

QUANTUM COMPUTING

for

High School Students

by

Yuly Billig

Qubit Publishing

2018

Published by Qubit Publishing
23 Confederation Private, Ottawa, Ontario, K1V 9W6, Canada
http://qubitpublishing.com

Quantum Computing for High School Students

Copyright c©2018 by Yuly Billig
Electronic version of this book is available for download at:
http://qubitpublishing.com.
Any party may pass on unaltered copies of this book by electronic
means and make it available for download under the terms and con-
ditions of the Digital Peer Publishing Licence (DPPL), version 2.
The text of the licence may be accessed at:
http://nbn-resolving.de/urn:nbn:de:0009-dppl-v2-en4.
Printing of the book is prohibited without a written permission of the
author.

Credits
Cover design and artwork: Maria Zaynullina
Layout and typesetting: LATEX

ISBN 978-1-7753904-0-4 (Hardcover)
ISBN 978-1-7753904-1-1 (Paperback)
ISBN 978-1-7753904-2-8 (Electronic)

Contents

1 The Splendors and Miseries of Quantum Computers . 1
2 Quantum Mechanics Demystified (not really) 8
3 Cryptography: from the Roman Empire to Quantum

Methods . 15
4 Linear Transformations 22
5 The Matrix . 30
6 Orthogonal Linear Transformations 37
7 Quantum Teleportation 42
8 Group Theory . 47
9 Lagrange’s Theorem 55
10 Additive and Multiplicative Groups of Remainders . . 58
11 Lie Groups . 64
12 RSA Cryptosystem . 71
13 Parallel Classical Computations with a Quantum

Computer . 75
14 Nuts and Bolts of Classical Computations 79
15 Quantum Gates and Circuits 86
16 Discrete Fourier Transform 90
17 Fast Fourier Transform 103
18 Quantum Fourier Transform 109
19 Shor’s Algorithm . 116
20 Appendix: What is not in this Book? 124

iii

iv

Preface

The purpose of this book is to make the subject of quantum comput-
ing accessible to anyone with a knowledge of high school algebra and
trigonometry.

The theory of quantum computing combines quantum mechanics,
abstract algebra, computer science and cryptography. We made this
book self-contained by introducing various topics from these diverse
areas, needed for understanding of quantum computing.

The field of quantum computing is still very young. Quantum
computers that we are able to build today are not powerful enough to
solve practical problems, and to-date we have developed only a handful
of quantum algorithms. Yet, quantum computing holds great promise.
We know that large scale quantum computers have computational
power unmatched by the kind of computers we use now. Even though
these large scale quantum computers are technologically unattainable
today, the theory behind these devices is solid.

In 1994, Peter Shor discovered a quantum algorithm which will
allow one to break cryptography used today in Internet communica-
tions, once large scale quantum computers become a reality. Rigorous
exposition of Shor’s algorithm is the central goal of this book.

Proper description of quantum mechanics requires complex num-
bers and complex vector spaces. In order to make presentation of
the theory more accessible, we avoid using complex numbers in this
book. This simplification still allows us to convey all significant ideas
of quantum computing, while making it much easier to visualize quan-
tum states and quantum gates. In the last chapter, we briefly touch
upon the aspects of the theory left outside the scope of this book.

I am grateful to my father, Vladimir Billig, for the idea of writing a
book on quantum computing for high school students. I thank Anand
Srinivasan for suggesting quantum computing as a topic for a math
enrichment course. The course “Quantum Computing” was offered
by the Math Enrichment Centre at Carleton University in 2017/18,
and this book is based on my lecture notes. I thank the high school
students who took this course for their enthusiasm and hard work.

1

1 The Splendors and Miseries

of Quantum Computers

Moore’s Law states that the number of transistors in computers we
can build doubles every two years. This progress is only possible if
we make transistors ever smaller. In 2017, the width of a transistor
is at the scale of 10 nanometers, which corresponds to a layer of only
50 atoms in depth. Already at this scale, quantum effects, such as
quantum tunnelling, become significant. Clearly with the trajectory
of Moore’s Law, our present paradigm for computer architecture will
soon hit the wall, since the size of a transistor cannot possibly be
smaller than the distance between atoms in a crystal. Moreover as we
approach this barrier, quantum effects will become more prominent.

In our daily life, we deal with the objects that consist of many
atoms (their number in a grain of sand is 1020). In large collections
of atoms, quantum effects get averaged out, and as a result we do
not experience quantum mechanics with macroscopic objects. Yet
quantum mechanics is increasingly present in our technology – such an
ordinary thing like an LED flashlight, operates on quantum principles.

The idea of quantum computing is to embrace the bizarre quantum
world, instead of fighting its influence. This is not easy, but there is a
lot to gain. Quantum computers are devices that use quantum systems
as processors.

What are the riches offered by quantum computers?

1. We get exponentially more memory, compared to our present
computers.

2. We will be able to run massively parallel computations, again
exponentially more parallel than anything we can envision with clas-
sical computers.

What are the challenges?

1. There is no direct access to memory. The act of reading from
quantum memory has a probabilistic outcome and destroys the records
as they are being read.

2. The quantum processor should be fully isolated from the envi-
ronment, yet we should have access to it to control it.

2

3. We do not yet fully understand how to write efficient quantum
algorithms which take advantage of the power of quantum computers.

Quantum computers have sound theoretical foundations in both
physics and mathematics. However technological obstacles remain
very serious, and a significant breakthrough is required. A lot of
progress is also needed in developing quantum algorithms. In order to
work on algorithms, one does not need access to a quantum computer,
but only pen and paper, empowered with the knowledge of the theory
of quantum computing.

Let us try to understand the difference between classical and quan-
tum computers. In a classical computer data is stored in the memory
as sequences of 0’s and 1’s. The unit of memory is called the bit, and
it can store either 0 or 1. For the purpose of this discussion, it is useful
to view 0 and 1 purely as symbols.

The unit of memory of a quantum computer is called the qubit,
and it can store 0 and 1 simultaneously. More precisely, the value of
a qubit is a vector with length 1 on a plane:

In order to make a connection with a classical bit, we label one
coordinate axis with symbol 0 and the other axis with symbol 1. Ac-
cordingly, for the unit vectors on the coordinate axes we use notations

3

which are traditional in quantum mechanics:

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
.

A qubit may be then written as a vector(
a
b

)
= a |0〉+ b |1〉 ,

which is interpreted as a superposition of two classical bit values 0
and 1 with the weights a and b, where a2 +b2 = 1. We emphasize that
|0〉 is not a zero length vector, but rather a unit length vector on an
axis that is labelled with symbol “0”.

When we build a computer as a physical machine, we need to use
physical objects which can implement our abstract constructions of a
bit and a qubit. A capacitor (an electronic device that can hold an
electric charge) may serve as a unit of memory of a classical computer.
A charged state of a capacitor represents 1, while discharged state
represents 0.

A photon may serve as a physical realization of a qubit. A photon
is a quantum of an electromagnetic wave. Imagine a photon flying
in a 3-dimensional space along the Z-axis. As it propagates, electric
field and magnetic field oscillate in mutually perpendicular directions
in XY-plane.

The specific way how this oscillation occurs, is called the polariza-
tion of a photon. There are two kinds of polarization – circular and
linear. In circular polarization, the electric field spirals around the
Z-axis as the photon propagates. In this book we will only consider a
simpler case of a linear polarization, when the electric field oscillates in
a fixed direction perpendicular to the Z-axis. Linearly polarized pho-
tons may be obtained by passing a beam of light through a polarizing
filter.

Polarized light is used in 3D movies. To create a 3D effect, left and
right eyes should see slightly different pictures. The movie is shot with
two cameras that are slightly apart. The images from both cameras
are simultaneously projected on the movie screen, but the light from

4

the two projectors are polarized in two different ways. The glasses
have polarizing filters, each passing light only from one projector. As
a result, two eyes receive distinct pictures, creating a 3D effect.

Imagine a photon with a linear polarization at an angle α in XY-
plane. This photon can be used as a physical implementation of a
qubit with value

cos(α) |0〉+ sin(α) |1〉 .

A small technical point about the photon states |0〉 and − |0〉.
Both states correspond to photons with the same axis of polariza-
tion, however the oscillation of the electric field for − |0〉 occurs in
antiphase relative to |0〉. Individually, these photons are essentially
indistinguishable, however given a pair of such photons, we can detect
the difference in phases, and view their states as two distinct qubit

5

values.
Now let us progress towards multi-qubits. A 2-qubit is a vector

with 4 components of the form:

a0 |00〉+ a1 |01〉+ a2 |10〉+ a3 |11〉 ,

where a20 + a21 + a22 + a23 = 1. The basis vectors in the space of 2-
qubits, |00〉, |01〉, |10〉, |11〉, also called pure states, correspond to the
4 possible classical values of 2-bit expressions. A general 2-qubit stores
a combination (also called superposition) of the 4 classical 2-bit values
simultaneously, with weights.

For example, the 2-qubit 0.3 |00〉+ 0.1 |01〉+ 0.9 |10〉+ 0.3 |11〉 is a
superposition of all 4 classical values, but the 2-bit value “10” has a
heavier weight in this 2-qubit.

As you might now guess, a 3-qubit is a vector with 8 components:

a0 |000〉+ a1 |001〉+ a2 |010〉+ a3 |011〉
+ a4 |100〉+ a5 |101〉+ a6 |110〉+ a7 |111〉 .

Notice the pattern in our notations between the index of the coefficient
“a” and the label of the corresponding pure state. Take the term
a6 |110〉, for example. Here “110” is the binary expression for the
integer 6.

6

We can see that the number of terms in these expressions doubles
with each additional qubit. Thus for an n-qubit the number of terms
will be 2n. An 8-qubit involves 256 terms:

a0 |00000000〉+ a1 |00000001〉+ a2 |00000010〉+ . . .+ a255 |11111111〉 .

As an exercise, let us determine the index of “a” for the term
with |11010011〉 in this expansion. The digits in a binary expansion
correspond to powers of 2 (as opposed to powers of 10 in the deci-
mal form). For an 8-bit expression, the leftmost digit corresponds to
27, while the rightmost digit corresponds to 20. We read the binary
expression “11010011” as an integer

1× 27 + 1× 26 + 0× 25 + 1× 24 + 0× 23 + 0× 22 + 1× 21 + 1× 20

= 128 + 64 + 16 + 2 + 1 = 211 (decimal).

Conversely, in order to write 117 (decimal) in a binary 8-bit form,
we expand 117 as a sum of powers of 2:

117 = 64+53 = 64+32+21 = 64+32+16+5 = 64+32+16+4+1

= 0× 27 + 1× 26 + 1× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 01110101 (binary).

In order to use more compact notations, we shall sometimes write
an 8-qubit using a decimal form:

a0 |0〉+ a1 |1〉+ a2 |2〉+ . . .+ a255 |255〉 .

Here we understand that all decimal integers appearing in the nota-
tions of basis vectors need to be converted to the 8-bit binary form.

As the number of bits increases, such expressions will become very
long. An efficient mathematical way of writing such sums is to use the
Σ notation. With this notation an 8-qubit is written compactly as

255∑
k=0

ak |k〉 .

7

Here k is the index of summation and runs from 0 to 255, so the sum
has 256 terms. When k = 0, it produces the summand a0 |0〉, k = 1
yields a1 |1〉, and so on. For each basis vector |k〉, the integer k is
understood to be in an 8-bit binary form.

As we shall see in the next chapter, the joint polarization state
of n interacting photons is described as an n-qubit. The amount of
memory required to record such a state on a classical computer grows
exponentially in n. If we allocate 1 byte to record the value of each
“a” coefficient, then we need 2 bytes to store a 1-qubit, one kilobyte
to store a 10-qubit, one megabyte to store a 20-qubit, one gigabyte
to store a 30-qubit, one terabyte to store a 40-qubit, one petabyte to
store a 50-qubit. If we take all the matter in the visible Universe, and
make a giant memory chip based on today’s approach to computer
memory, we will not be able to store a 100-qubit on that device. At
the same time, a collection of 100 interacting photons is something
that may be everywhere around us. This realization led to inception
of quantum computing.

The idea of using quantum systems as computational devices was
put forward in 1980 independently by Yuri Manin and Paul Benioff.
This idea was also discussed by Richard Feynmann in 1982. Founda-
tions of this theory were systematically developed by David Deutsch,
but a real explosion in this area was caused by the discovery of Shor’s
algorithm in 1994. The quantum algorithm that Peter Shor has de-
veloped, will break most of the public key cryptography which we use
today in Internet communications, once large-scale quantum comput-
ers are built. The goal of this book is to explain Shor’s algorithm and
all the background material required for understanding it.

8

2 Quantum Mechanics Demystified

(not really)

In this chapter we will discuss axiomatics of quantum mechanics. Since
Newton, motion of physical objects has been described with numer-
ical quantities, such as position, velocity, acceleration, and physical
theories gave a precise prediction of the future trajectory of an object
if all the forces as well as the initial conditions are known. Quan-
tum mechanics makes a departure from this certainty. It postulates
that we can only predict probabilities for the future events, and that
uncertainty is inherent in the laws of nature.

The state of a quantum system is a vector of length 1 in the space
of states. For the purposes of quantum computing, we will take this
space to be the space of n-qubits, for a particular value of n. The
space of n-qubits is 2n-dimensional since each n-qubit has 2n compo-
nents, just like a 3-dimensional vector has 3 components. In general,
in quantum mechanics the space of states can be of any dimension,
and even infinite-dimensional. Moreover, in the proper formulation of
quantum mechanics, the components of vectors should be taken to be
complex numbers, however we will restrict all components to be real,
for the sake of simplicity.

In classical mechanics, a trajectory of an object is described with
the Newton’s 2nd Law, which is mathematically written as a differ-
ential equation. Newton’s 2nd Law expresses the value of the accel-
eration of the object (mass × acceleration = force), and acceleration
is the second derivative of the position, hence we get an equation
on the second derivative, which makes it a differential equation. In
quantum mechanics, evolution of a quantum state is also governed by
a certain differential equation, called the Schrödinger equation. The
Schrödinger equation itself is not essential for us, and we will not write
it down here, but what is important is the fact that evolution of closed
quantum systems is given by orthogonal linear transformations. We
will defer explaining what exactly these transformations are, to a later
chapter.

Probabilistic nature of quantum mechanics is exhibited in the pro-

9

cess of measurement. Measurement is the only way to extract data
from a quantum state. Given an n-qubit

2n−1∑
k=0

ak |k〉

with the normalization (length 1 condition)

2n−1∑
k=0

a2k = 1,

when we perform a measurement on it, we will obtain one of the
classical n-bit values from 000 . . . 0 to 111 . . . 1, where the value k
(in binary form) will appear with probability a2k. The normalization
condition says that the sum of probabilities is 1, as it should be.

In order to make a measurement, we have to actively interfere with
our quantum system. As a result, once the measurement is performed,
the quantum state is destroyed. After the measurement the quantum
system goes into the pure state corresponding to the observed value.

For example, if we perform a measurement on the 2-qubit

0.3 |00〉+ 0.1 |01〉+ 0.9 |10〉+ 0.3 |11〉 ,

there may be 4 different outcomes:

• With probability 9% we observe “00” and the 2-qubit goes into
the pure state |00〉.

• With probability 1% we observe “01” and the 2-qubit goes into
the pure state |01〉.

• With probability 81% we observe “10” and the 2-qubit goes into
the pure state |10〉.

• With probability 9% we observe “11” and the 2-qubit goes into
the pure state |11〉 .

10

Sometimes we may want to measure only some of the qubits in an
n-qubit. Let us discuss what happens in this case. Suppose we have
a 3-qubit

0.3 |000〉 − 0.6 |001〉 − 0.1 |010〉 − 0.7 |011〉+ 0.1 |101〉 − 0.2 |110〉

and we measure the value of its first two bits, but not the third. There
are four possible values of the first two bits that we can observe: 00,
01, 10 and 11. What are the probabilities of observing each outcome?
To find it, we add the squares of coefficients of all terms with the
given values of the first two bits. After the measurement the first two
bits will assume definite values, the ones that have been observed.
The value of the third bit will not be fixed, however. To determine
new state, we keep only the terms of the qubit that correspond to
the observed values, and then renormalize the result, so that the new
vector has length 1. For the above example we will have:

• With probability 0.09 + 0.36 = 45% we observe “00” and the
new state is 1/

√
0.45(0.3 |000〉 − 0.6 |001〉).

• With probability 0.01 + 0.49 = 50% we observe “01” and the
new state is 1/

√
0.5(−0.1 |010〉 − 0.7 |011〉).

• With probability 1% we observe “10” and the new state is |101〉.

• With probability 4% we observe “11” and the new state is− |110〉.

Let us describe how a measurement procedure may be imple-
mented with the polarizing filters. We can use a mirror-like polarizing
filter which reflects the light with the horizontal polarization |0〉, and
lets through the light with the vertical polarization |1〉. What happens
when a photon that is linearly polarized at an angle α is sent through
this filter? We cannot predict what will happen to this photon, the
outcome of this experiment is probabilistic. Since the initial state of
this photon is

cos(α) |0〉+ sin(α) |1〉 ,
with probability sin2(α) it will pass through the filter and will come
out with the vertical polarization |1〉, and with probability cos2(α) it
will get reflected and will change its polarization to horizontal, |0〉.

11

If we take out the filters from the 3D movie glasses, and put the
two polarizing filters against each other, then we will notice that in one
alignment they will be fairly transparent, but when one of the filters
is rotated 90◦ relative the other, virtually all light will be blocked.
As we rotate the filter, the transparency gradually changes, and the
prediction from the discussion above is that the intensity of the light
that goes through is proportional to cos2(α), where α is the angle
between the axes of the filters.

The general scheme of a quantum computation consists of 3 steps:

1. Initialization. Quantum computer is initialized to a value of
n-qubit that encodes the input of the quantum algorithm, or simply
to |00 . . . 0〉 if the input is built into the algorithm itself.

2. Running the Quantum Algorithm. This is essentially a compli-
cated orthogonal linear transformation. Just as classical computations
are broken down into elementary operations with binary logic, quan-
tum algorithms are also split into elementary quantum operations,
each involving only one or two quantum bits.

3. Performing the measurement of the final quantum state.

Here we can see the main difficulty in designing quantum algo-
rithms. The final step of the computation is probabilistic, and in
principle may produce any output. The quantum algorithm needs to
create a state, which after the measurement will produce a correct an-
swer to the problem being solved with a high enough probability. Since
the quantum state is changed after the measurement into a pure state
which corresponds to the observed value, we have only one attempt
at accessing the information recorded in the quantum state. If the
answer we get is incorrect (fortunately in many important problems
there is a simple way of checking with a classical computer whether
a given answer is correct), then our only recourse is to re-run the
quantum algorithm.

Next we are going to discuss entanglement, which is an important
phenomenon in quantum mechanics.

Suppose that we have two qubits a0 |0〉+ a1 |1〉 and b0 |0〉+ b1 |1〉.
We would like to join them together to form a 2-qubit. This can be

12

done using the tensor product operation:

(a0 |0〉+a1 |1〉)(b0 |0〉+b1 |1〉) = a0b0 |00〉+a0b1 |01〉+a1b0 |10〉+a1b1 |11〉 .

Here we just expanded the left hand side and used concatenation to
multiply basis vectors, e.g. |0〉 |1〉 = |01〉.

Physically, this corresponds to taking two non-interacting photons
and considering them as parts of a single quantum system.

Can we do the opposite and factor a 2-qubit as a product of two
1-qubits? Let us try to do this for the 2-qubit 1√

2
|00〉+ 1√

2
|11〉:

1√
2
|00〉+

1√
2
|11〉 = (a0 |0〉+ a1 |1〉)(b0 |0〉+ b1 |1〉).

Equating the coefficients of the basis vectors, we get 4 equations:

a0b0 =
1√
2
, a1b1 =

1√
2
, a1b0 = 0, a0b1 = 0.

Multiplying the first two equations together we get a0a1b0b1 = 1
2 ,

while multiplying the last two equations, we get a0a1b0b1 = 0, which
is a contradiction. Hence, the 2-qubit 1√

2
|00〉 + 1√

2
|11〉 cannot be

factored as a tensor product of two 1-qubits. Such quantum states
are called entangled. Parts of an entangled quantum system cannot
be considered separately. From the physical point of view, this means
that the photons in the pair 1√

2
|00〉+ 1√

2
|11〉 are interacting.

