN
FOOKYSFHKMWFJYRFJJFENMSNZNJRNVFHFJFHCRNMFFUNIQEKZNMCKJKEJRGE
KHIYKSISVKQENKJPKHFPYOSNHONCFGUHFAFRNEENKMMCYKSIKEJRGEARFAKY
LNQSHHSHQJFPSHIJRNVKHYOGESFGYUSHIMCVKHHNEISYOFHONEJSHQFRCNYY
KSIJRNFMIVKHKHIYSVWMCYJFWWNIJKMUSHQ

This text can now be broken as a single monoalphabetic substitution cipher. Once we do so, we find 
that the Vigenère key is ADYWXJI, and the substitution key is KLOINPQRSDUMVHFWBEYJGZATCX. 
These look like gibberish, and they almost are. However, we have forgotten that we only found the 



shifts relative to the first slice. If we assume that the first slice is also shifted, and run through the 26 
possibilities, we find more meaningful keys:  KNIGHTS WJYQROUNDTABLECFGHIXKMPZSV. The 
keywords used to generate the ciphertext were, in fact, KNIGHTS and ROUNDTABLE.

Breaking fractionated Morse

The fractionated Morse cipher is composed three layers. First, the plaintext is encoded in Morse. The 
dots, dashes, and spaces of the code are interpreted as 0, 1, and 2, so that an inverse triliteral (base 3, 
ternary) cipher converts it to letters again. Then a monoalphabetic substitution finishes the cipher.

Because the only component that involves a key is the final substitution, we can focus our 
efforts on it and break this cipher easily. The same hill-climbing attack for the lone substitution cipher 
works here, too. We just need to remember to decrypt with the full cipher before calculating the fitness 
of the plaintext at each step on the hill.

Breaking a Pollux cipher

The Pollux cipher is composed of Morse code followed by a homophonic substitution in which the 
dots, dashes, and spaces of the Morse are mapped to the digits 0, ..., 9 so that each has three or four 
homophones.

We can attack this cipher by focusing on the homophonic substitution. Similar to Jakobsen’s 
attack on the monoalphabetic substitution, we alter the mapping at each step, then decipher and 
evaluate the fitness of the plaintext. We accept the new mapping (the new key) if the fitness has 
improved or nearly so. When we can’t improve the deciperment any further, we are finished.

Breaking a Polybius cipher followed by homophonic substitution

This sounds interesting. I suspect that the method for Pollux could be modified to handle such a cipher.

Identification of compound ciphers

Determining that you have a ciphertext that was encrypted with a compound cipher can be difficult. 
Here are some ideas:

Suppose you have

1. Single letter frequencies do not match English;
2. IoC is close to that of English text;
3. IoC2 is too small compared to English text;
4. IoC does not show a definite period, as for the Vigenère cipher (see above).

Then it is likely that you have a substitution cipher and a transposition cipher.