Today we can generate pairs of entangled photons. We have less
success, however, with entangling pre-existing photons “on-the-fly”.

It is due to entanglement that quantum computers have an astro-
nomical memory capacity, and efficient quantum algorithms must use
entangled states.

Let us figure out the distinction between non-entangled and entan-
gled states with respect to the measurement. Consider the following
experiment: pairs of photons are generated with one photon in each
pair sent to location A (Alice) and the second to location B (Bob).

13

Alice and Bob perform measurements on the photons they receive.
Let us first start with the case when all pairs have the same unen-

tangled state

a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉

as computed above. Let us determine the probability that Alice ob-
serves value “0” as a result of her measurement. Alice’s value “0”
corresponds to two pure states: |00〉 and |01〉, and hence this proba-
bility equals a20b

2
0 + a20b

2
1 = a20.

Next, let us separate all observations into two groups – those where
Bob observed “0”, and those where he observed “1”. Let us determine
the probability for Alice to observe “0” within the first group. Such
probability is called conditional probability, since we are looking for
the probability of Alice’s outcomes of observations which are condi-
tional on Bob’s outcome being “0”.

The group of observations where Bob observes “0” corresponds to
states |00〉 (Alice observes “0”) and |10〉 (Alice observes “1”). Thus
within this group, the ratio of Alice’s “0”s to “1”s is a20b

2
0 : a21b

2
0 =

a20 : a21. Since a20+a21 = 1, this implies that the conditional probability
for Alice to observe “0” under the condition that Bob observes “0” is
still a20. Thus conditional probability in unentangled case is equal to
unconditional probability.

Two events, X and Y , are called independent if the probability of
X happening is equal to the conditional probability of X happening,
under condition that Y happens as well.

Next consider the same experiment as above, where all pairs of
photons are in an entangled state 1√

2
|00〉+ 1√

2
|11〉. Here with proba-

bility 50% both Alice and Bob will register “0” and with 50% proba-
bility they will both register “1”. If Bob observes “0” then the quan-
tum state will collapse to |00〉 and Alice’s result of measurement is
guaranteed to be “0”. While unconditional probability for Alice to
observe “0” is 50%, the conditional probability of observing “0” un-
der condition that Bob also observes “0” is 100%. What we see here is
that for the entangled states, the outcomes of measurements for Alice
and Bob are correlated, while for unentangled states the outcomes are
independent.

14

In 1935 Einstein, Podolsky and Rosen wrote a paper about the
foundations of quantum mechanics, where they expressed opinion that
for entangled pairs of particles that are spatially separated, the re-
sult of measurement performed on the first particle cannot affect the
state of the second particle. This would mean that outcomes of si-
multaneous measurements on spatially separated particles should be
independent. Later experiments showed that they were wrong.

15

3 Cryptography: from the Roman

Empire to Quantum Methods

In the 1970s, the invention of public key cryptosystems caused revo-
lution in cryptography. Nowadays public key cryptography enables
Internet commerce. One of our goals is to explain how quantum com-
puting may be used to break public key cryptosystems; we will discuss
this towards the end of the book. In this chapter, we will review older
methods – secret key cryptography, and we shall see how the use of
quantum mechanics could make them more efficient.

Julius Caesar was the first to employ cryptography systematically.
He encrypted his military communications using what is now known as
Caesar’s cypher. When writing his messages, he would shift each letter
by 3 positions in the alphabet backwards. Letters at the beginning of
the alphabet were pushed in a cycle to the end of the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

so the text JULIUS CAESAR will be encoded as GRIFRP ZXBPXO.

We can give a mathematical interpretation of this cypher using
the concept of remainders. Consider all possible remainders of inte-
gers after division by some fixed integer m (for the applications to
cryptography in this chapter, we set m = 26). This set is denoted
as Zm and contains the remainders between 0 and m − 1. It is not
difficult to see that in order to compute the remainder of a sum of two
integers, it is sufficient to know only the remainders of the summands,
and not the summands themselves. The same applies to multiplication
as well.

Let us prove this simple fact. First we note that two integers a and
b have the same remainder after division by m if the difference a − b
is divisible by m. Suppose we add two pairs of integers a1 + a2 and
b1 + b2. We need to show that if a1 and b1 have the same remainder
and a2 and b2 have the same remainder, then a1 + a2 and b1 + b2 also

16

have the same remainder. Indeed, consider the difference:

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2).

Both summands in the right hand side are divisible by m, which im-
plies our claim.

The argument for the product is similar:

a1a2 − b1b2 = (a1 − b1)a2 + b1(a2 − b2),

and we arrive at the same conclusion.

This allows us to define addition and multiplication of remainders
in Zm: to compute the sum (resp. product) of two remainders, add
(resp. multiply) them as integers, and take the remainder of the re-
sult. For computations with remainders, we put notation “mod m”
at the end of the line, to indicate that these are the equalities of the
remainders, and not the integers:

23 + 10 = 7 mod 26,

23× 10 = 22 mod 26.

Now to apply this to Caesar’s cypher, we assign to each letter a re-
mainder from Z26: A-1, B-2, . . . , X-24, Y-25, Z-0. Then encryption is
done by subtracting 3 from each letter code. Decryption is performed
by adding 3 in Z26.

Caesar could use this simple method since this was a novel idea at
the time, and his enemies were uneducated. Stronger Vigenère cypher
came to replace Caesar’s method. In Vigenère cypher, one chooses
a secret word as a key for encryption and decryption. To illustrate
this method, let us use the word QUBIT as a secret key to encrypt the
message CHANGE PHOTON POLARIZATION:

17

C Q 3 17 20 T
H U 8 21 3 C
A B 1 2 3 C
N I 14 9 23 W
G T 7 20 1 A
E Q 5 17 22 V

P U 16 21 11 K
H B 8 2 10 J
O I 15 9 24 X
T T 20 20 14 N
O Q 15 17 6 F
N U 14 21 9 I

P B 16 2 18 R
O I 15 9 24 X
L T 12 20 6 F
A Q 1 17 18 R
R U 18 21 13 M
I B 9 2 11 K
Z I 0 9 9 I
A T 1 20 21 U
T Q 20 17 11 K
I U 9 21 4 D
O B 15 2 17 Q
N I 14 9 23 W

Here we wrote down the secret word repeatedly and added the
codes of the letters of the secret word to the codes of the letters in the
message. The decryption is done in a similar fashion using subtraction,
instead of addition.

Another generalization of the Caesar’s cypher is the substitution
cypher, where instead of a shift in the alphabet, a fixed secret permu-
tation of the alphabet letters is used, for example:

18

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

R G U N Q A W E V B P F D I Z T J Y C X M S O H K L

A permutation code may be broken using statistical analysis of the
cyphertext. The idea of this attack is based on the fact that letters in
the English language have noticeably different frequencies, with letter
E being the most frequent letter, and Z being the least frequent. Here
is the table of frequencies (in percent):

E T A O I N S R H D L U C

12 9.1 8.1 7.7 7.3 7 6.3 6.0 5.9 4.3 4.0 2.9 2.7

M F Y W G P B V K X Q J Z

2.6 2.3 2.1 2.1 2.0 1.8 1.5 1.1 .7 .17 .11 .10 .07

Counting frequencies of different letters in the cyphertext, we can
identify several pairs of letters in the permutation, after which it is
not too difficult to guess all other substitutions of letters.

The same idea is applicable to the Vigenère cyphers as well, only
we have to use trial-and-error to determine the length of the secret
codeword. If we make a guess that the secret codeword has length
5, then this would mean that 1st, 6th, 11th, 16th, etc., letters of the
cyphertext are encrypted using the same substitution. Then separat-
ing this subsequence of letters, we can perform the frequency analysis
on this subset of the cyphertext. If the resulting frequencies do not
look like frequencies of letters in the English language, this would in-
dicate that we guessed the length of the secret codeword incorrectly.
If we guessed correctly, we should be able to figure out the value of
the shift for this group of letters. Repeating the procedure for each
group, we can uncover the secret codeword.

The weakness of the Vigenère method is in the limited size of the
secret key, whereas modern requirement for cryptography is to have
an ability of encryption of continuous streams of data. On the other
hand, should the two parties have access to a common secret stream
of random bits, they can use it to mask the stream of data by using
addition of bit values mod 2, and such encryption is absolutely not
breakable:

19

Random secret

stream: 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1

Data

stream: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1

Encrypted

stream: 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0

In this set-up the encrypted stream is not distinguishable from
a random stream of data, and there can be no way to derive any
information about the data stream if the secret key is not known.
The recipient of the encrypted message can easily recover the data
stream by adding the same secret stream.

The same secret key should never be used twice, doing so will
compromise security of encryption. For this reason, this method is
called one-time pad.

The conclusion of this discussion is that we can organize a provably
secure encryption of a stream of data, should the two parties have
access to a common secret random stream of bits. This is where
quantum methods enter the game.

Here we outline two quantum key distribution protocols.
We begin with a protocol proposed by Bennett and Brassard in

1984 (BB84). In this scheme Alice will send to Bob a stream of linearly
polarized photons with polarizations at angles 0◦, 45◦, 90◦ or 135◦. For
each photon Alice chooses the angle of polarization at random.

Bob will perform the measurements of the photons he receives us-
ing one of the two polarizing filters: the first filter that passes photons
with a vertical (90◦) polarization and reflects photons with the hori-
zontal polarization, and the second filter that passes photons polarized
at 45◦ degrees and reflects photons polarized at 135◦.

Each filter corresponds to a basis in the 2-dimensional space of
1-qubits: the first filter corresponds to the standard basis |0〉 , |1〉, and
the second filter corresponds to the diagonal basis 1√

2
|0〉 + 1√

2
|1〉,

− 1√
2
|0〉+ 1√

2
|1〉.

20

To write vectors in a more graphical way, we will use notations

→ = |0〉 = “0”, ↑ = |1〉 = “1”,

↗ =
1√
2
|0〉+

1√
2
|1〉 = “0”, ↖ = − 1√

2
|0〉+

1√
2
|1〉 = “1”.

Alice knows the state of each photon she generated, but Bob
doesn’t. Because of this he can only guess what is the appropriate
filter for each photon. If Bob makes a right guess, he will determine
correctly the polarization state of the photon and will get the corre-
sponding bit value. If he uses a wrong filter to measure the photon,
the outcome of the measurement will be random, and Bob will register
either “0” or “1”, each with 50% probability.

Once the measurements are done, Alice and Bob use unsecure
(public) channel to reveal which basis was used by Alice to generate
each photon (but not their states), and which basis was used by Bob
for each measurement. They discard the bits in positions where the
two bases did not match.

In the following example, the first row shows the states of photons
sent by Alice, the second row is a sequence of bases used by Bob for
measurements (S: standard, D: diagonal), the third row shows the
outcomes of Bob’s measurements, and the last row is the generated
key, with discarded bits in positions where Alice’s and Bob’s bases did
not match.

→ ↗ ↖ ↑ ↑ ↖ → ↖ ↗ ↑ → ↑ → ↑ ↖ → → ↖
S D S S D S S D S D S D S S D D S D

0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1

0 0 1 0 1 0 0 1 1 0 1

This results in the key 00101001101 which can be used to encrypt
data exchanged between Alice and Bob using bitwise addition mod 2
of data bits and secret key bits.

The security of this scheme is based on the fact that in quantum
mechanics measurement does not give full information about the state
and alters the quantum state. This means that the attacker is not able

21

to intercept Alice’s photon, read its state and then send an identical
photon to Bob. In order to verify the integrity of their transmission,
Alice and Bob should publicly reveal a certain percentage of the com-
mon key. The revealed bits are of course discarded from the key. A
man-in-the-middle attack will be immediately detected, since in such
case the revealed bits will not match.

A potential weakness of BB84 is that lasers often send groups of
photons in an identical state, instead of a single photon at a time.
This opens the door to man-in-the-middle attack, where the attacker
will intercept some of the photons in the group. If we have several
photons in identical states, we can perform multiple measurements
and deduce more information about the quantum state.

Provided that Alice is able to send to Bob a single photon at a
time, BB84 scheme becomes provably unbreakable.

Another quantum protocol for the key distribution was proposed
by Ekert in 1991. The E91 protocol exploits the phenomenon of en-
tanglement. In this method we need to have a source generating pairs
of entangled photons in identical states 1√

2
|00〉 + 1√

2
|11〉. The first

photon in each pair is sent to Alice, and the second photon is sent to
Bob. When Alice and Bob perform measurements on the photons they
receive, they may obtain either “0” or “1” with probability 50%, how-
ever there will be a perfect correlation between their measurements:
they will either both observe “0” or both get “1”. The resulting binary
sequence will be random and may be used as a one-time pad.

A possible man-in-the middle attack can be attempted by the ad-
versary Eve who may replace the original source of entangled photons
by two beams of unentangled photons in the states |00〉 or |11〉. This
would allow Eve to know the results of Alice’s and Bob’s observations
and thus the secret key. However Alice and Bob have a way to verify
that the photons they receive are indeed entangled and detect Eve’s
attack. We shall discuss the details of this in the next chapter.

Photons of an entangled pair were sent in opposite directions over
a fiber optic cable achieving physical separation of hundreds of kilo-
meters and their entanglement properties were successfully verified.
In 2017, the Chinese satellite Micius sent photons in entangled pairs
to two ground stations at a distance of 1200 km from each other.

22

4 Linear Transformations

Consider the following problem: we take a vector v =

(
3
2

)
in the XY-

plane and rotate it counterclockwise by 20◦. What are the coordinates
of the resulting vector R20◦(v)?

One can try finding a direct solution based on the geometry of tri-
angles, but it is fairly complicated. There is a better approach based
on the theoretical analysis of the properties of the rotation transfor-
mation. If we have two vectors v and w then it does not matter
whether we add them and then rotate the sum by angle α or we first
rotate each vector and then take the sum – the final result is going to
be the same. This property of rotations can be expressed algebraically
in the following way:

Rα(v + w) = Rα(v) +Rα(w).

The same applies to the operation of multiplication of a vector by a
number: for any real number c,

Rα(cv) = cRα(v).

23

We observe that it is fairly easy to compute the result of the rotation

transformation when it is applied to the basis vectors

(
1
0

)
and

(
0
1

)
:

Rα

(
1
0

)
=

(
cosα
sinα

)
, Rα

(
0
1

)
=

(
− sinα
cosα

)
.

Now we can compute the result of the rotation transformation applied

to vector v =

(
3
2

)
by writing it as

(
3
2

)
= 3

(
1
0

)
+ 2

(
0
1

)
,

24

and obtain

R20◦

(
3
2

)
= 3R20◦

(
1
0

)
+ 2R20◦

(
0
1

)
= 3

(
cos 20◦

sin 20◦

)
+ 2

(
− sin 20◦

cos 20◦

)
≈
(

2.135
2.905

)
.

We now want to adapt the idea of this computation to a much
more general setting.

First, a vector space is a set of vectors in which we have an op-
eration of addition of vectors and an operation of multiplication of
vectors by numbers, satisfying a certain list of properties. We are not
going to give this list here, but just say that these are all the natural
properties that we would expect, like c(v + w) = cv + cw for any two
vectors v,w and any number c.

Examples of vector spaces are:

• The set of plane vectors,

• The set of vectors in a 3D space,

• The set of n-qubits.

There is an algebraic construction that unifies all of the above
examples. The space RN is defined as a set of N -component arrays
of real numbers. Addition and multiplication by real numbers are
performed component-wise:

a1
a2
a3
. . .
aN

+


b1
b2
b3
. . .
bN

 =


a1 + b1
a2 + b2
a3 + b3
. . .

aN + bN

 , c


a1
a2
a3
. . .
aN

 =


ca1
ca2
ca3
. . .
caN

 .

The philosophy proposed by René Descartes is to have two models for
the space of plane vectors: a geometric model, where vectors are the

25

directed segments on a plane, and an algebraic one, where vectors are
given by pairs of numbers. The advantage of the geometric model is
that we can visualize it, while the algebraic model is better for doing
calculations. Some problems are easier to solve with the geometric
model, while others with the algebraic.

The space RN has a basis {e1, e2, . . . , eN}, where

e1 =


1
0
0
. . .
0

 , e2 =


0
1
0
. . .
0

 , . . . , eN =


0
0
0
. . .
1

 .

Every vector in RN may be expanded in a linear combination of the
basis vectors: 

a1
a2
a3
. . .
aN

 =


a1
0
0
. . .
0

+


0
a2
0
. . .
0

+ . . .+


0
0
0
. . .
aN


= a1e1 + a2e2 + a3e3 + . . .+ aNeN .

Comparing this with the expression for the 2-qubit,

a0 |00〉+ a1 |01〉+ a2 |10〉+ a3 |11〉 ,

we see that the basis of the space of 2-qubits consists of the 4 pure state
vectors {|00〉 , |01〉 , |10〉 , |11〉}. This clearly generalizes to an arbitrary
n-qubit space.

The dimension of a vector space is the number of vectors in its
basis. We see that the dimension of RN is N , while the dimension of
the space of n-qubits is 2n.

In addition to finite-dimensional spaces, such as those mentioned
above, there are also infinite-dimensional vector spaces. An example
of an infinite-dimensional vector space is the set of polynomials in
a variable X. Just as with plane vectors, there is an operation of

26

addition of two polynomials, and an operation of multiplication of a
polynomial by a number. What is a basis in the space of polynomials?
A polynomial can be written as

a0 + a1X + a2X
2 + . . .+ anX

n.

We see that the coefficients a0, a1, a2, . . . can be interpreted as the
coordinates of a vector and {X0, X1, X2, . . .} as a basis in the space
of polynomials. Since there are infinitely many powers of X in the
basis, the space of polynomials is infinite-dimensional.

Definition. A transformation T of a vector space V is called
linear if it satisfies the following two properties:

T (v + w) = T (v) + T (w), for all v,w in V,

T (cv) = c T (v), for any number c and all v in V.

Rotation of a plane is an example of a linear transformation. Other
examples are reflection of a plane in a line passing through the origin
and dilation of a plane by a fixed factor.

A key feature of a linear transformation is that it is completely
determined by what it does to the basis vectors. Suppose T is a linear
transformation of RN , and we know what T (e1), . . . , T (eN) are. Then
an arbitrary vector

v = a1e1 + a2e2 + . . .+ aNeN

gets transformed into

T (v) = T (a1e1+a2e2+. . .+aNeN) = T (a1e1)+T (a2e2)+. . .+T (aNeN)

= a1T (e1) + a2T (e2) + . . .+ aNT (eN).

This is the method we used to compute the image of the vector

(
3
2

)
under the rotation transformation.

Another example is for those who are familiar with calculus. Let
us consider a transformation D of the space of polynomials, where

27

each polynomial f(X) is transformed into its derivative, D(f) = f ′.
Then the linear properties of D,

D(f + g) = D(f) +D(g), D(cf) = cD(f),

are just the well-known sum rule and the constant multiple rule for
the derivative. Hence differentiation is a linear transformation. We
also learn in calculus that D(Xk) = kXk−1. We point out that the
computation of the derivative of an arbitrary polynomial is done pre-
cisely according to our approach – a polynomial is expanded into a
combination of the basis vectors, and then the derivative is computed
using its linear properties, for example:

D(X5 + 3X2 − 4X + 1) = D(X5) + 3D(X2)− 4D(X) +D(1)

= 5X4 + 6X − 4.

Let us now apply the theory of linear transformations to quantum
cryptography. Recall that for the key distribution scheme E91, we
have a source producing pairs of entangled photons in the joint state
1√
2
|00〉+ 1√

2
|11〉. One photon in each pair is sent to Alice, while the

second photon is sent to Bob. When they perform the measurement,
they will each observe 0 or 1 with probability 50%, but the outcome
of each measurement will be the same for Alice and Bob.

Imagine that Eve tries to attack this scheme, and manages to
replace the stream of entangled pairs with a stream of unentangled
pairs, sending at random pairs in the states |00〉 or |11〉. In this case
Alice and Bob will still have a 100% agreement in their observations,
and half of their measurements will be zeros and half will be ones.
Since these states are generated by Eve, Eve will know the outcomes
of observations by Alice and Bob, and will thus know the generated
key.

How can Alice and Bob detect this attack? Suppose Alice and Bob
both rotate their polarization filters by the same angle α. How can
we predict the outcomes of their observations? Mathematically, this
is equivalent to applying a rotation transformation to each qubit and
then performing the measurement. Quantum states of the photons

28

will transform in the following way:

|0〉 7→ cosα |0〉+ sinα |1〉
|1〉 7→ − sinα |0〉+ cosα |1〉

Since the same transformation is applied to the first and the second
photon in each pair, we get

1√
2
|00〉+

1√
2
|11〉 7→

1√
2

(cosα |0〉+ sinα |1〉) (cosα |0〉+ sinα |1〉)

+
1√
2

(− sinα |0〉+ cosα |1〉) (− sinα |0〉+ cosα |1〉)

=
1√
2

(
cos2 α |00〉+ sinα cosα |01〉+ sinα cosα |10〉+ sin2 α |11〉

)
+

1√
2

(
sin2 α |00〉 − sinα cosα |01〉 − sinα cosα |10〉+ cos2 α |11〉

)
=

1√
2

(
cos2 α+ sin2 α

)
|00〉+

1√
2

(
cos2 α+ sin2 α

)
|11〉

=
1√
2
|00〉+

1√
2
|11〉 .

We arrive at an unexpected result – after performing the rotation, this
entangled state did not change! This means that after rotating their
polarization filters to the same new axis, there will be no change in
the statistics of observations – Alice and Bob will still be observing
zeros and ones with a 100% correlation.

Now let us see what will happen to the unentangled states |00〉
and |11〉 that Eve might send:

|00〉 7→ (cosα |0〉+ sinα |1〉) (cosα |0〉+ sinα |1〉)
= cos2 α |00〉+ sinα cosα |01〉+ sinα cosα |10〉+ sin2 α |11〉 .

We see that in this case, it is possible that in some observations Alice
will get 0, while Bob will observe 1 and vice versa. We can easily
determine the probability of this, as a function of angle α.

29

In order to verify the integrity of the channel, Alice and Bob should
be measuring a part of their stream with both of their polarization
filters rotated by the same angle α. They should exchange the results
of their measurements over a non-secure communication channel. A
100% correlation will indicate the absence of the attack. Naturally, the
bits used for this test should not be used for the secret key generation.

We conclude this chapter explaining the idea of parallelism in quan-
tum computing. We present it here in a crude, simplified form and will
give more details in a later chapter. As we mentioned in the chapter
on quantum mechanics, a quantum algorithm is a linear transforma-
tion of the space of n-qubits. Suppose we are interested in the values
of a function f(x) for x = 0, 1, 2, . . . , 2n − 1, and assume that the
values of f are n-bit integers. We may define a linear transformation
F of the space of n-qubits, which transforms a basis vector |k〉 into
another basis vector |f(k)〉. Then the initial state

2n−1∑
k=0

ak |k〉

will be transformed by quantum algorithm F into the state

2n−1∑
k=0

ak |f(k)〉 .

We see that in a single run of a quantum algorithm, we are able to get
a state which incorporates all values of the function f . Coupled with
the observation that a loop with 2n iterations cannot be executed
on a classical computer in a reasonable time (for example, the age
of the Universe) for rather small values of n, like n = 100, we see
that quantum computing allows massive parallelism, which cannot be
matched by a classical computer.

30

5 The Matrix

In this chapter we are going to introduce matrix algebra – the tech-
nique of computations with the linear transformations.

We begin with the dot product in RN . The dot product of two
vectors in RN is a number defined in the following way:

a1
a2
. . .
aN

 ·

b1
b2
. . .
bN

 = a1b1 + a2b2 + . . .+ aNbN .

The dot product is bilinear:

v · (u + w) =v · u + v ·w, (v + u) ·w = v ·w + u ·w,
v · (cw) = (cv) ·w = c(v ·w)

and symmetric: v ·w = w · v.

An important property of the dot product is that the length of a
vector v is equal to

√
v · v. The length of a vector v, also called the

norm of v, is denoted by |v|.

Indeed, for a plane vector v =

(
x
y

)
this is the Pythagoras Theo-

rem:

31

For a 3D vector w =

xy
z

, first apply the Pythagoras Theorem

to the plane vector v =

xy
0

, getting |v|2 = x2 + y2. Next we apply

the Pythagoras Theorem again to the pair of perpendicular vectors

v =

xy
0

 and u =

0
0
z

 and we get |w|2 = |v|2 + |u|2 = x2 + y2 + z2.

To establish the formula v · v = |v|2 in RN we need to apply the
Pythagoras Theorem in a similar fashion N − 1 times.

Theorem. Let u, v be two vectors in RN with the angle α between
them. Then u · v = |u||v| cosα.

Proof. Consider a triangle formed by the vectors u, v and u− v.

Using the properties of the dot product,

|u−v|2 = (u−v)·(u−v) = u·u−u·v−v·u+v·v = |u|2+|v|2−2u·v.

By Cosine Theorem, however,

|u− v|2 = |u|2 + |v|2 − 2|u||v| cosα.

Comparing the two formulas we obtain the claim of the Theorem.

Corollary. Two vectors in RN are perpendicular to each other if
and only if their dot product is zero.

32

Definition. The matrix of a linear transformation T of the vector
space RN is a square N ×N table of numbers, formed by the vectors
T (e1), T (e2), . . . , T (eN), placed as columns.

Example: Let T be the rotation of the plane 30◦ counterclock-
wise. Then

T (e1) =

(
cos 30◦

sin 30◦

)
=

(√
3/2

1/2

)
, T (e2) =

(
− sin 30◦

cos 30◦

)
=

(
−1/2√

3/2

)
,

and the matrix of T is (√
3/2 −1/2

1/2
√

3/2

)
.

In general, the matrix of a rotation transformation of a plane in
angle α counterclockwise, is:

Rα =

(
cosα − sinα
sinα cosα

)
.

As we saw in the previous chapter, a linear transformation is de-
termined by the images of the basis vectors. Hence, the matrix of a
linear transformation encodes complete information about the trans-
formation.

Next we define the operation of multiplication of an N×N matrix
by a vector from RN .

Definition. The product Av of an N ×N matrix A with a vector
v in RN is a vector, whose k-th component is the dot product of k-th
row of A with the vector v.

Theorem. Let T be a linear transformation of RN with matrix
A. Then the result of applying T to a vector v is equal to the product
Av.

Instead of giving a formal proof, let us consider an example. Let
T be a linear transformation of R2 with matrix

A =

(
1 2
3 4

)

33

and let v =

(
5
6

)
. Then the product of A with v is:

Av =

(
1 2
3 4

)(
5
6

)
=

(
1× 5 + 2× 6
3× 5 + 4× 6

)
=

(
17
39

)
,

while the image of v under the transformation T is:

T (v) = T (5e1 + 6e2) = 5T (e1) + 6T (e2)

= 5

(
1
3

)
+ 6

(
2
4

)
=

(
5× 1 + 6× 2
5× 3 + 6× 4

)
=

(
17
39

)
.

We can see that this computation remains valid for all N×N matrices
and vectors in RN .

Exercise. Let T be a reflection of the plane with respect to the
line y = 2x. Find the matrix of T .

Solution. To form the matrix of T we need to find T (e1) and

T (e2). We note that the vector v1 =

(
1
2

)
is on the line y = 2x.

Then the vector v2 =

(
2
−1

)
is perpendicular to the line (the dot

product of these two vectors is zero). Decompose vector e1 as a linear
combination of v1 and v2: e1 = c1v1 + c2v2:(

1
0

)
= c1

(
1
2

)
+ c2

(
2
−1

)
.

Looking at the second components of vectors in this equation, we see
that c2 = 2c1. Making this substitution into the equation for the first
components, we can easily find c1. We get c1 = 1/5, c2 = 2/5, hence
e1 = 1/5v1 + 2/5v2. Since v1 is on the line of reflection, we get that
T (v1) = v1. Vector v2 is perpendicular to the line of reflection, so its
mirror image is T (v2) = −v2. Combining this with the expression for
e1, we get

T (e1) = 1/5T (v1) + 2/5T (v2) = 1/5

(
1
2

)
− 2/5

(
2
−1

)
=

(
−3/5
4/5

)
.

34

In a similar way we find T (e2) =

(
4/5
3/5

)
. Placing T (e1) and T (e2) as

columns, we obtain the matrix of T :(
−3/5 4/5
4/5 3/5

)
.

In classical computing, complicated problems are rarely solved in
one step. Typically we perform a sequence of operations to arrive at
the answer. Likewise, a quantum algorithm is designed not as a single
linear transformation, but as a composition of several simpler linear
transformations.

We need to figure out how to calculate the matrix of a composition
T ◦ S of linear transformations if we know matrices for T and S.

First we need to discuss a convention on the order of operations.
It is traditional in mathematics to write the argument of a function
f(x) or of a linear transformation T (v) on the right. The composition
T ◦ S when applied to a vector v gives T ◦ S(v) = T (S(v)), which
means that in T ◦ S the factor that appears on the right is applied
first.

Let T and S be two linear transformations of RN with matrices
A and B respectively. We wish to calculate the matrix C of the
composition T ◦ S. Recall that k-th column of C is the image of ek
under the transformation T ◦ S: T ◦ S(ek) = T (S(ek)). However,
S(ek) is just the k-th column of matrix B. We conclude that the k-th
column of C is the product of A with the k-th column of B. We call
matrix C, computed in this way, the product of A and B, C = AB.

For example,(
1 2
3 4

)(
5 1
2 0

)
=

(
1× 5 + 2× 2 1× 1 + 2× 0
3× 5 + 4× 2 3× 1 + 4× 0

)
=

(
9 1
23 3

)
.

We see here that the number in row m, column k of AB is the dot
product of row m of A with the column k of B.

To summarize, the matrix of the composition of two linear trans-
formations is the product of matrices of these transformations.

35

We can also define the sum of two N×N matrices in a component-
wise way: (

1 2
3 4

)
+

(
5 1
2 0

)
=

(
1 + 5 2 + 1
3 + 2 4 + 0

)
=

(
6 3
5 4

)
.

Some algebraic properties of matrix operations are the same as for
numbers: A(B +C) = AB +AC, (A+B)C = AC +BC, yet there is
one important difference. Consider the following two matrices:

A =

(
1 1
−1 −1

)
, B =

(
1 1
1 1

)
.

Compute the products AB and BA:

AB =

(
2 2
−2 −2

)
, BA =

(
0 0
0 0

)
.

We conclude that multiplication of matrices is non-commutative: AB 6=
BA in general!

This example also shows that unlike numbers, the product of two
non-zero matrices could be zero matrix.

Still, the product of matrices is associative: (AB)C = A(BC).
This follows from the fact that matrix multiplication corresponds to
the composition of linear transformations, and for linear transforma-
tions we have equality (T ◦ S) ◦ R = T ◦ (S ◦ R), since both sides
applied to vector v will yield T (S(R(v))).

We conclude this chapter with an application of linear algebra to
trigonometry. Consider a composition of a rotation in angle α with a
rotation in angle β. Clearly,

Rα ◦Rβ = Rα+β.

Let us express this equality with rotation matrices:(
cosα − sinα
sinα cosα

)(
cosβ − sinβ
sinβ cosβ

)
=

(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
.

The product of matrices in the left hand side gives:(
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ − sinα sinβ + cosα cosβ

)
.

36

Comparing this with the rotation matrix in the right hand side, we
obtain the trigonometric identities:

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

This is the most economical proof of these important formulas.

37

6 Orthogonal Linear Transformations

A quantum algorithm is a linear transformation of the space of qubits,
but it is a transformation of a special kind, it is an orthogonal linear
transformation.

Definition. A linear transformation T of vector space RN is called
orthogonal if the images of basis vectors T (e1), T (e2), . . . , T (eN) are
orthogonal to each other and all have unit length.

Definition. A set of N mutually orthogonal length 1 vectors in
RN is called an orthonormal basis of RN .

Matrix of an orthogonal transformation is called an orthogonal
matrix.

Here is the main property of orthogonal matrices: dot product of
any two different columns of an orthogonal matrix is zero; dot product
of any column with itself is equal to one. This follows immediately
from the definition of the matrix of a linear transformation.

Let us give several examples of orthogonal transformations:

1. Rotation of R2 by angle α. It is clear from geometry that the
vectors Rα(e1) and Rα(e2) are both unit vectors and perpendicular
to each other. Observe that the dot products of the columns of the
matrix of Rα are as expected:(

cosα − sinα
sinα cosα

)
.

2. Reflection of R2 with respect to a line passing through the
origin. This transformation is orthogonal because mirror reflection
preserves lengths of vectors, as well as the angles between vectors.

3. Rotation of R3 in angle α around some axis passing through
the origin.

In fact, we can show that any orthogonal transformation of R2 is
either a rotation or a reflection, as in examples 1-2 above. Let us sketch

38

an argument. Let T be an orthogonal transformation of R2 and let
u1 = T (e1) and u2 = T (e2). Since T is orthogonal, we know that u1

and u2 are unit vectors and orthogonal to each other. All unit vectors
on a plane can be obtained from each other by rotations. Suppose u1

may be obtained by rotating e1 by angle α in the counterclockwise
direction. Then

u1 =

(
cosα
sinα

)
.

Since u2 is perpendicular to u1, there are just two possibilities for it –
u2 is obtained from u1 by rotating u1 by angle 90◦ counterclockwise
or clockwise.

In the first case T is a rotation with a matrix written above, and
in the second case T is a reflection with matrix(

cosα sinα
sinα − cosα

)
.

Next we are going to establish several properties of orthogonal
transformations.

39

Theorem. A linear transformation T is orthogonal if and only if
it preserves the dot product:

T (u) · T (v) = u · v for all u,v in RN .

Proof. Assume that T is orthogonal. It follows from the definition
that this claim is true for the basis vectors: T (ei) · T (ej) = ei · ej . To
prove the claim for the arbitrary vectors u, v, expand them as linear
combinations of basis vectors:

u =

N∑
i=1

biei, v =

N∑
j=1

cjej .

Then

T (u) · T (v) = T

(
N∑
i=1

biei

)
· T

 N∑
j=1

cjej


=

(
N∑
i=1

biT (ei)

)
·

 N∑
j=1

cjT (ej)

 =

N∑
i=1

N∑
j=1

bicj (T (ei) · T (ej))

N∑
i=1

N∑
j=1

bicj(ei · ej) =

(
N∑
i=1

biei

)
·

 N∑
j=1

cjej

 = u · v,

and we conclude that an orthogonal transformation preserves the dot
product.

Conversely, if a linear transformation T preserves the dot product,
we get that T (ei)·T (ej) = ei ·ej . Thus T transforms {e1, . . . , eN} into
another orthonormal basis. Hence T is an orthogonal transformation.

A consequence of this Theorem is that orthogonal transformations
preserve the length of a vector, as well as angles between vectors. This
follows from the fact that lengths and angles can be expressed using
dot products.

We also note that the dot product of two vectors can be expressed
using lengths of vectors:

u · v =
1

2
(|u + v|2 − |u|2 − |v|2),

40

hence any linear transformation that preserves lengths of vectors also
preserves dot products and must be orthogonal. Let us summarize:

Theorem. For a linear transformation T , the following four con-
ditions are equivalent:

(1) T is an orthogonal transformation.
(2) T preserves dot products.
(3) T preserves lengths and angles.
(4) T preserves lengths of vectors.

In the above discussion we proved that (1)⇔ (2)⇒ (3)⇒ (4)⇒ (2).

In the class of linear transformations there is one transformation
that plays the role of number 1. The identity transformation I of a
vector space is the transformation that does not change any vector:
I(v) = v for all vectors v.

Consider the identity transformation of RN . Since I(e1) = e1, . . . ,
I(eN) = eN , the matrix of the identity transformation is diagonal
with 1’s along the diagonal. We denote this matrix also by I:

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
.
0 0 0 . . . 1

 .

The identity transformation has the following obvious properties
with respect to composition: T ◦ I = I ◦T = T for all transformations
T . As a consequence, we obtain the same properties of the identity
matrix with respect to matrix multiplication: AI = IA = A.

We can also generalize for linear transformations the arithmetic
operation of inversion:

Definition. A linear transformation S is called the inverse of T
(denoted S = T−1), if T ◦ S = S ◦ T = I.

Likewise, for matrices B = A−1 if AB = BA = I.

Exercise. Verify that(
1 2
3 5

)−1
=

(
−5 2
3 −1

)
.

41

For real numbers, the only non-invertible number is 0. For matri-
ces, there are non-zero matrices that are not invertible.

Exercise. Show that the matrix(
1 1
1 1

)
does not have an inverse.

We state the following fact for N ×N matrices without proof: If
AB = I then BA = I. It follows that the same is true for linear
transformations of RN : if T ◦ S = I then S ◦ T = I.

Exercise. Show that the above claim fails for linear transforma-
tions of infinite-dimensional vector spaces. Let D,S be linear trans-
formations of the space of polynomials, such that D(Xn) = nXn−1

and S(Xn) = 1
n+1X

n+1. Show that D ◦ S = I, but S ◦D 6= I.

Definition. The transpose of a matrix A is a matrix whose k-th
row is the k-th column of A (notation: AT).

Here is an example of the transpose:1 2 3
4 5 6
7 8 9

T

=

1 4 7
2 5 8
3 6 9

 .

Theorem. Every orthogonal matrix A is invertible. Its inverse is
its transpose: A−1 = AT .

Proof. We need to show that ATA = I. The entry in row i,
column j of ATA is the dot product of row i of AT and column j of A.
But rows of AT are columns of A, so this entry is the dot product of
columns i and j of A. Since A is an orthogonal matrix, this product
is 1 if i = j, and 0 otherwise, which yields the identity matrix.

42

7 Quantum Teleportation

Two objects in identical quantum states are physically not distinguish-
able from each other. The idea of quantum teleportation is in moving
a quantum state from point A to point B, rather than moving matter.
Quantum teleportation is real, and has been tested in a lab, however
only for very small quantum systems. In theory, it is possible to tele-
port arbitrarily large quantum systems, but we do not yet possess
technology to perform teleportation of macroscopic objects.

We would like to teleport a polarized photon from point A to point
B. What we really mean here is that we want to teleport the state of
the photon. A naive approach is to measure the state of the photon at
location A, and to recreate a photon in an identical state at location
B. This is not possible, since we cannot determine the unknown state
of a photon with a single measurement, and such a measurement will
invariably destroy the state.

The trick here is to teleport the state of the photon without ever
finding out what the state actually is.

Imagine we are given a photon at location A in an unknown po-
larization state a |0〉+ b |1〉 with a2 + b2 = 1.

In order to implement the teleportation, we should have done some
preparation in advance. We should have generated an entangled pair
in the state 1√

2
|00〉+ 1√

2
|11〉 and send the first photon to location A,

while the second photon of the pair to location B.

Now we get 3 photons, their joint state is a 3-qubit, which can be
calculated as a tensor product:

(a |0〉+ b |1〉)
(

1√
2
|00〉+

1√
2
|11〉

)
=

a√
2
|000〉+

a√
2
|011〉+

b√
2
|100〉+

b√
2
|111〉 .

Next we are going to mix the states of the two photons at location
A by performing the following orthogonal transformation of the space

43

of 2-qubits:

|00〉 7→ 1

2
(|00〉+ |01〉+ |10〉+ |11〉) ,

|01〉 7→ 1

2
(|00〉 − |01〉+ |10〉 − |11〉) ,

|10〉 7→ 1

2
(|00〉+ |01〉 − |10〉 − |11〉) ,

|11〉 7→ 1

2
(− |00〉+ |01〉+ |10〉 − |11〉) .

This transformation is orthogonal since it transforms each basis vector
into a vector of length 1, and the images of different basis vectors have
zero dot product with each other.

If we perform this transformation on the first two photons of the
3-qubit, we get the state

a

2
√

2
(|000〉+ |010〉+ |100〉+ |110〉)

+
a

2
√

2
(|001〉 − |011〉+ |101〉 − |111〉)

+
b

2
√

2
(|000〉+ |010〉 − |100〉 − |110〉)

+
b

2
√

2
(− |001〉+ |011〉+ |101〉 − |111〉)

=
a+ b

2
√

2
|000〉+

a− b
2
√

2
|001〉

+
a+ b

2
√

2
|010〉+

−a+ b

2
√

2
|011〉

+
a− b
2
√

2
|100〉+

a+ b

2
√

2
|101〉

+
a− b
2
√

2
|110〉+

−a− b
2
√

2
|111〉 .

Next we perform the measurement of the two photons at location A.
There are four possible outcomes: 00, 01, 10, 11. Let us consider these
four cases, and determine what will happen in each case to the state
of the photon at location B.

44

Case 1. We observe 00 on the first two photons. In this case the
3-qubit will collapse to

a+ b√
2
|000〉+

a− b√
2
|001〉 ,

which factors in the tensor product

|00〉
(
a+ b√

2
|0〉+

a− b√
2
|1〉
)
,

meaning that the state of the photon at location B becomes

a+ b√
2
|0〉+

a− b√
2
|1〉 .

Case 2. We observe 01 on the first two photons. In this case the
state of the photon at location B becomes

a+ b√
2
|0〉+

−a+ b√
2
|1〉 .

Case 3. We observe 10 on the first two photons. In this case the
state of the photon at location B becomes

a− b√
2
|0〉+

a+ b√
2
|1〉 .

Case 4. We observe 11 on the first two photons. In this case the
state of the photon at location B becomes

a− b√
2
|0〉+

−a− b√
2
|1〉 .

Finally, we perform an orthogonal transformation of the qubit at lo-
cation B. The type of this transformation will depend on the outcome
of the observation at location A.
Case 1. If we observed 00 at A, we perform the following transfor-
mation of the photon at B:

|0〉 7→ 1√
2
|0〉+

1√
2
|1〉 ,

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉 .

45

Case 2. If we observed 01 at A, we perform the following transfor-
mation of the photon at B:

|0〉 7→ 1√
2
|0〉+

1√
2
|1〉 ,

|1〉 7→ − 1√
2
|0〉+

1√
2
|1〉 .

Case 3. If we observed 10 at A, we perform the following transfor-
mation of the photon at B:

|0〉 7→ 1√
2
|0〉 − 1√

2
|1〉 ,

|1〉 7→ 1√
2
|0〉+

1√
2
|1〉 .

Case 4. If we observed 11 at A, we perform the following transfor-
mation of the photon at B:

|0〉 7→ 1√
2
|0〉 − 1√

2
|1〉 ,

|1〉 7→ − 1√
2
|0〉 − 1√

2
|1〉 .

We can check that in all cases we obtain the same result at location
B: a |0〉+ b |1〉. Let us carry out the calculations for Case 1:

a+ b√
2
|0〉+

a− b√
2
|1〉 7→a+ b

2
|0〉+

a+ b

2
|1〉+

a− b
2
|0〉 − a− b

2
|1〉

=a |0〉+ b |1〉 .

We see that the final result at B is the quantum state of the original
qubit that was at A. We have succeeded in teleporting this state from
A to B. Note that none of our transformations depended on the values
of a or b. The transformation carried out on the last step depended on
the observations obtained at A, but not on the values of the coefficients
a, b, which remained undetermined throughout the whole process.

46

We point out that performing teleportation did require the transfer
of matter – the two parts of the entangled 2-qubit had to be delivered
to locations A and B. However this can be done in advance.

We also note that the speed of the quantum teleportation does not
exceed the speed of light, so this procedure does not violate the prin-
ciples of relativity theory. Indeed, the final transformation at location
B depended on the outcome of observations at A. These outcomes
must be transmitted from A to B, and the speed of that information
transfer is bounded by the speed of light. We emphasize here that the
information being transmitted is classical, it is just the value of two
bits, so this information transfer may be done through an ordinary
communication channel.

Finally, we remark that the original quantum state at location A
has been destroyed. In fact, there is a theorem that states that an
unknown quantum state cannot be duplicated, so teleporting a state
from A to B necessitates the destruction of the original quantum state
at A.

47

8 Group Theory

A group is a mathematical tool to study symmetry. The idea of group
theory is to generalize the algebra of numbers to the algebra of sym-
metries. We can associate a group with any symmetric object, be
that an object from the natural world, or an abstract mathematical
construction.

Informally, a symmetry transformation of an object is a transfor-
mation that moves the points/elements of the object, yet preserves
it as a whole. A good example to keep in mind is a rotation of a
sphere. When we rotate a sphere its points move, but the sphere as
a set of points, is preserved. A group is then the set of all symmetry
transformations of a given object.

The concept of symmetry played a central role in the develop-
ment of physics in the 20th century. Although the use of symmetry
in physics goes back to Galileo, it was Einstein who made symmetry
a cornerstone of physics. Einstein was able to build relativity the-
ory from a single postulate about the geometry of space-time and its
symmetry transformations.

There are some very general principles that are universally valid
for symmetry transformations of any object:

1. Every symmetry transformation is invertible.

For example, if we rotate a sphere by angle α around a certain
axis, to undo this transformation we can rotate it around the same
axis by angle α in the opposite direction.

2. A composition of two symmetry transformations is a symmetry
transformation.

We can build a symmetry transformation of a sphere by first rotat-
ing it around a certain axis by angle α, followed by a rotation around
another axis by angle β. It is clear that the composition of these two
transformations will still preserve the sphere. What is less obvious, is
that such a composition may be expressed as a single rotation around
some third axis.

3. There is always a trivial symmetry transformation that does
not move any points. Such a transformation is called the identity

48

transformation.

With these principles in mind, we can present the formal definition
of a group.

Definition. A group G is a set with a distinguished element e,
called the identity, an operation of inversion of elements, x 7→ x−1 and
an operation of multiplication of pairs of elements, x · y, which satisfy
the following properties for all x, y, z in G:

(1) x · e = e · x = x [axiom of the identity],

(2) x · x−1 = x−1 · x = e [axiom of the inverse],

(3) (x · y) · z = x · (y · z) [associative law].

We can immediately see that axioms of the identity and the in-
verse hold for all symmetry transformations. It turns out that the
associative law also holds universally for all compositions of transfor-
mations (the argument we used to prove the associative law for the
compositions of linear transformations is applicable in a more general
setting).

Just as with linear transformations, for the composition f · g of
symmetry transformations, the factor on the right is applied first.

First examples of groups originate in the arithmetic.

Consider the set Q∗ of non-zero rational numbers. This set is closed
under the operations of multiplication and inversion. The identity
element is the number 1. All three axioms of a group will hold, making
Q∗ a group.

Another possibility is to take the set R∗ of non-zero real numbers.
This will give us the second example of a group.

We can consider groups with operations other than multiplica-
tion. What is crucial is the properties of operations, and not their
names or notations. Let us translate the definition of a group into
a different language, where the group operation is addition, rather
than multiplication. With addition, the axiom of identity will read:
x + e = e + x = x. Clearly, in additive groups, the role of the iden-
tity element is played by 0, and whenever we use “+” as the group
operation, we will denote the identity element by “0”. The axiom of
the inverse then will say that the sum of an element and its inverse is

49

zero. It is natural to denote inversion in an additive group as −x.
This gives us a wealth of examples of additive groups:

• integer numbers with addition operation (Z,+),

• rational numbers with addition operation (Q,+),

• real numbers with addition operation (R,+),

• any vector space with addition operation (V,+).

In examples coming from the arithmetic, we also have the com-
mutative law, x · y = y · x (or x + y = y + x for additive groups).
The commutative law is not part of the axioms of a group, and many
groups do not satisfy this law. Groups satisfying the commutative law
are called commutative or abelian1.

An example of a non-commutative group will be the set of invert-
ible N × N matrices, which is called the general linear group and
denoted GL(N). The identity element in this group is the identity
matrix I. This set is closed under multiplication since we have an
explicit formula for the inverse of the product:

(AB)−1 = B−1A−1.

It may look strange that we changed the order of factors in the right
hand side of the above formula. An easy way to understand the rea-
son for this is to interpret it as the “Socks and Shoes Rule”. In the
morning, we first put on socks, then shoes. To undo this operation,
we should take off the shoes first! There is also a way to verify this
formula with algebra:

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I.

As we have seen earlier, product of matrices is non-commutative in
general, hence GL(N) is a non-commutative group.

We are going to discuss our next example in more detail. Consider
the group G of symmetry transformations of a square. There are two

1In honour of the Norwegian mathematician Niels Abel

50

types of symmetry transformations – rotations and reflections. The
identity transformation I may be considered to be a rotation in angle
0◦. Other rotations are counterclockwise rotations in angles 90◦, 180◦

and 270◦, which we will denote R1, R2 and R3 respectively. The
group G also contains four reflections, two reflections, T1 and T2 with
axes through the midpoints of the opposite sides of the square, and
two reflections, V1 and V2 with the axes through the pairs of opposite
vertices.

We assume that the first basis vector e1 of R2 is on the axis of T1,
while e2 is on the axis of T2.

We can then compute the matrices of all 8 elements of G:

I =

(
1 0
0 1

)
, R1 =

(
0 −1
1 0

)
, R2 =

(
−1 0
0 −1

)
, R3 =

(
0 1
−1 0

)
,

T1 =

(
1 0
0 −1

)
, T2 =

(
−1 0
0 1

)
, V1 =

(
0 1
1 0

)
, V2 =

(
0 −1
−1 0

)
.

We wish to build a multiplication table for this group. It is easy
to compute the products of rotations. For example, a 270◦ rotation,
followed by a 180◦ rotation will yield a 90◦ rotation, hence R2R3 = R1,
and so on. This will complete a quarter of the multiplication table:

51

I R1 R2 R3 T1 T2 V1 V2
I I R1 R2 R3

R1 R1 R2 R3 I
R2 R2 R3 I R1

R3 R3 I R1 R2

T1
T2
V1
V2

Next we point out that multiplication tables of groups possess a
“Sudoku” property – no element can appear twice in the same row
or column. This follows from the following algebraic argument: if an
element appears twice in a row of element X, in columns Y and Z,
we will have an equality XY = XZ. Multiplying both sides by X−1

on the left, we get X−1(XY) = X−1(XZ). Applying the associative
law, we get (X−1X)Y = (X−1X)Z. Using the axiom of the inverse,
we obtain eY = eZ, and finally applying the axiom of the identity, we
conclude Y = Z, which is a contradiction. The origin of this contra-
diction was an assumption that we have the same element appearing
twice in the same row. Hence that cannot happen.

Since elements cannot repeat in the same row or column, each
row/column must contain all elements of a group. This implies that
the bottom left and upper right corners of the multiplication table of
G must be filled with reflections, while the bottom right corner must
contain rotations.

Hence, the product of two rotations is a rotation. The product of
a rotation and a reflection, in either order, is a reflection. The product
of two reflections is a rotation.

We can easily fill the first row and column, since these correspond
to the identity element. We also know that a reflection applied twice
yields the identity transformation. We also note that R2, being a
rotation by 180◦, transforms every vector into its opposite and has
matrix −I. Since multiplication by −I flips all signs in a matrix,
regardless of the order of factors, the results are easy to calculate. We

52

record this as follows:

I R1 R2 R3 T1 T2 V1 V2
I I R1 R2 R3 T1 T2 V1 V2
R1 R1 R2 R3 I
R2 R2 R3 I R1 T2 T1 V2 V1
R3 R3 I R1 R2

T1 T1 T2 I
T2 T2 T1 I
V1 V1 V2 I
V2 V2 V1 I

Let us next calculate T1R1 and R1T1:

T1R1 =

(
1 0
0 −1

)(
0 −1
1 0

)
=

(
0 −1
−1 0

)
= V2,

R1T1 =

(
0 −1
1 0

)(
1 0
0 −1

)
=

(
0 1
1 0

)
= V1.

This shows that the group of symmetries of a square is non-commutative!
Placing these in the table,

I R1 R2 R3 T1 T2 V1 V2
I I R1 R2 R3 T1 T2 V1 V2
R1 R1 R2 R3 I V1
R2 R2 R3 I R1 T2 T1 V2 V1
R3 R3 I R1 R2

T1 T1 V2 T2 I
T2 T2 T1 I
V1 V1 V2 I
V2 V2 V1 I

we can use the “Sudoku” property of a multiplication table, to com-
plete the spots for T1R3 = V1, R3T1 = V2, T2R1 = V1, T2R3 = V2,

53

R1T2 = V2, R3T2 = V1.

I R1 R2 R3 T1 T2 V1 V2
I I R1 R2 R3 T1 T2 V1 V2
R1 R1 R2 R3 I V1 V2
R2 R2 R3 I R1 T2 T1 V2 V1
R3 R3 I R1 R2 V2 V1
T1 T1 V2 T2 V1 I
T2 T2 V1 T1 V2 I
V1 V1 V2 I
V2 V2 V1 I

We can compute V1R1 and R1V1 using the associative law:

V1R1 = (T2R1)R1 = T2(R1R1) = T2R2 = T1,

R1V1 = R1(R1T1) = (R1R1)T1 = R2T1 = T2,

and complete the rest of these two corners using the “Sudoku” prop-
erty:

I R1 R2 R3 T1 T2 V1 V2
I I R1 R2 R3 T1 T2 V1 V2
R1 R1 R2 R3 I V1 V2 T2 T1
R2 R2 R3 I R1 T2 T1 V2 V1
R3 R3 I R1 R2 V2 V1 T1 T2
T1 T1 V2 T2 V1 I
T2 T2 V1 T1 V2 I
V1 V1 T1 V2 T2 I
V2 V2 T2 V1 T1 I

We leave completion of the fourth corner of the table as an exercise.
Some groups that we may wish to study could be very large. For

example, the number of elements in one important group, called the
Monster, is

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000.

If we decided to write down the multiplication table for the Monster
group, we would run out of ink, since the number of entries in its mul-
tiplication table exceeds the number of atoms in the visible Universe!

54

We wish to develop more efficient algebraic methods to carry out
computations in groups.

Let us generalize our previous example and consider the group Dn

of symmetries of a regular polygon with n vertices. This group is
called the dihedral group. It is easy to see that Dn has n rotations (in
angles that are multiples of 360◦/n), and n reflections. Let us denote
the counterclockwise rotation in angle 360◦/n by R, and fix one of the
reflections and call it T . Then all rotations in the dihedral group can
be expressed as powers of R: R, R2, R3, . . . , Rn−1, Rn = e. The same
argument as we used in case of a square, shows that the product of a
reflection with a rotation is a reflection. By the “Sudoku” principle,
reflections T , TR, TR2, . . . , TRn−1 are distinct, and hence exhaust
all reflections in the dihedral group Dn.

This allows us to list all the elements in the dihedral group as

Dn =
{
Ri, TRi

∣∣ i = 0, 1, 2, . . . , n− 1
}
.

We note two relations: Rn = e and T 2 = e. Since the product of Ri

and T is a reflection, its square is the identity element, (RiT)2 = e,
and then this element is its own inverse: RiT = (RiT)−1 = T−1R−i =
TR−i. It turns out that these three relations

Rn = e, T 2 = e, RiT = TR−i,

allow us to multiply any two elements in the dihedral group. For
example, let us compute in D7 the product of TR5 and TR3:

(TR5)(TR3) = T (R5T)R3 = T (TR−5)R3 = T 2R−2 = R7R−2 = R5.

55

9 Lagrange’s Theorem

It could happen that inside a group there is another smaller group.
For example, the set of rotations {Ri

∣∣ i = 0, 1, . . . , n − 1} inside the
dihedral group Dn, is itself a group. This is an example of a subgroup.

Definition. Let G be a group. A subset H in G is called a
subgroup if it satisfies the following three properties:

(1) the identity element e is in H,
(2) with every element h in H, its inverse, h−1 is also in H,
(3) with any two elements h1, h2 in H, the product h1h2 is in H.

We can see that positive rational numbers Q+ form a subgroup in
the multiplicative group Q∗, and even integers form a subgroup in the
additive group Z. Another example of a subgroup would be {e, T} in
Dn. The one-element set {e} and G itself are subgroups in G.

The set of orthogonal N ×N matrices forms a subgroup, denoted
O(N), in the general linear group GL(N).

Exercise. Determine all possible subgroups in D4.

An important class of subgroups is cyclic subgroups.
Definition. Let g be an element in a group G. The cyclic sub-

group generated by g is the set H of all integer powers of g:

H =
{
gk
∣∣ k = . . . ,−2,−1, 0, 1, 2, . . .

}
.

Clearly, this set is a subgroup since gkgs = gk+s. If the group G is
finite, the cyclic subgroup generated by element g cannot be infinite,
and the list of powers of g will contain infinitely many repetitions. Let
us analyze the structure of a cyclic subgroup in this case.

Definition. The order of an element g in a group G is the smallest
positive integer number n such that gn = e. If such a positive integer
does not exist, we say that the order of g is infinity.

56

Examples. In group D4 element T has order 2, and element R
has order 4. In Q∗ element g = −1 has order 2 since (−1)2 = 1, while
g = 5 has infinite order since no positive power of 5 equals 1.

Proposition. Let G be a finite group. Then any element g in
G has a finite order. If n is the order of g then the cyclic subgroup
generated by g has n elements g0 = e, g1 = g, g2, g3, . . . , gn−1.

Proof. To prove that g has a finite order, we need to show that
there exists at least one positive integer k such that gk = e. Since the
set of all powers of g must contain repetitions, we will have gs = gr

for some integers s < r. Multiplying both sides by g−s, we will get
gr−s = e with r−s being a positive integer. Hence g has a finite order.

Let n be the order of g. Then gn = e, gn+1 = g, etc. Thus every
positive power of g gets reduced to one of the elements g0, g1, . . . , gn−1.
The list {g0, g1, . . . , gn−1} can not have repetitions. Otherwise, we can
apply the above argument and get gk = e with 0 < k < n, which will
contradict the definition of the order.

For the negative powers of g, we see that g−1 = gng−1 = gn−1,
g−2 = gn−2, etc., and the claim of the Proposition follows.

Definition. A group G is called cyclic, if there exists an element
g in G, such that integer powers of g exhaust G.

Definition. Let g be an element of a group G, and let H be a
subgroup in G. A coset gH is a set of products {gh} as h runs over
the subgroup H.

Let us construct the cosets of the subgroup H = {e,R,R2, R3} in
the dihedral group D4.

Clearly, the coset eH is just equal to H. The coset RH is also equal
to H, since it contains the elements {R,R2, R3, R4 = e}. The coset
TH is {T, TR, TR2, TR3}, and actually for any i, the cosets (TRi)H
and TH are the same. Here we can see that in this example there are
just two distinct cosets, {e,R,R2, R3} and {T, TR, TR2, TR3}.

It follows from the “Sudoku” property of multiplication that the
size of any coset gH is equal to the number of elements in H.

57

Proposition. Let H be a subgroup in a group G. Then G is a
union of non-overlapping cosets of H.

Proof. We need to show that distinct cosets do not overlap, that
is, if two cosets aH and bH have a common element c then they are
equal. Indeed, if c belongs to both cosets then c = ah1 = bh2 for some
h1, h2 in H. Then a = bh2h

−1
1 . We need to show that any element

of aH is in bH and vice versa. Let d belong to aH. Then for some
h3 in H, d = ah3 = bh2h

−1
1 h3. Since H is a subgroup, h2h

−1
1 h3 in in

H, and d is then in the coset bH. Likewise, every element of bH is in
aH, so aH = bH.

We also see that the cosets cover the whole group since every
element g belongs to its own coset gH.

Definition. The number of elements in a group G is called the
order of a group G.

Lagrange’s Theorem. Let G be a finite group.
(a) The order of any subgroup H in G is a divisor of the order of G.
(b) The order of any element g in G is a divisor of the order of G.

Proof. The group G is a union of non-overlapping cosets of H,
which all have the same size. Hence

Order of G = Order of H × The number of cosets of H.

This implies the claim of part (a) of the Theorem.
To prove part (b), we note that every element g generates a cyclic

subgroup, whose order is equal to the order of the element g. Hence
(b) follows from (a).

Corollary. Let G be a group of order n and let g be an element
of G. Then gn = e.

Proof. Let k be the order of g. By Lagrange’s Theorem, n = ks
for some s. Then gn = (gk)s = es = e.

58

10 Additive and Multiplicative Groups

of Remainders

In this chapter we shall study addition and multiplication of remain-
ders from the point of view of group theory.

The set Zm of remainders after division by m forms a group with
respect to addition. Its identity element is the zero remainder. In fact
this group is cyclic with generator 1, since every remainder k in this
group may be expressed as a sum of k ones: 1 + 1 + . . .+ 1. The order
of element 1 in Zm is equal to m, since taking a sum of m ones will
yield the identity element 0.

Consider as an example the group Z10. In this group element 2
has order 5, since 2 + 2 + 2 + 2 + 2 = 0 mod 10, while the order of 3
is 10, as the smallest multiple of 3, which has remainder 0 mod 10 is
30 = 10× 3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3. The following table
lists the orders of elements in Z10:

x 0 1 2 3 4 5 6 7 8 9

order of x 1 10 5 10 5 2 5 10 5 10

Note that in agreement with Lagrange’s Theorem, the order of every
element is a divisor of 10, which is the order of the group Z10.

The answer for the general case is expressed in terms of least com-
mon multiples (LCM) and greatest common divisors (GCD).

Proposition. The order of element k in the additive group Zm is

LCM(m, k)

k
=

m

GCD(m, k)
.

Proof. Let r be the order of k in Zm. This means that rk is the
smallest multiple of k, which is divisible by m. This implies that rk
is the least common multiple of k and m, and we obtain the claim of
the Proposition.

Next we consider the multiplicative structure of Zm. We can see
that Zm is not a group with respect to multiplication. To begin with,

59

element 0 does not have a multiplicative inverse. It could also happen
that some non-zero elements are not invertible either.

Definition. Remainders a and b in Zm are called multiplicative
inverses of each other if ab = 1 mod m.

For example, in Z10, elements 3 and 7 are multiplicative inverses
of each other, since 3×7 = 1 mod 10, while 2 is not invertible because
there is no remainder b for which 2b = 1 mod 10.

Definition. The multiplicative group Z∗m is the set of invertible
remainders mod m.

Clearly, the set of invertible remainders forms a group, since the
product of invertible remainders is invertible, (ab)−1 = b−1a−1.

We need to figure out which exactly remainders mod m are invert-
ible. We are going to show below that a remainder k has a multiplica-
tive inverse in Zm if and only if GCD(m, k) = 1.

The proof of this fact, as well as the general method for comput-
ing the inverses, is based on the algorithm of computing the greatest
common divisors, which goes back to Euclid. Let us now discuss the
Euclidean algorithm.

One way to compute the greatest common divisor is to use prime
factorization: for example, to compute GCD(96,60), we may factor
both numbers into powers of primes:

96 = 25 × 3, 60 = 22 × 3× 5.

Then collecting common prime powers, we get GCD(96, 60) = 22×3 =
12.

This method, however, becomes inefficient when the numbers in
question have large prime factors. Let us try to decide, what is
GCD(4187, 2923)? Factoring these numbers by hand will take some
effort, and for larger numbers we do not know a good way of factoring
even with a computer. In fact, the security of the RSA cryptosys-
tem which we will discuss in a later chapter, is based precisely on the
hardness of factorization of large integers.

60

Computing GCDs is an entirely different matter – we can efficiently
compute these even for very large integers, thanks to Euclid.

The idea of the Euclidean algorithm is based on the fact that
GCD(a, b) = GCD(a − b, b). Indeed, if d is a common divisor of a, b,
then it is also a common divisor of a−b, b, and vice versa. We can take
this idea further by allowing to subtract from a arbitrary multiples of
b, obtaining the following

Proposition. Divide a by b with a remainder: a = sb+ r, where
0 ≤ r < b. Then GCD(a, b) = GCD(b, r).

Applying this to the above example, we get that GCD(4187, 2923) =
GCD(2923, 1264). Repeating this process, we will get:

4187− 2923 = 1264 GCD(4187, 2923) = GCD(2923, 1264)
2923− 2× 1264 = 395 GCD(2923, 1264) = GCD(1264, 395)
1264− 3× 395 = 79 GCD(1264, 395) = GCD(395, 79)

395− 5× 79 = 0 GCD(395, 79) = 79.

This tells us that GCD(4187, 2923) = 79.
Reversing the calculations in the Euclidean algorithm, we obtain

the following important result:
Theorem. Let GCD(a, b) = d. Then there exist integers u, v such

that
d = au+ bv.

Applied to our example, this Theorem tells us that there exist
integers u, v such that 4187u + 2923v = 79 (clearly, one of the two
numbers u, v must be negative). It is not at all obvious what are the
values of u and v in this example. To get these, we run backwards the
calculations we did in the Euclidean algorithm:

79 = 1264− 3× 395

= 1264− 3× (2923− 2× 1264) = 7× 1264− 3× 2923

= 7× (4187− 2923)− 3× 2923 = 7× 4187− 10× 2923,

concluding that u = 7, v = −10 is a desired solution.
Now we can prove the following
Theorem. A remainder k has a multiplicative inverse in Zm if

and only if GCD(m, k) = 1.

61

Proof. Suppose GCD(m, k) = 1. By the previous Theorem, there
exist integers u, v, such that 1 = mu+ kv. Since mu = 0 mod m, we
get 1 = kv mod m, thus v is the multiplicative inverse of k in Zm.

To prove the converse, assume that k has a multiplicative inverse v
in Zm, that is, kv = 1 mod m. Two integers have the same remainder
mod m whenever their difference is divisible by m. Thus kv− 1 = ms
for some s, and kv −ms = 1. If d is a common divisor of k and m,
then it is also a divisor of kv−ms, which implies that d is a divisor of
1. Then the only common divisor of k and m is 1, which means that
GCD(m, k) = 1.

An important special case is when the modulus is a prime number
p. In this case every non-zero remainder satisfies GCD(p, k) = 1. The
above Theorem then implies that in Zp every non-zero remainder has
a multiplicative inverse, so Z∗p has p− 1 elements.

Fermat’s Little Theorem. Let p be a prime number. If a is an
integer not divisible by p then

ap−1 = 1 mod p.

Proof. Apply Lagrange’s Theorem to the multiplicative group Z∗p.
Since the order of this group is p − 1, for every element a in Z∗p, we
have ap−1 = e, which is exactly the claim of the Theorem.

Consider p = 13 as an example. Let us determine the order of
g = 2 in Z∗13:

21 = 2 24 = 3 27 = 11 210 = 10
22 = 4 25 = 6 28 = 9 211 = 7
23 = 8 26 = 12 29 = 5 212 = 1

Hence the order of g = 2 in Z∗13 is 12, which also tells us that Z∗13
is a cyclic group of order 12 with g = 2 being a generator. We can
calculate the orders of all elements in Z∗13. Since 3 = 24 while 212 = 1,
the order of 3 is 3.

62

Definition. An isomorphism of two groups is a one-to-one corre-
spondence between their elements that preserves group operations.

The function f(x) = 2x is an isomorphism between the additive
group Z12 and the multiplicative group Z∗13. It preserves group oper-
ations since 2x+y = 2x × 2y.

We are going to state, without proof, the following result:
Theorem. Let p be a prime number. The group Z∗p has a cyclic

generator g, so that powers of g exhaust Z∗p. The function f(x) = gx

is an isomorphism between Zp−1 and Z∗p.
There is no general rule that specifies which element of Z∗p is a

cyclic generator. Moreover, when g is given, the function f(x) = gx

is a trap-door function (assuming that p is a large prime). This func-
tion is straightforward to compute, yet, it is difficult to compute the
inverse of f , that is, given remainder h in Z∗p, determine the integer
value of x, for which h = gx mod p. Since the function f is an expo-
nential function, its inverse is called the discrete logarithm function,
x = logg(h). Of course, one could try to find x by exhaustive search,
but for large primes that would be computationally infeasible.

There are several widely used cryptosystems which are based on
the assumption that the discrete logarithm function is hard to com-
pute. Shor’s quantum algorithm not only can be used for integer fac-
torization, but also has a version that computes discrete logarithms.

We conclude this chapter with
Chinese Remainder Theorem. Suppose GCD(m, s) = 1. For

any pair of remainders a mod m, b mod s, there exists a unique
remainder x mod ms, such that x = a mod m and x = b mod s.

Example. A system {
x = 2 mod 7
x = 5 mod 8

has a unique solution in Z56, which is x = 37.

Proof. Since GCD(m, s) = 1, there exist integers u, v, such that
mu+ sv = 1. Obviously,

mu mod m = 0, sv mod s = 0.

63

Reducing equality mu+ sv = 1 mod m and mod s, we get

sv mod m = 1, mu mod s = 1.

Finally, we construct the solution as x = asv + bmu. Let us verify
that this formula produces the desired result:

x mod m = a× 1 + b× 0 mod m = a mod m,

x mod s = a× 0 + b× 1 mod s = b mod s.

Since the number of pairs of remainders (a mod m, b mod s) is the
same as the number of remainders in Zms, a solution will be unique.

Corollary. Suppose GCD(m, s) = 1. A remainder k is invertible
in Zms if and only if k mod m is invertible in Zm and k mod s is
invertible in Zs.

Corollary. Suppose p and q are two primes with p 6= q. Then the
order of the group Z∗pq is (p− 1)(q − 1).

Applying Lagrange’s Theorem, we also get an analogue of Fermat’s
Little Theorem, which is used in RSA cryptosystem:

Theorem. Suppose p and q are two primes with p 6= q. Assume
g is not divisible by p or q. Then

g(p−1)(q−1) = 1 mod pq.

64

11 Lie Groups

Lie groups (pronounced “lee”) are named in honour of the Norwegian
mathematician Sophus Lie who was the first to study them. Lie groups
are symmetry groups that are continuous. A prototypical example of
a Lie group is the group of rotations of a sphere. Fixing the axis of
rotation, we can continuously change the angle of rotation. Alterna-
tively, we may fix the angle of rotation, and continuously change the
axis of rotation. Or, we can simultaneously change both the angle and
the axis of rotation in a continuous way.

This contrasts the group of symmetries of a cube, where symme-
tries do not admit continuous deformations. If we try to rotate a cube
by a small angle, it will not self-impose, so such rotations will not be
symmetries of a cube.

Our goal is to understand groups O(N) of orthogonal transfor-
mations. We begin with the case of orthogonal transformations of
R2.

The group O(2) is the group of symmetries of a circle. It has a
presentation which is analogous to the one we used for the dihedral
groups. The elements of O(2) are of two types: rotations and reflec-
tions.

Recall the expression for the rotation matrices:

Rα =

(
cosα − sinα
sinα cosα

)
.

Let us also consider the reflection T with respect to the X-axis:

T =

(
1 0
0 −1

)
.

Then all other reflections may be constructed as products of T with
all possible rotations:

Tα = RαT =

(
cosα − sinα
sinα cosα

)(
1 0
0 −1

)
=

(
cosα sinα
sinα − cosα

)
.

Note that Tα is the reflection matrix we wrote down in chapter 6.

65

We get the following algebraic description of the group O(2):
Theorem. The group O(2) consists of the elements {Rα, Tα},

where α is the angle parameter, so that Rα+360◦ = Rα, Tα+360◦ = Tα.
Multiplication in O(2) is given as follows:

RαRβ = Rα+β, TαTβ = Rα−β, RαTβ = Tα+β, TαRβ = Tα−β.

Proof. Since T−γ is a reflection, its inverse is itself: R−γT =
(R−γT)−1 = T−1R−1−γ = TRγ . Using this relation we can compute:

TαRβ = RαTRβ = RαR−βT = Rα−βT = Tα−β.

Verification of other relations is analogous and is left as an exercise.
We saw that the orthogonal group O(2) consists of the elements of

two types - rotations and reflections. What about orthogonal trans-
formations in the 3-dimensional space? It turns out that elements of
O(3) are also of two types, one of which is spatial rotations (around
some axis). The second type includes reflections with respect to a
plane, but this is not all. In order to describe orthogonal transfor-
mations of a 3-dimensional space, we need one theorem from linear
algebra. The proof of this theorem is not difficult, but involves the
concept of eigenvalues. Since this is a more advanced topic in linear
algebra, we omit the proof.

Theorem. Let T be an orthogonal transformation of R3. Then
there exists a unit vector v such that either Tv = v or Tv = −v.

Let v be a vector from the above Theorem, and let u be a vector
orthogonal to v. Since T is an orthogonal transformation, vectors
Tv, Tu are again orthogonal to each other. Taking into account that
Tv = ±v, we conclude that Tu is orthogonal to v. As a result
we see that the plane orthogonal to v is invariant under T , i.e., T
transforms vectors from this plane into vectors on the same plane.
Hence, restricted to the plane orthogonal to vector v, T becomes a 2-
dimensional orthogonal transformation, either a rotation of this plane,
or a reflection with respect to a line in this plane.

In the argument below we use the fact that a reflection of a plane
has a vector which is transformed to its opposite and a vector that is

66

transformed into itself – the first vector is perpendicular to the line of
reflection, while the second vector is on the line of reflection.

We consider 3 cases:

(1) T has a unit vector v such that Tv = v, but does not have a
unit vector w such that Tw = −w.

(2) T has a unit vector w such that Tw = −w, but does not have
a unit vector v such that Tv = v.

(3) T has both unit vectors v,w such that Tv = v, Tw = −w.

In the first case, transformation T must be a rotation of a plane
perpendicular to vector v, since T does not transform any vector into
its opposite. Hence T is a spatial rotation with v as its axis.

In the second case, T restricted to the plane perpendicular to w
is again a rotation. Hence this transformation is a composition of a
rotation of a plane together with a reflection in the same plane.

In case (3), we note that vectors v and w must be perpendicular
to each other, since T preserves the dot product: v ·w = Tv · Tw =
v · (−w) = −v · w, which implies v · w = 0. Take a unit vector u,
which is perpendicular to both v and w. Then Tu is perpendicular
to Tv = v and Tw = −w, which means that Tu is proportional
to u. Since T preserves lengths, either Tu = u, or Tu = −u. We
constructed an orthonormal basis {v,u,w} with T acting as follows:

(3a) Tv = v, Tu = u, Tw = −w,

or

(3b) Tv = v, Tu = −u, Tw = −w.

In case (3a), T is a reflection with respect to a plane spanned by
vectors u and v. In case (3b), T is a rotation around v in angle 180◦.

Summarizing these results, we obtain:

Theorem. An orthogonal transformation of R3 is either a spatial
rotation around some axis, or a composition of such a rotation with a
reflection in the plane orthogonal to the axis of rotation.

A quantum algorithm is an orthogonal transformation of a 2n-
dimensional space of n-qubits. For this reason, we are interested in
understanding the structure of orthogonal transformations of spaces

67

of an arbitrary dimension. Their description is given by the following
theorem, which we present without proof.

Before we state the theorem, as a warm-up, let us ask the fol-
lowing question: Is it possible to have two 2-dimensional planes in a
4-dimensional space which intersect at a single point? This may be
challenging to visualize, since our intuition comes from a 3-dimensional
space, where two intersecting planes must have a common line. Yet,
in a 4-dimensional space, two planes may indeed intersect at a point.
To illustrate this, let us call the coordinate axes XY ZW . Then the
XY plane consists of vectors with two last components being zero,
while the vectors on the ZW plane have zero first two components.
Clearly, the intersection of these 2-dimensional planes is just a single
point – the origin.

Theorem. For any orthogonal transformation T of RN one can
find subspaces L1, L2, . . . , Lk in RN such that:

(1) Each subspace Li has dimension either 1 or 2, and their di-
mensions add up to N .

(2) All subspaces Li are mutually orthogonal and intersect only at
the origin,

(3) Each subspace Li is invariant under T , that is, T transforms
a vector from Li into a vector in the same subspace Li,

(4) If Li is 1-dimensional, then Tv = v or Tv = −v for every
vector v in Li,

(5) If Li is 2-dimensional, then T acts as a rotation transformation
of the plane Li.

Let us illustrate this Theorem with the case of R4. For a given
orthogonal transformation T , we can use the subspaces {Li} to con-
struct an orthonormal basis of R4, so that the matrix of T is of one
of the following types:

(a) Diagonal matrix with ±1 on the diagonal. This is the case
when R4 decomposes into four 1-dimensional invariant subspaces:

T =


±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1

 .

68

(b) If R4 decomposes into a 2-dimensional invariant subspace and
two 1-dimensional invariant subspaces, its matrix will look like:

T =


cosα − sinα 0 0
sinα cosα 0 0

0 0 ±1 0
0 0 0 ±1

 .

(c) And finally R4 may decompose into two 2-dimensional invariant
subspaces. In this case T is a double rotation (try to visualize this!):

T =


cosα − sinα 0 0
sinα cosα 0 0

0 0 cosβ − sinβ
0 0 sinβ cosβ

 .

As we pointed out, a quantum algorithm is an orthogonal trans-
formation of the 2n-dimensional space of n-qubits. To implement it,
we break it down into a sequence of more elementary transformations,
each involving just one or two qubits. This is analogous to implemen-
tations of classical algorithms, which are also broken down into steps,
each being some elementary operation. Algebraically, such a decom-
position of a quantum algorithm is a factorization of a big orthogonal
matrix in a product of certain elementary matrices.

The possibility of factorizations of this nature was first observed
by Euler in 1774, who studied factorizations of orthogonal transfor-
mations in a 3-dimensional space. Euler proved the following

Theorem. Any rotation in a 3-dimensional space with coordinate
axes XY Z may be factored as a composition of a rotation around the
X axis in some angle α, followed by a rotation around the Y axis in
some angle β, followed by a rotation around the X axis again in some
angle γ.

The parameters α, β, γ are called the Euler angles of the given
rotation. This Theorem tells us that it is enough to have the ability
to make rotations just around the X and Y axes, in order to be able
to generate an arbitrary rotation of R3.

69

Algebraically, this Theorem claims that any 3-dimensional rotation
matrix may be factored in the following way:1 0 0

0 cos γ − sin γ
0 sin γ cos γ

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

1 0 0
0 cosα − sinα
0 sinα cosα

 .

To prove this Theorem, it is much easier to give a geometric argu-
ment, rather than algebraic. Fix a rotation T . Suppose T transforms
some orthogonal axesX0Y0Z0 into the standard coordinate axesXY Z.
We point out that it is sufficient to only keep track of two coordinate
axes. If we have a rotation that transforms X0 into X and Y0 into
Y , then automatically Z0 will be transformed in Z, since rotations
preserve the angles between the axes.

The goal of the first step is to rotate X0Y0Z0 around the X axis,
into X1Y1Z1 making the new X1 axis perpendicular to the Y axis.
This is possible since we can rotate any non-zero vector around the X
axis to make the result be in the XZ plane.

The second step is to perform a rotation around the Y axis, trans-
forming X1Y1Z1 into X2Y2Z2 with the new axis X2 aligned with the
X axis. This is possible since we got X1 in the XZ plane on the

70

previous step. Since the axis Y2 is perpendicular to X, it is in the Y Z
plane.

Finally, we perform a rotation around the X axis, to align the new
axis Y3 with Y . Since now X3 is aligned with X, and Y3 is aligned
with Y , then automatically Z3 is aligned with Z.

71

12 RSA Cryptosystem

In chapter 3, we discussed cryptosystems based on a shared secret
key. For modern Internet commerce these secret key cryptosystems
are not practical, since the two parties of a transaction did not have
prior contact. Still, the use of encryption is essential for Internet
commerce, because the global network is organized in such a way that
communications pass through a chain of servers which are owned by
various third party entities, and the exact path of a message cannot
even be predicted in advance.

The solution to this challenge is to use public key cryptography.
Public key cryptosystems allow anyone to encrypt messages, but only
the intended recipient is able to decrypt them. Imagine that Bob, an
owner of an online store, wishes to receive credit card numbers from
his customers in a secure way. Bob will generate two keys: a public
key, that is required for encryption, and a secret key, which is used
for decryption. Public key is made known to everyone, it is usually
embedded into the web page of Bob’s store. Then Alice, a customer at
Bob’s store, will use the public key to encrypt her credit number and
will send the encrypted message to Bob, in order to make a payment
for her purchase. Usually the encryption is done by Alice’s browser,
which will know how to read Bob’s public key from his web page, and
is programmed to run the encryption algorithm.

Bob will receive an encrypted transmission from Alice, and will
decrypt Alice’s credit card number using his secret key. Since only
Bob has the secret key, he is the only person capable of decrypting
Alice’s message.

One of the first public key cryptosystems was proposed by Rivest,
Shamir and Adleman in 1974. This cryptosystem, which is known as
RSA, is based on factoring of integers. Given two large prime numbers,
p and q, it is easy to compute their product N = pq. However, if we
are given N and are told that it is a product of two large primes,
finding the factors is hard.

The public key for RSA cryptosystem is a pair of integers, N = pq
and k, where k is an integer with a property GCD(k, (p−1)(q−1)) = 1.

72

For example, we may choose k to be a prime number in the interval
max(p− 1, q − 1) < k < (p− 1)(q − 1).

The secret key is a set of three integers, p, q and s, where s is
computed as

s = k−1 mod (p− 1)(q − 1).

As we are going to see below, any digital data may be converted
into a sequence of remainders mod N : m1,m2, Alice will encrypt
each plaintext remainder m into a cyphertext remainder c using the
following encryption formula:

c = mk mod N,

and will send the cyphertext sequence c1, c2, . . . to Bob.
In order to decrypt a cyphertext block c, Bob will compute

cs mod N . Let us verify that in this way Bob will recover the plain-
text block m.

Indeed, since ks = 1 mod (p − 1)(q − 1), we can write ks = 1 +
r(p− 1)(q − 1) for some integer r. Then computing mod N , we get:

cs = (mk)s = mks = m1+r(p−1)(q−1)

= m1 × (m(p−1)(q−1))r = m× 1r = m mod N.

Here we used the analogue of Fermat’s Little Theorem for remainders
mod N = pq:

m(p−1)(q−1) = 1 mod pq.

One should point out that the last formula only holds when GCD(m, pq)
= 1. In practice, for large primes p, q, the probability of this equality
failing is so tiny, that it can be ignored for all practical purposes. In
fact, finding a single non-zero remainder m with GCD(m, pq) 6= 1 will
yield factoring of pq, since the value of this GCD will be either p or q.
Since we rely on the fact that factoring is not possible in a reasonable
amount of time, we can just as well assume that accidental failure of
our encryption scheme will not occur.

If someone can factor N into p and q, then the product (p−1)(q−1)
can be computed and the secret decryption key may be found:

s = k−1 mod (p− 1)(q − 1).

73

Proposition. Let N be a product of two unknown primes, N =
pq. Let Z∗N be the multiplicative group of invertible remainders mod
N . Knowing value of the order M = (p−1)(q−1) of this group would
allow us to effectively factor N = pq.

Proof. First note that M = (p − 1)(q − 1) = N − p − q + 1,
so if we know the values of N and M we also know the value of
S = p+ q = N −M + 1.

Let us construct a quadratic equation that has p and q as roots:

(X − p)(X − q) = X2 − (p+ q)X + pq = X2 − SX +N.

Even though we do not know p and q, we know the coefficients S and
N of this quadratic polynomial. Applying the standard formula for
the roots of the quadratic equation

X2 − SX +N = 0,

we find the values of the factors p, q.
Let us discuss implementation details of the RSA cryptosystem.

First of all, how to convert arbitrary data into a sequence of remain-
ders? Any digital data is stored on a computer as a file, which is a
long string of 0’s and 1’s. All we have to do is to figure out how to
convert a long binary string into a sequence of remainders mod N .

Choose n in such a way that 2n < N − 1 ≤ 2n+1. We take our
long binary string and cut it into blocks of length n. Each block can
viewed as a binary form of an integer between 0 and 2n − 1. We add
2 to this integer, so that the result is between 2 and 2n + 1 and may
be interpreted as a remainder mod N . The reason for adding 2 is to
avoid remainders 0 and 1.

Another technical issue worth investigating is the complexity of
computing cs mod N . Here the magnitude of s is comparable to N ,
so it is very large. Let us ask a question: how many multiplications
are required to compute c2018 mod N? At a first glance it looks like
we need 2017 multiplications to compute this, however it turns out
that we can do much better. Let us begin by writing down a binary
expansion of 2018:

2018 = 1024+512+256+128+64+32+2 = 210+29+28+27+26+25+21.

74

It takes one multiplication to square a number. By repeated squaring
we may compute c2, (c2)2 = c4, (c4)2 = c2

3
, . . ., (c2

9
)2 = c2

10
. This

takes 10 multiplications. Then we use the binary expansion of 2018
to express:

c2018 = c2
10 × c29 × c28 × c27 × c26 × c25 × c2.

Thus we only need a total of 16 multiplications to compute c2018. In
general, we need less than 2 log2 s multiplications to compute cs.

One more issue to pay attention to is the size of the numbers
involved in these calculations. For large s, the number cs is huge.
Fortunately, we only need to compute cs mod N . If we take a re-
mainder mod N after each multiplication, we will never deal with
integers exceeding N2.

75

13 Parallel Classical Computations

with a Quantum Computer

Any classical computation may be viewed as a function taking n-bit
strings as input and k-bit strings as output:

f : Bn → Bk.

Here we denote the set of all binary strings of length n as Bn.
As a simple example, we may consider a function that computes

the square of a binary 3-bit integer, f : B3 → B6, f(101) = 011001
(52 = 25). Here we need to take 6-bit integers as output since f
applied to 111 produces a 6-bit result 110001.

This interpretation is valid not only for the functions of arithmetic
nature, but is applicable to all computer programs. After all, any dig-
ital data may be converted to a binary string format (this is how files
are stored on a computer, from text files to movies). Any computer
program has digital data as input and output, and may be thus viewed
as a function on binary strings.

We would like to understand, how can we code a classical compu-
tation with a quantum computer. An obstacle we face is that quan-
tum algorithms are supposed to be invertible whereas classical com-
putations are not. To overcome this, we convert a classical function
f : Bn → Bk into an invertible classical function

f̂ : Bn+k → Bn+k.

The idea here is to combine together input and output bits, and set

f̂(x, y) = (x, y ⊕ f(x)).

Here x is the n-bit input, y is the initial value for the output bits, and
we denote by the symbol ⊕ bitwise addition mod 2 (without carry).

We merge together the bits allocated for the input and the output
of function f and make this joint set of bits to be both the input and
the output space for the new function f̂ . The convention here is that
the values of the bits corresponding to the old input do not change.

76

In applications, the values of the bits corresponding to the old output
are initialized to a zero string. Then we can use f̂ to compute f :

f̂(x, 0) = (x, f(x)).

For example if f : B3 → B6 is a function that computes the square
of a 3-bit integer, then

f̂(101, 000000) = (101, 011001).

Here put put a comma between x and y just for convenience of reading,
these two parts form a single 9-bit string. Even though we are mostly
interested in computations where y is initialized to a zero string, f̂ is
defined with all 9-bit arguments, for example,

f̂(101, 111000) = (101, 100001).

To compute the value of the last 6 bits, we first evaluated f(101) =
011001, and then performed bitwise addition mod 2 with the initial
state of the output bits:

111000⊕ 011001 = 100001.

Proposition. Let f be an arbitrary classical computation f :
Bn → Bk. Then the function f̂ : Bn+k → Bn+k, defined as

f̂(x, y) = (x, y ⊕ f(x)),

is invertible. The inverse of f̂ is itself.
Proof. We need to verify that f̂(f̂(x, y)) = (x, y). Indeed,

f̂(f̂(x, y)) = f̂(x, y ⊕ f(x)) = (x, y ⊕ f(x)⊕ f(x)) = (x, y).

On the last step we used the fact that any binary string added to itself
using bitwise addition mod 2, produces a zero string.

Recall that a quantum computation is an orthogonal linear trans-
formation of the space of n-qubits. Thus we need to convert an in-
vertible classical computation into a linear transformation. To define
a linear transformation, we need to specify its values on the basis

77

vectors, and the basis of the space of n-qubits is given by the binary
strings of length n.

To a classical function f : Bn → Bk we associate a linear trans-
formation Tf of the space of (n+ k)-qubits defined by

Tf (|z〉) = |f̂ (z)〉 .

Note that Tf is a very special kind of a linear transformation – it trans-
forms every basis vector into another basis vector. Typically, a linear
transformation will transform a basis vector into a linear combination
of basis vectors.

Transformation Tf is invertible since f̂ is. Moreover, T−1f = Tf .

Since Tf permutes vectors in a basis, the images of the basis vectors
are orthogonal to each other and all have unit length. Hence, Tf is an
orthogonal linear transformation.

For example, for the function f : B3 → B6 we considered above,
transformation Tf will be a linear transformation of a 512-dimensional
space of 9-qubits, and can be represented by a 512× 512 matrix (for
obvious reasons we are not going to write it down). Since Tf permutes
basis vectors, its matrix will have a single entry 1 in each row and
column.

The definition of Tf shows the possibility of implementation of
classical computations with a quantum computer. Naturally, a quan-
tum computer is capable of doing more than that. After all, we only
use permutation matrices to implement classical computations, and
we have many more matrices available to us.

Still, there is one new feature that we gain by doing classical com-
putations with a quantum computer. Imagine that we use a state

1√
2n

2n−1∑
x=0

|x〉 |0〉

as input to Tf . Here we write x as an n-bit binary integer, and 0
represents a string of k zeros. The factor 1√

2n
in front is to make this

vector have norm 1.

78

We get

Tf

(
1√
2n

2n−1∑
x=0

|x〉 |0〉

)
=

1√
2n

2n−1∑
x=0

|x〉 |f(x)〉 .

Now the new state incorporates information about the values of f(x)
for all possible x. To achieve something like that with a classical
computer, we would need to compute values of f(x) sequentially, and
we would need to perform 2n iterations. This will be prohibitively
long even for modest values of n (after all, the age of the Universe is
less than 270 milliseconds).

A quantum computer will compute this in a single iteration. This
happens since we organized the input as a superposition of all possible
classical inputs. Then, a quantum computation, being a linear trans-
formation, will generate as output a superposition of states that will
contain information about all possible values of f . This shows that
quantum computations are massively parallel.

The drawback here is that the information about the values of f
cannot be easily extracted from the output state. Imagine that we
wish to solve an equation f(x) = 0, and assume for simplicity that
there is one value x = a for which this equation holds. Then we
would know that one of the terms in the output will be |a〉 |0〉, but we
cannot get access to the value of a by a measurement. If we perform
a measurement on the output state, we will only observe the value
|b〉 |f(b)〉 for a random input b. For more details on this proplem, see
the description of Grover’s quantum algorithm in the Appendix.

The challenge in designing quantum algorithms is to organize com-
putations in such a way, that a measurement will give us the answer
to our problem with a high enough probability.

79

14 Nuts and Bolts of Classical

Computations

When a computer program is executed, it is broken down into a se-
quence of basic operations that are executed by the computer proces-
sor. Today’s processors are powerful and can execute fairly complex
operations. For our analysis, we want to go to the roots of com-
putation, and discuss the most basic operations that are sufficient for
building a computer. These basic operations are: AND, OR and NOT.
The first two operations take two bits as arguments, whereas NOT is
an operation on a single bit.

The origins of these operations are in logic. Bit values are inter-
preted as True/False with x = 1 interpreted as “x is True” and x = 0
interpreted as “x is False”. Then x AND y is interpreted as “both x
and y are True”, while x OR y is interpreted as “either x is True, or
y is True, or both”. These are called operations of the Boolean logic,
in honour of George Boole, a 19th century mathematician who laid
down the foundations of symbolic logic.

We have the following value tables for these logic operations:

x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1

x y x OR y

0 0 0
0 1 1
1 0 1
1 1 1

x NOT x

0 1
1 0

We are going to use shorter notations, x ∧ y for x AND y, x ∨ y
for x OR y, x for NOT x. Function AND is also called conjunction,
while function OR is called disjunction.

Proposition. Operations of Boolean logic satisfy the following
properties:

(1) x ∧ y = x ∨ y,

(2) x ∨ y = x ∧ y,

(3) x = x,

(4) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

80

(5) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
We leave the proof of this Proposition as an exercise.

When it comes to the order of operations, it is customary to carry
out AND before OR, just as multiplication has a higher priority com-
pared to addition. Thus, expression x ∧ y ∨ z ∧ w is understood as
(x∧y)∨ (z∧w), whereas x∨y∧ z∨w is understood as x∨ (y∧ z)∨w.

Example. Let us express the function x = y (i.e., x is True if and
only if y is True). This means that either both x and y are True, or
both x and y are False. This can be expressed as

x ∧ y ∨ x ∧ y.

Example. Let us express the following function: 2-bit binary
integer x1x0 is greater than 2-bit binary integer y1y0. This function
should produce value 1 if x1x0 > y1y0, and 0 otherwise.

We see that x1x0 > y1y0 if the first bits satisfy x1 > y1, or if
x1 = y1 and x0 > y0. Inequality x1 > y1 means that x1 = 1 and
y1 = 0, whereas the expression for the equality was found in the
previous example. Combining these, we get an expression for this
function in the language of Boolean algebra:

x1 ∧ y1 ∨ (x1 ∧ y1 ∨ x1 ∧ y1) ∧ x0 ∧ y0.

As we pointed out above, any classical computation may be viewed
as a function f : Bn → Bk. Such a function f may be replaced with k
functions f1, f2, . . . , fk, where each fi is defined on Bn and produces
values in B1 = {0, 1}. Here f1 computes the first bit of the value of
f , f2 the second bit, and so on. For this reason we are focusing our
attention on functions

f : Bn → B1.

We claim that elementary Boolean functions {AND, OR, NOT}
allow us to express arbitrary Boolean functions. In electronics we im-
plement Boolean functions with electrical circuits, where presence of
voltage in a wire represents 1, and no voltage represents 0. Imagine
that we have a supply of boxes that implement elementary functions
{AND, OR, NOT} (the box for AND will have two wires going in,

81

and a single wire going out). The consequence of the previous claim
is that using these elementary boxes (also called gates) we can build
a computer processor. In fact, this is exactly how we build comput-
ers today, only instead of using separate boxes for each elementary
Boolean function, we assemble them with millions of these elementary
gates on a single chip.

Let us show that we can use elementary Boolean functions {AND,
OR, NOT} to express the function f : B3 → B1, given by the following
value table:

x y z f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Consider the second row of the value table, which says that f
assumes value 1 when x = 0, y = 0, z = 1. If we consider a conjunction
x∧ y ∧ z, it also generates value value 1 when x = 0, y = 0, z = 1, but
assumes value 0 for all other values of x, y, z.

Look at other rows where function f assumes values 1. This hap-
pens when x = 0, y = 1, z = 1 and when x = 1, y = 0, z = 0. The
conjunctions that generate value 1 for these values of x, y, z are x∧y∧z,
x ∧ y ∧ z. If we then take a disjunction

(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z),

it will generate exactly the same values as given in the value table of
f . This expression is called the disjunctive normal form of f .

It is clear that this approach works for any Boolean function. We
obtain the following

Theorem. Any Boolean function f : Bn → B1 may be expressed
using the elementary Boolean functions {AND, OR, NOT} as a dis-
junctive normal form.

82

When we design a logical circuit of a computer, we should try to
minimize the number of logical gates that we use, in order to reduce
cost, energy consumption and to increase the speed of computations.
Disjunctive normal forms, while being capable of implementing any
Boolean function, are not usually optimal from the point of view of
the number of gates they use. We illustrate this with the following
example.

Consider a function f that implements addition of two 2-bit in-
tegers: f(x1x0, y1y0) = x1x0 + y1y0 = z2z1z0. This function takes 4
bits as input (we separate the first two from the last two bits with
a comma simply for convenience of reading), and produces 3 bits of
output. We need to use 3 bits for the output because a sum of two
2-bit integers may be a 3-bit integer, for example: 3+2=5, which is
written in binary as 11 + 10 = 101, which means that f(1110) = 101.

x1 x0 y1 y0 z2 z1 z0
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Using addition of integers in binary form, we can easily complete
the value table for f . We can view function f as three functions
computing values of individual bits, z2(x1x0, y1y0), z1(x1x0, y1y0),
z0(x1x0, y1y0). Let us determine complexity of their disjunctive nor-

83

mal forms. As a measure of complexity let us choose the number of
conjunctions and disjunctions in the given expression. For simplicity,
we are going to neglect negations (they are less expensive to implement
in hardware). From the above table we see that value 1 is assumed
in 8 rows for the functions z1 and z0, and 6 times for the function
z2. Hence the disjunctive normal forms for z1 and z0 have complexity
8× 3 + 7 = 31, and the disjunctive normal form for z2 has complexity
6× 3 + 5 = 23.

The problem with the disjunctive normal forms is that they do
not take into account any internal logic that may be present in a
given function. For example, z0 computes the last bit of a sum, which
indicates its parity. However the parity of a sum is determined by the
parities of the arguments: the sum of two even numbers is even, the
sum of an even number and an odd number is odd, the sum of two
odd numbers is even. Hence, z0 is determined by values of x0 and y0
only, and we can give the following expression for it:

z0 = (x0 ∧ y0) ∨ (x0 ∧ y0).

The complexity of the latter expression is 3, which is much better than
31.

When we need to add two large numbers, we do not use “addi-
tion tables”, instead we use the method of long addition. The same
method works for integers in binary form, for example, the following
computation

1 1 1 1

1 0 1 1 0 1
+ 1 1 1 0 0 1

1 1 0 0 1 1 0

represents addition 45+57=102 computed in binary. The carries are
indicated in a small font above the top row.

We represent the above Boolean formula for addition of two bits
mod 2 with the following circuit:

84

To simplify the diagrams, we will draw this circuit as a single
addition box. Then the Boolean function a + b + c mod 2 may be
realized as a circuit in the following way:

Another operation that we need in order to implement long addi-
tion is computation of a carry that appears when we add 3 bits (two
input bits and a carry from the previous position). Note that in addi-
tion a+ b+ c the carry occurs when at least two of the bits have value
1, so the carry function may be expressed as (a∧ b) ∨ (a∧ c) ∨ (b∧ c)
with complexity 5, and may be further simplified to a∧(b∨c) ∨ (b∧c)
with complexity 4. The circuit for the carry computation is:

85

Now we can present the circuit for the addition of 2-bit binary
integers. To simplify the diagram, we will be using the circuits for
a+ b+ c mod 2, and for the carry as singles boxes

Note that the box for the computation of a carry in a+ b, is just
a ∧ b.

Finally, we get the circuit for the computation of z2, z1, z0 in
x1x0 + y1y0 = z2z1z0.

Evaluating complexity of each gate, we see that the total complex-
ity of this circuit is 1 + 3 + 6 + 4 = 14, which is much better than
31 + 31 + 23 = 85, given by disjunctive normal forms.

86

15 Quantum Gates and Circuits

In this chapter we are going to show how to transform a classical logical
circuit into a quantum circuit that implements classical computations
on a quantum computer.

As we discussed earlier, quantum computations must be invertible,
whereas classical gates {AND, OR} are not invertible. We fix this
problem by combining input and output bits together and creating
reversible analogues {RAND, ROR}, each being a function taking 3
bits of input and producing 3 bits of output:

This creates gates that compute z = x∧y and z = x∨y respectively,
provided that the output bit z is initialized to 0. These gates are
invertible and double application of a gate will restore the values of
all variables.

The NOT gate is already invertible and compatible with quantum
computations, hence there is no need to modify it.

There is one more operation that we need to add to our tool-
box. In classical computations we can make copies of data. Copy-
ing/duplication operation is not invertible. In order to create the
quantum analogue of copying, we need to apply the method of com-
bining input and output to the function f(x) = x. In this way we
obtain the gate which is called CNOT:

87

This gate performs copying of a classical bit x, provided that the
output bit y is initialized to zero: CNOT(x, 0) = (x, x). The name
CNOT stands for “Controlled NOT” – this is how this gate is used in
electronics, if x = 1 then the value of y is negated, and if x = 0 the
value of y is unchanged.

Let us point out that CNOT only copies classical bit values, but
not arbitrary quantum states. Let us see what happens when we apply
CNOT to a superposition of classical states:

CNOT(a |0〉+b |1〉) |0〉 = aCNOT(|00〉)+bCNOT(|10〉) = a |00〉+b |11〉 .

Copying a quantum state would mean the following transformation:

(a |0〉+ b |1〉) |0〉 7→ (a |0〉+ b |1〉)(a |0〉+ b |1〉),

which differs from the action of CNOT. In fact there is a theorem
claiming that copying unknown quantum states is impossible.

Notice also that in the above example, CNOT creates entangle-
ment. The original state (a |0〉+ b |1〉) |0〉 is factored in a product, and
hence is not entangled, whereas the state a |00〉 + b |11〉 is entangled,
provided that a, b 6= 0.

Now it becomes straightforward to turn any classical circuit into
a quantum circuit. Let us show how this is done on the example of
the function f(x, y) = x+ y mod 2. We transform the classical circuit
given in the previous chapter into a quantum circuit using RAND,
ROR, NOT, CNOT gates:

It is true that for the function f(x, y) = x + y mod 2 we could
have given a much simpler quantum circuit using CNOT gates only.

88

The point of this exercise was to show how any classical computation
circuit can be translated into a quantum circuit.

Note that in the quantum circuit we use not just the input and
output variables, but also auxiliary variables for storing the results
of intermediate calculations. This is quite similar to the way we do
classical computations - we use extra internal memory to carry out
the calculations.

When we develop software, we use compilers to convert code writ-
ten in a high-level computer language into a code executable by the
processor. Complex software is organized in modules, and once a mod-
ule completes its task, a compiler releases auxiliary memory used by
this module so that it becomes available to other modules. This task
is known as garbage collection.

It is desirable to perform garbage collection with quantum compu-
tations as well, for two reasons. First we may want to reuse auxiliary
qubits when they are no longer needed, and secondly, our output bits
may get entangled with the auxiliary bits, and anything happening to
the auxiliary bits may affect the values of the output qubits.

Quantum garbage collection would mean that auxiliary qubits
which are initialized to zero, will have zero values at the end of the
computation.

Theorem. For any classical computation there exists a quantum
circuit which implements this computation with quantum garbage col-
lection.

Consider a quantum implementation of a classical Boolean func-
tion f : Bn → Bk. The qubit space used for this computation is
divided into input qubits, output qubits and auxiliary qubits.

The quantum circuit Tf will transform |x〉in |0〉aux |0〉out into
|x〉in |j(x)〉aux |f(x)〉out. Here | 〉in represents input qubits, | 〉aux aux-
iliary qubits, | 〉out output qubits, and j(x) is the junk value of the
auxiliary qubits produced by the quantum circuit.

To implement quantum garbage collection, we double the size of
the output space, creating new qubits | 〉new out with the same number
of qubits as in | 〉out, and we now view the old output space | 〉out as
part of the auxiliary qubits. Now we run the following 3-step quantum

89

computation:
Step 1. Apply Tf , transforming

|x〉in |0〉aux |0〉out |0〉new out into |x〉in |j(x)〉aux |f(x)〉out |0〉new out .

Step 2. Use CNOT to copy from | 〉out to | 〉new out, obtaining

|x〉in |j(x)〉aux |f(x)〉out |f(x)〉new out .

Step 3. Apply T−1f , obtaining

|x〉in |0〉aux |0〉out |f(x)〉new out .

We see that all auxiliary bits, including old output bits, are reset
to 0.

In order to implement T−1f , we build a quantum circuit, where all
quantum gates of Tf are placed in reverse order. Since each elementary
quantum gate is its own inverse, this will undo Tf .

Here we modify the quantum circuit for x+y mod 2, implementing
quantum garbage collection:

90

16 Discrete Fourier Transform

Fourier transform is a mathematical tool for studying periodic or
nearly periodic functions. A good example of a nearly periodic func-
tion is the sound wave produced by a musical instrument. Let us look
at the simplest musical device – a vibrating string. A plucked string
vibrates, moving air around it.

This creates a sound wave, periodically spaced pockets of air of
higher density, interlaced with pockets of air of lower density. These
pockets propagate in space away from the source of the sound. To
record sound, we use a microphone, which has a flexible membrane
inside. Once the sound wave hits the microphone, pockets of dense
air push membrane to cave in, and pockets of low pressure will pull
membrane out.

A microphone will transform vibration of a membrane into an
electrical signal, which follows the motion of the membrane. In analog
sound recording, this electrical signal may be used to magnetize a

91

tape, so that the intensity of the magnetic field on the tape will follow
the profile of the sound signal. In digital sound recording, electric
signal produced by the microphone is sampled, capturing values of
this signal at regular time intervals and storing them on a computer.
For example, CD sound recordings are sampled at a rate of 44,100
Hertz, which means that one second of sound signal is stored as 44,100
values, usually scaled to be in the interval between -1 and 1.

Let us return to the discussion of a vibrating string. A string
vibrating in a way shown on the picture above, will produce sound
at a certain frequency, which is called its base frequency ω. It turns
out, however, that the same string may vibrate in a more complicated
way. It also has higher vibrational modes, which produce frequencies
2ω, 3ω, 4ω, etc. In practice, vibration of a string incorporates multiple
higher vibrational modes in addition to the base mode.

In music, higher vibrational modes present in the sound of an
instrument, are called overtones. It is the distribution of intensities
of overtones that distinguishes one musical instrument from another,
playing the same note.

Here we present a plot of a sound of a flute, showing approximately
0.01 seconds of the recording. Notice how the profile is nearly periodic,
with 5 periods that can be identified on this plot.

92

0 50 100 150 200 250 300 350 400
-0.1

-0.05

0

0.05

0.1

0.15

The next plot shows the frequency spectrum of this sound wave.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

900

1000

93

Because this is the sound of a musical instrument, playing a single
note, the frequency plot exhibits spikes at the base frequency (587
Hertz, the note is D5), and at the multiples of the base frequency.
Note that for this instrument, the second overtone is virtually absent
from the frequency spectrum.

Analysis of the frequency spectrum of the signal, presented above,
is carried out using discrete Fourier transform (DFT), which we are
going to discuss next.

Let us consider a function f(t) defined on an interval 0 ≤ t ≤ π.
We want to sample f(t) at N equally spaced points t0, t1, t2, . . . , tN−1
with the distance π

N between the points. However, the first point t0 is
placed not at 0, but with an offset, t0 = π

2N . Then t1 = t0 + π
N = 3π

2N ,
t2 = t1 + π

N = 5π
2N , etc., with the general formula

tj =
(2j + 1)π

2N
.

The last point will be close to the right end of the interval: tN−1 =
(2N−1)π

2N = π − π
2N . By sampling f(t) at these points we get an N -

component vector f = (f0, f1, . . . , fN−1), where fj = f(tj). We are
going to assume that N is even, N = 2M .

Waves are modelled with periodic functions cos(t) and sin(t). From
now on we take the arguments of trigonometric functions to be in
radians. Let us consider a family of functions

u0(t) = cos(t), u1(t) = cos(3t), . . . , uM−1(t) = cos((N − 1)t),

v0(t) = sin(t), v1(t) = sin(3t), . . . , vM−1(t) = sin((N − 1)t).

We can write these in a general form as

up(t) = cos((2p+ 1)t), vp(t) = sin((2p+ 1)t), p = 0, 1, . . . ,M − 1.

We then use sampling to pass from these continuous functions to their
discrete versions, creating an N -component vector from each of these
functions:

94

ũ0 = (cos(t0), cos(t1), cos(t2), . . . , cos(tN−1)),

ũ1 = (cos(3t0), cos(3t1), cos(3t2), . . . , cos(3tN−1)),

ũ2 = (cos(5t0), cos(5t1), cos(5t2), . . . , cos(5tN−1)),

. . .

and analogously for the functions vp(t).

Substituting the values for the points tj , we get

ũp =

(cos

(
(2p+ 1)π

2N

)
, cos

(
(2p+ 1)3π

2N

)
, . . . , cos

(
(2p+ 1)(2N − 1)π

2N

)
),

ṽp =

(sin

(
(2p+ 1)π

2N

)
, sin

(
(2p+ 1)3π

2N

)
, . . . , sin

(
(2p+ 1)(2N − 1)π

2N

)
),

with p = 0, 1, . . . ,M − 1.

This gives us a family of N vectors in RN . Let us study their
properties.

Theorem. Vectors {ũ0, ũ1, . . . , ũM−1, ṽ0, ṽ1, . . . , ṽM−1} are or-
thogonal to each other.

Before we prove this Theorem, let us review trigonometric identi-
ties.

When we look at the properties of the trigonometric functions, it
is important to keep in mind that cosα is the X-coordinate of the
point on a unit circle, corresponding to angle α, while sinα is the
Y -coordinate of the same point.

95

From this definition we see immediately the following properties:

cos(−α) = cosα, sin(−α) = − sinα.

The only two trigonometric formulas that really should be memo-
rized are:

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + cosα sinβ.

All other identities may be then derived. Switching the sign of β
in the above formulas, we get

cos(α− β) = cosα cosβ + sinα sinβ,

sin(α− β) = sinα cosβ − cosα sinβ.

Combining these formulas, we obtain

cos(α+ β) + cos(α− β) = 2 cosα cosβ,

cos(α− β)− cos(α+ β) = 2 sinα sinβ,

sin(α+ β) + sin(α− β) = 2 sinα cosβ.

We will also need the following

96

Proposition. Assume sinα 6= 0. Then

cos(α) + cos(3α) + cos(5α) + . . .+ cos((2N − 1)α) =
sin(2Nα)

2 sinα
,

sin(α) + sin(3α) + sin(5α) + . . .+ sin((2N − 1)α) =
1− cos(2Nα)

2 sinα
.

To prove the first identity of the Proposition, let us multiply its
the left hand side by 2 sinα and apply the formula for 2 sinα cosβ:

2 sinα cos(α) + 2 sinα cos(3α) + 2 sinα cos(5α)

+ . . .+ 2 sinα cos((2N − 1)α)

= (sin(2α)− sin(0)) + (sin(4α)− sin(2α)) + (sin(6α)− sin(4α))

+. . .+ (sin(2Nα)−sin((2N−2)α)).

Here most terms will cancel out, leaving sin(2Nα). Dividing both
sides by 2 sinα, we get the first identity.

We leave the proof of the second identity of the Proposition as an
exercise.

To prove the Theorem, we need to compute the dot products be-
tween the vectors in our family.

ũp · ũs =

N−1∑
j=0

cos

(
(2p+ 1)(2j + 1)π

2N

)
cos

(
(2s+ 1)(2j + 1)π

2N

)
.

Applying the formula for the product of cosines, we get

1

2

N−1∑
j=0

cos

(
(2p+ 2s+ 2)(2j + 1)π

2N

)
+ cos

(
(2p− 2s)(2j + 1)π

2N

)
.

Next, using the previous Proposition, we evaluate the sums:

1

2

N−1∑
j=0

cos

(
(p+ s+ 1)(2j + 1)π

N

)
=

sin
(
(p+s+1)2Nπ

N

)
4 sin

(
(p+s+1)π

N

) .

97

This computation is only valid if the sine in the denominator is non-
zero. Indeed, since 0 ≤ p, s ≤M−1, we conclude that 0 < (p+s+1)π

N <
π and the sine value is non-zero. Evaluating the second sum we get

1

2

N−1∑
j=0

cos

(
(p− s)(2j + 1)π

N

)
=

sin
(
(p−s)2Nπ

N

)
4 sin

(
(p−s)π
N

) ,
provided that the sine in the denominator is non-zero. Here the de-
nominator will turn into zero only when p = s. Note that both nu-
merators turn into zero, hence ũp · ũs = 0 when p 6= s. If p = s, the
first sum is still zero, and all cosines in the second sum have value 1,
giving ũp · ũp = N

2 .
Let us now compute the dot product ũp · ṽs:

ũp · ṽs =

N−1∑
j=0

cos

(
(2p+ 1)(2j + 1)π

2N

)
sin

(
(2s+ 1)(2j + 1)π

2N

)
.

Applying the formula for sinα cosβ, we get

1

2

N−1∑
j=0

sin

(
(2p+ 2s+ 2)(2j + 1)π

2N

)
+ sin

(
(2s− 2p)(2j + 1)π

2N

)
.

Using the second identity from the Proposition above, we simplify the
sums:

1

2

N−1∑
j=0

sin

(
(p+ s+ 1)(2j + 1)π

N

)
=

1− cos
(
(p+s+1)2Nπ

N

)
4 sin

(
(p+s+1)π

N

) ,

with the denominator being non-zero. Since the numerator turns into
zero, this sum vanishes. Evaluating the second sum we get

1

2

N−1∑
j=0

sin

(
(s− p)(2j + 1)π

N

)
=

1− cos
(
(s−p)2Nπ

N

)
4 sin

(
(s−p)π
N

) ,

provided that p 6= s, in which case the sum is zero. If p = s, this sum
is still zero since each summand is zero.

98

We conclude that ũp · ṽs = 0 for all p, s. We leave the calculation
of ṽp · ṽs as an exercise.

Summarizing:

ũp · ũs = ṽp · ṽs =

{
N/2, if p = s,

0, if p 6= s.
ũp · ṽs = 0 for all p, s.

This completes the proof of the Theorem.
To turn this set of vectors into an orthonormal basis, we divide

each vector by its length:

up =

√
2

N
ũp, vp =

√
2

N
ṽp.

We can expand any vector f = (f0, f1, . . . , fN−1) in this basis:

f =

M−1∑
p=0

apup + bpvp.

The coefficients ap and bp in this expression are called the Fourier
coefficients of f . Discrete Fourier transform is a transformation of a
vector of samples into a vector of Fourier coefficients:

(f0, f1, . . . , fN−1) 7→ (a0, a1, . . . , aM−1, b0, b1, . . . , bM−1).

The original vector of samples describes the evolution of the signal in
time. Each Fourier coefficient corresponds to a particular frequency.
We say that Fourier transform is a transformation from time domain
to frequency domain.

We need to solve the problem of expanding a given vector f as a
linear combination of {u0,u1, . . . ,uM−1,v0,v1, . . . ,vM−1}. It turns
out that it is much easier to do this for bases that are orthonormal.

Proposition. Let {w1,w2, . . . ,wN} be an orthonormal basis of
RN and let f be a vector in RN . The coefficients of the expansion of
f into a linear combination

f = c1w1 + c2w2 + . . .+ cNwN

99

may be found using dot products:

cj = f ·wj for j = 1, 2, . . . , N.

Proof. Take the dot product of both sides of the linear combination
with wj :

f ·wj = c1w1 ·wj + c2w2 ·wj + . . .+ cNwN ·wj .

Since the basis is orthonormal, all dot products in the right hand side
will turn into zero, except wj ·wj , which is equal to 1. This will give
us f ·wj = cj , as claimed.

This Proposition immediately yields the formulas for the Fourier
coefficients:

ap = f · up =

√
2

N

N−1∑
j=0

fj cos

(
(2p+ 1)(2j + 1)π

2N

)
,

bp = f · vp =

√
2

N

N−1∑
j=0

fj sin

(
(2p+ 1)(2j + 1)π

2N

)
,

with p = 0, 1, . . . ,M − 1.
If we know the Fourier coefficients (a0, a1, . . . , aM−1, b0, b1, . . . , bM−1),

we can reconstruct the original signal f = (f0, f1, . . . , fN−1). This pro-
cedure is called the inverse Fourier transform.

Since

f =

M−1∑
p=0

apup + bpvp,

we can compute fj by taking j-th component of each vector:

fj =

√
2

N

M−1∑
p=0

ap cos

(
(2p+ 1)(2j + 1)π

2N

)
+bp sin

(
(2p+ 1)(2j + 1)π

2N

)
.

Both direct and inverse discrete Fourier transforms are linear trans-
formations of RN . Under the inverse DFT, vector (1, 0, 0, . . . , 0),

100

which corresponds to a0 = 1, gets transformed into the vector u0.
Similarly, the images of the standard basis vectors ek are the vectors
{u0, . . . ,uM−1,v0, . . . ,vN−1}. Since these vectors are orthonormal,
we conclude that inverse DFT is an orthogonal linear transformation.
An inverse of an orthogonal linear transformation is orthogonal. This
implies that direct DFT is also an orthogonal linear transformation.

This is good news for us, because it means that discrete Fourier
transform is compatible with the paradigm of quantum computing.
A quantum version of DFT, which is called quantum Fourier trans-
form (QFT), is an essential ingredient of Shor’s algorithm. We shall
introduce QFT in a later chapter.

The magnitude of Fourier coefficients indicate how strongly a cer-
tain frequency is present in a given signal. In particular, when we
apply the Fourier transform to a periodic signal, we shall see spikes
in Fourier coefficients ap and bp at values of p that correspond to the
multiples of the base frequency of the signal. This is exactly what we
saw in the DFT plot for the flute recording shown above.

Let us consider a particularly simple example of a periodic signal,
which is important for the Shor’s algorithm. Fix two integers 0 ≤ s <
m, and consider the following sequence of length N and period m:

fi =

{
1, if i = s mod m,
0, otherwise.

Let us assume that N/m is fairly large. We see that fi = 1 for
i = s + jm, with j = 0, 1, . . . , L − 1. Here L is the smallest integer
that is greater or equal to (N − s)/m.

Exercise. Compute the discrete Fourier transform for this se-
quence (f0, f1, . . . , fN−1). Show that Fourier coefficients are given by
the following formulas:

ap =

√
2

N

sin
(
(2p+1)(2s+(2L−1)m+1)π

2N

)
− sin

(
(2p+1)(2s−m+1)π

2N

)
2 sin

(
(2p+1)mπ

2N

) ,

101

bp =

√
2

N

cos
(
(2p+1)(2s−m+1)π

2N

)
− cos

(
(2p+1)(2s+(2L−1)m+1)π

2N

)
2 sin

(
(2p+1)mπ

2N

) .

Hint: The first Proposition of this chapter may come handy in this
computation.

Let us analyze when the Fourier coefficients obtained in this ex-
ercise have large values. Absolute values of the numerators in these
formulas cannot exceed 2, since absolute values of sine and cosine do
not exceed 1. Thus the only possibility for these Fourier coefficients

to become large is when the denominator sin
(
(2p+1)mπ

2N

)
has a value

close to zero. This happens when (2p+1)m
2N is close to an integer:

(2p+ 1)m

2N
≈ K,

equivalently,

p ≈ K × N

m
− 1

2
.

We see that the spikes in the values of the Fourier coefficients are
located at the values of p that are multiples of the base frequency

ω =
N

m

(neglecting a small shift by 1
2). Note that locations of the spikes are

determined by the period m, and do not dependent on s.

Discrete Fourier transform is widely used in digital signal process-
ing, and in particular for compression of audio files (MP3) and images
(JPEG). Let us outline the idea of audio compression.

A typical sound signal is oscillating and the vast majority of its
samples are not close to zero. If we perform a discrete Fourier trans-
form, a majority of Fourier coefficients will be very close to zero, since
a typical sound wave is localized to several fairly narrow frequency
bands. We can replace small Fourier coefficients with zeros and then
store/transmit only significant Fourier coefficients, reducing the size
of data. The inverse DFT is used to reconstruct the signal from the

102

stored Fourier coefficients. This will introduce small distortions to the
recording, yet significant compression factors may be achieved with
only a minor loss in quality.

103

17 Fast Fourier Transform

Fast Fourier transform (FFT) is a clever fast algorithm for computing
discrete Fourier transform. Our goal is the same as in the previous
chapter, to compute the Fourier coefficients:

ap = f · up =

√
2

N

N−1∑
j=0

fj cos

(
(2p+ 1)(2j + 1)π

2N

)
,

bp = f · vp =

√
2

N

N−1∑
j=0

fj sin

(
(2p+ 1)(2j + 1)π

2N

)
.

Let us estimate the complexity of the computation, given by these
formulas. When defining the computational complexity here, we will
count the number of multiplications and ignore additions, since addi-
tions are far less expensive. We assume that all sine and cosine values

are precomputed and stored. We will also ignore the factor of
√

2
N

since we can choose N
2 to be a power of 4, and resulting division by a

power of 2 is a very simple operation when performed in binary.

Computation of each Fourier coefficient using the above formulas
will then involve N multiplications, and there are N Fourier coeffi-
cients to be computed. Hence the complexity of DFT when computed
with these formulas is N2. Fast Fourier transform lets us compute
exactly same thing, but with complexity 2N log2(N). For a vector
of length 1024 (which is not uncommon in digital signal processing),
the straightforward method will have complexity of 1, 048, 576 versus
20, 480 for the FFT.

Fast Fourier transform is a recursive algorithm. Its idea is to split
the given vector f into two vectors of half length each, apply FFT
to each shorter vector and then recombine two sequences of Fourier
coefficients for the two halves into a sequence of Fourier coefficients
for f .

From now on, we shall assume that N is a power of 2, N = 2n,
M = N/2 = 2n−1.

104

Let us splice vector f = (f0, f1, f2, . . . , fN−1) into two shorter vec-
tors as follows: f = (g0, h0, g1, h1, . . . , gM−1, hM−1). Here no compu-
tations are needed, we are only introducing new notations:

gi = f2i, hi = f2i+1, i = 0, 1, . . . ,M − 1.

This produces two vectors of length 2n−1:

g = (g0, g1, . . . , g2n−1−1), h = (h0, h1, . . . , h2n−1−1).

Let us apply Fourier transform to vectors g and h:

g 7→ (ag0, . . . , a
g
2n−2−1, b

g
0, . . . , b

g
2n−2−1),

h 7→ (ah0 , . . . , a
h
2n−2−1, b

h
0 , . . . , b

h
2n−2−1).

Fourier coefficients for g and h are given by

ags =
1√

2n−2

2n−1−1∑
i=0

gi cos

(
(2s+ 1)(2i+ 1)π

2n

)
,

bgs =
1√

2n−2

2n−1−1∑
i=0

gi sin

(
(2s+ 1)(2i+ 1)π

2n

)
,

with analogous formulas for ahs and bhs .
Now let us see how we can construct Fourier coefficients ap, bp for

vector f from ags, ahs , bgs and bhs .

ap =
1√

2n−1

2n−1∑
j=0

fj cos

(
(2p+ 1)(2j + 1)π

2n+1

)

=
1√

2n−1

2n−1−1∑
i=0
j=2i

f2i cos

(
(2p+ 1)(4i+ 1)π

2n+1

)

+
1√

2n−1

2n−1−1∑
i=0

j=2i+1

f2i+1 cos

(
(2p+ 1)(4i+ 3)π

2n+1

)

105

=
1√

2n−1

2n−1−1∑
i=0

gi cos

(
(2p+ 1)(4i+ 2)π

2n+1
− (2p+ 1)π

2n+1

)

+
1√

2n−1

2n−1−1∑
i=0

hi cos

(
(2p+ 1)(4i+ 2)π

2n+1
+

(2p+ 1)π

2n+1

)

=
1√

2n−1

2n−1−1∑
i=0

gi cos

(
(2p+ 1)(2i+ 1)π

2n

)
cos

(
(2p+ 1)π

2n+1

)

+
1√

2n−1

2n−1−1∑
i=0

gi sin

(
(2p+ 1)(2i+ 1)π

2n

)
sin

(
(2p+ 1)π

2n+1

)

+
1√

2n−1

2n−1−1∑
i=0

hi cos

(
(2p+ 1)(2i+ 1)π

2n

)
cos

(
(2p+ 1)π

2n+1

)

− 1√
2n−1

2n−1−1∑
i=0

hi sin

(
(2p+ 1)(2i+ 1)π

2n

)
sin

(
(2p+ 1)π

2n+1

)

=
agp + ahp√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgp − bhp√

2
sin

(
(2p+ 1)π

2n+1

)
.

We leave the computation for bp as an exercise:

bp =
bgp + bhp√

2
cos

(
(2p+ 1)π

2n+1

)
+
−agp + ahp√

2
sin

(
(2p+ 1)π

2n+1

)
.

Keep in mind that in fast Fourier transform algorithm, Fourier co-
efficients for subsequences g and h are again computed recursively,
by splicing each of these into shorter subsequences. The original
Fourier transform formulas are only used for the sequences of length
2, (f0, f1) 7→ (a0, b0):

a0 = f0 cos
(π

4

)
+ f1 cos

(
3π

4

)
=
f0 − f1√

2
,

b0 = f0 sin
(π

4

)
+ f1 sin

(
3π

4

)
=
f0 + f1√

2
.

106

Theorem. The complexity of the fast Fourier transform algorithm
for the vector of length N = 2n is 2N log2(N) = 2n2n.

Proof. We prove this Theorem by induction on n. For the basis
of induction, n = 1, N = 2, we note that in this case the original
formulas are used, with just 2 multiplications required, which is better
than 2N log2(N).

Let us show the step of induction. Our induction assumption is
that for the sequence of length 2n, the complexity of FFT is 2n2n.
Let us evaluate the complexity of FFT for a sequence of length 2n+1.
To compute Fourier coefficients ap, bp we first compute FFT for the
subsequences g and h with complexity 2× 2n2n. Then for each of the
2n+1 Fourier coefficients, we need to carry out two multiplications.
The total complexity is then

2× 2n2n + 2× 2n+1 = 2(n+ 1)2n+1,

which is exactly what we need to prove.

One more remark is in order. When we express Fourier coefficients
ap and bp through agp, b

g
p, ahp , bhp , index p is in the range 0 ≤ p < 2n−1.

However Fourier coefficients for g and h were only defined for the
indices in the range 0 ≤ p < 2n−2. The following theorem explains
how to evaluate the formulas for the Fourier coefficients for g and h
with p in the range 2n−2 ≤ p < 2n−1.

Theorem. Let g be a vector of length 2n−1. Let p = 2n−1− 1− r
with 0 ≤ r < 2n−2. Then

agp = −agr , bgp = bgr .

Analogous relations hold for the Fourier coefficients of h.

Proof. Recall that Fourier coefficients agp are given by the formula

agp =
1√

2n−2

2n−1−1∑
i=0

gi cos

(
(2p+ 1)(2i+ 1)π

2n

)
.

107

Substituting p = 2n−1 − 1− r , we get

agp =
1√

2n−2

2n−1−1∑
i=0

gi cos

(
(2n − 2r − 1)(2i+ 1)π

2n

)

=
1√

2n−2

2n−1−1∑
i=0

gi cos

(
(2i+ 1)π − (2r + 1)(2i+ 1)π

2n

)
.

Using identities cos(2π+α) = cos(α), cos(π+α) = − cos(α), cos(−α) =
cos(α), we simplify the above to

agp = − 1√
2n−2

2n−1−1∑
i=0

gi cos

(
(2r + 1)(2i+ 1)π

2n

)
= −agr .

The proof for bgp is left as an exercise.
In the case when 2n−2 ≤ p < 2n−1 we write p as p = 2n−1−1−r and

we can calculate Fourier coefficients for f from the Fourier coefficients
for g and h in the following way:

ap =
−agr − ahr√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgr − bhr√

2
sin

(
(2p+ 1)π

2n+1

)
,

bp =
bgr + bhr√

2
cos

(
(2p+ 1)π

2n+1

)
+
agr − ahr√

2
sin

(
(2p+ 1)π

2n+1

)
.

Let us also express the trigonometric factors in the right hand side in
terms of r:

cos

(
(2p+ 1)π

2n+1

)
= cos

(
(2n − 2r − 1)π

2n+1

)

= cos

(
π

2
− (2r + 1)π

2n+1

)
= sin

(
(2r + 1)π

2n+1

)
.

In the last step we used the identity cos(π2 − α) = sinα.
Similarly,

sin

(
(2p+ 1)π

2n+1

)
= cos

(
(2r + 1)π

2n+1

)
.

108

Now for 2n−2 ≤ p < 2n−1 with p = 2n−1 − 1− r , we obtain:

ap =
−agr − ahr√

2
sin

(
(2r + 1)π

2n+1

)
+
bgr − bhr√

2
cos

(
(2r + 1)π

2n+1

)
,

bp =
bgr + bhr√

2
sin

(
(2r + 1)π

2n+1

)
+
agr − ahr√

2
cos

(
(2r + 1)π

2n+1

)
.

109

18 Quantum Fourier Transform

We have already introduced several standard transformations acting
on the spaces of qubits when we discussed quantum implementations
of classical computations. These quantum gates RAND, ROR, NOT
and CNOT are rather special transformations – all of these just per-
mute the basis vectors. To invoke full power of quantum computers
we shall need to go beyond the permutation transformations and in-
troduce operations on 1- and 2-qubit spaces which are more general.

The first transformation we introduce is called the Hadamard’s
transformation. It acts on a 1-qubit space in the following way:

H |0〉 =
1√
2
|0〉+

1√
2
|1〉 , H |1〉 =

1√
2
|0〉 − 1√

2
|1〉 .

The second standard family of quantum gates is rotation transfor-
mations Rα of a 1-qubit space:

Rα |0〉 = cosα |0〉 − sinα |1〉 , Rα |1〉 = sinα |0〉+ cosα |1〉 .

The family of rotations, together with the Hadamard’s transfor-
mation generate the orthogonal group O(2) – every orthogonal trans-
formation of a 1-qubit space is either a rotation, or a product of a
rotation with the Hadamard’s transformation.

The last standard quantum transformation is the family of con-
trolled rotations CRα. These are transformations of a 2-qubit space
which act in the following way:

CRα |xy〉 =

{
|xy〉 if x = 0,
|x〉Rα |y〉 if x = 1.

Here we apply a rotation to the second quantum bit, but this rotation
is controlled by the value of the first quantum bit. The rotation is
applied only if the first bit has value 1, and is not applied if the first
bit has value 0.

In the standard basis of a 2-qubit space {|00〉 , |01〉 , |10〉 , |11〉}, the

110

matrix of this transformation is:

CRα =


1 0 0 0
0 1 0 0
0 0 cosα sinα
0 0 − sinα cosα


Let us now define the quantum Fourier transform (QFT).

In the classical discrete Fourier transform the input is a vector
(f0, f1, . . . , fN−1) and the output is the vector of Fourier coefficients
(a0, a1, . . . , aN/2−1, b0, b1, . . . , bN/2−1). Quantum Fourier transform
does the same thing, only the input and the output are n-qubits:

2n−1∑
k=0

fk |kn−1 . . . k1k0〉 7→

2n−1−1∑
p=0

ap |p0p1 . . . pn−2〉 |0〉+
2n−1−1∑
p=0

bp |p0p1 . . . pn−2〉 |1〉 .

Here kn−1 . . . k1k0 is the binary expression of integer k. In the right
hand side it will be convenient for us to write the bits of p in the reverse
order, with p = pn−22

n−2+. . .+2p1+p0 represented as |p0p1 . . . pn−2〉.
Since ap coefficients are written in the Fourier transform sequence first,
the value of the leading bit for them is 0, and the leading bit has value
1 for bp coefficients.

The goal of this chapter is to present an implementation of quan-
tum Fourier transform, using the standard 1-qubit and 2-qubit oper-
ations.

This implementation is built on the ideas of the fast Fourier trans-
form. Just as it was the case with FFT, quantum Fourier transform is
recursive. This means that we shall use QFT on (n− 1)-qubits when
constructing a QFT for n-qubits.

We shall first list 6 steps of the implementation of the quantum
Fourier transform, and then go through these steps in detail. A nice
feature of the QFT is that its implementation does not require any
auxiliary memory.

111

Quantum Fourier Transform:

Step 1. Apply QFT to the first (n− 1) bits of an input n-qubit.
Step 2. Apply the Hadamard’s transformation to the last bit.
Step 3. Apply CNOT to the last bit, controlled by the second last
bit.
Step 4. Apply a sequence of rotations to the second last bit, con-
trolled by the previous bits.
Step 5. Apply CNOT to the second last bit, controlled by the last
bit.
Step 6. Apply CNOTs to the first n−2 bits, controlled by the second
last bit.

We begin with the input n-qubit

2n−1∑
k=0

fk |kn−1 . . . k1k0〉 .

First, following the ideas of fast Fourier transform, we splice the se-
quence f into two subsequences g and h, with g corresponding to even
values k and h corresponding to odd k. After this change in notations,
our input qubit is written as

2n−1−1∑
s=0

gs |sn−2 . . . s0〉 |0〉+ hs |sn−2 . . . s0〉 |1〉 .

We perform Step 1 of our procedure, applying QFT to the left
n− 1 bits. The result of this operation is

2n−2−1∑
p=0

agp |p0 . . . pn−3〉 |00〉+ bgp |p0 . . . pn−3〉 |10〉

+ahp |p0 . . . pn−3〉 |01〉+ bhp |p0 . . . pn−3〉 |11〉 .

Step 2 is to apply the Hadamard’s transformation

H |0〉 =
1√
2
|0〉+

1√
2
|1〉 , H |1〉 =

1√
2
|0〉 − 1√

2
|1〉

112

to the last bit, which produces

2n−2−1∑
p=0

agp√
2
|p0 . . . pn−3〉 |00〉+

agp√
2
|p0 . . . pn−3〉 |01〉

+
bgp√

2
|p0 . . . pn−3〉 |10〉+

bgp√
2
|p0 . . . pn−3〉 |11〉

+
ahp√

2
|p0 . . . pn−3〉 |00〉 −

ahp√
2
|p0 . . . pn−3〉 |01〉

+
bhp√

2
|p0 . . . pn−3〉 |10〉 −

bhp√
2
|p0 . . . pn−3〉 |11〉

=
2n−2−1∑
p=0

agp + ahp√
2
|p0 . . . pn−3〉 |00〉+

agp − ahp√
2
|p0 . . . pn−3〉 |01〉

+
bgp + bhp√

2
|p0 . . . pn−3〉 |10〉+

bgp − bhp√
2
|p0 . . . pn−3〉 |11〉 .

Step 3 is to perform CNOT on the last bit, controlled by the second
last bit: |x y〉 7→ |x y⊕x〉, producing

2n−2−1∑
p=0

agp + ahp√
2
|p0 . . . pn−3〉 |00〉+

agp − ahp√
2
|p0 . . . pn−3〉 |01〉

+
bgp + bhp√

2
|p0 . . . pn−3〉 |11〉+

bgp − bhp√
2
|p0 . . . pn−3〉 |10〉 .

The next Step 4 is the most intricate. We perform a sequence of
rotations on the second last bit:

|0〉 7→ cosα |0〉 − sinα |1〉 ,

|1〉 7→ sinα |0〉+ cosα |1〉 .

The first rotation is in angle π/2n+1. Then for each of the first n− 2
bits p0 . . . pn−3 we perform a rotation of the second last bit in angle
π/2n−j , which is controlled by bit pj . This rotation is performed only

113

if pj = 1, and we do nothing if pj = 0. Alternatively, we can interpret
this controlled rotation as a rotation of the second last bit in the angle
pjπ/2

n−j .

Combining these rotations together, we will get a rotation in angle

α = (1 + 2p0 + 22p1 + . . .+ 2n−2pn−3)
π

2n+1
=

(2p+ 1)π

2n+1
.

Below we are going to abbreviate |p0 . . . pn−3〉 to |p〉. The outcome of
Step 4 is

2n−2−1∑
p=0

agp + ahp√
2

cos
((2p+ 1)π

2n+1

)
|p〉 |00〉−

agp + ahp√
2

sin
((2p+ 1)π

2n+1

)
|p〉 |10〉

+
agp − ahp√

2
cos

(
(2p+ 1)π

2n+1

)
|p〉 |01〉 −

agp − ahp√
2

sin

(
(2p+ 1)π

2n+1

)
|p〉 |11〉

+
bgp + bhp√

2
sin

(
(2p+ 1)π

2n+1

)
|p〉 |01〉+

bgp + bhp√
2

cos

(
(2p+ 1)π

2n+1

)
|p〉 |11〉

+
bgp − bhp√

2
sin

(
(2p+ 1)π

2n+1

)
|p〉 |00〉+

bgp − bhp√
2

cos

(
(2p+ 1)π

2n+1

)
|p〉 |10〉

=

2n−2−1∑
p=0

(
agp + ahp√

2
cos
((2p+ 1)π

2n+1

)
+
bgp − bhp√

2
sin
((2p+ 1)π

2n+1

))
|p〉 |00〉

+

(
agp − ahp√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgp + bhp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |01〉

+

(
bgp − bhp√

2
cos

(
(2p+ 1)π

2n+1

)
−
agp + ahp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |10〉

+

(
bgp + bhp√

2
cos

(
(2p+ 1)π

2n+1

)
−
agp − ahp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |11〉 .

114

On Step 5 we apply CNOT to the second last bit, controlled by
the last bit: |x y〉 7→ |x⊕y y〉, yielding

2n−2−1∑
p=0

(
agp + ahp√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgp − bhp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |00〉

+

(
agp − ahp√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgp + bhp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |11〉

+

(
bgp − bhp√

2
cos

(
(2p+ 1)π

2n+1

)
−
agp + ahp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |10〉

+

(
bgp + bhp√

2
cos

(
(2p+ 1)π

2n+1

)
−
agp − ahp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |01〉 .

Our final step is to apply controlled negations CNOT to each of
first n−2 bits, all controlled by the second last bit. When writing the
final outcome, we will split it into two parts. Whenever the second
last bit is zero, we will keep p as a summation variable, and when
value of the second last bit is 1, we will replace p with a new variable
r. The bits of r are all going to be negated when we apply CNOT,
and we will denote the result of negation by |r〉 = |r0r1 . . . rn−3〉. We
then get the following expression:

2n−2−1∑
p=0

(
agp + ahp√

2
cos

(
(2p+ 1)π

2n+1

)
+
bgp − bhp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |00〉

+

(
bgp + bhp√

2
cos

(
(2p+ 1)π

2n+1

)
−
agp − ahp√

2
sin

(
(2p+ 1)π

2n+1

))
|p〉 |01〉

+

2n−2−1∑
r=0

(
bgr − bhr√

2
cos
((2r + 1)π

2n+1

)
− agr + ahr√

2
sin
((2r + 1)π

2n+1

))
|r〉 |10〉

+

(
agr − ahr√

2
cos

(
(2r + 1)π

2n+1

)
+
bgr + bhr√

2
sin

(
(2r + 1)π

2n+1

))
|r〉 |11〉 .

115

Recalling the formulas of the fast Fourier transform, we recognize the
first two coefficients as ap and bp with 0 ≤ p < 2n−2, while the last
two coefficients are ap and bp with 2n−2 ≤ p < 2n−1, p = 2n−1− 1− r.
The above expression simplifies to

2n−2−1∑
p=0

(
ap |p〉 |00〉+ bp |p〉 |01〉

)
+

2n−1−1∑
p=2n−2

p=2n−1−1−r

(
ap |r〉 |10〉+ bp |r〉 |11〉

)
.

When p with 2n−2 ≤ p < 2n−1, p = 2n−1−1−r, is written as an n−1
bit integer in binary form, the leading bit of p is equal to 1, and the
remaining n− 2 bits are negations of the bits of r, |p〉 = |r〉 |1〉, so the
two parts of the summation may be combined, taking p to be now an
n− 1 bit integer, |p〉 = |p0p1 . . . pn−3pn−2〉:

2n−1−1∑
p=0

ap |p0p1 . . . pn−2〉 |0〉+ bp |p0p1 . . . pn−2〉 |1〉 .

We see that as a result of this sequence of steps, we obtained precisely
the quantum Fourier transform of the input n-qubit.

Exercise: Show that the complexity of the quantum Fourier trans-
form for n-qubits (the number of the quantum gates used) is n2.

We see that QFT has a quadratic complexity (as a function of the
number of bits), versus exponential complexity for FFT.

116

19 Shor’s Algorithm

It is now time to combine all the threads we developed and describe
Shor’s quantum algorithm for factorization of large integers.

Let p, q be two large secret prime numbers, and N = pq be their
product. Our goal is to determine the values of p and q, given the
value of N . Solving this problem will break RSA cryptosystem. As
we have seen, we can determine p and q if, in addition to N , we know
the order of the group Z∗N of invertible remainders mod N . We shall
denote the number of elements in Z∗N by M = (p− 1)(q − 1).

The idea is to determine M by finding orders of elements in Z∗N .
By Lagrange’s Theorem, the order of each element is a divisor of M ,
hence, computing the orders of elements in this group will give us
divisors of M .

Let us illustrate this idea with the following example. Let us se-
lect primes p = 36013 and q = 51199, with N = pq = 1843829587.
Numbers p − 1 and q − 1 factor as follows: p − 1 = 22 × 3 × 3001,
q − 1 = 2× 3× 7× 23× 53. In practice, these factorizations will not
be known as the primes p, q themselves are not given. Still, for illus-
tration purposes it is helpful to have these factorizations as they shed
light on the orders of elements in Z∗N . The order of this multiplicative
group is M = (p−1)(q−1) = 1843742376 = 23×32×7×23×53×3001.

Suppose we have a way to compute orders of elements in this group.
Let us list orders of a few elements:

g order of g factorization of the order

2 13360452 22 × 3× 7× 53× 3001
3 21949314 2× 3× 23× 53× 3001
5 13360452 22 × 3× 7× 53× 3001
7 5797932 22 × 3× 7× 23× 3001
11 43898628 22 × 3× 23× 53× 3001
13 153645198 2× 3× 7× 23× 53× 3001

Here we do not list the order of g = 4 since being the square of 2,
its order is a half of the order of 2. In an abelian group, the order of
a product is a divisor of the least common multiple of the orders of
factors. For this reason, we only list prime elements g.

117

Again, in a real situation, factorization of orders will not be avail-
able, but it is instructive to look at these. Even if we do not have
factorizations of orders available, we can still effectively compute the
least common multiple of the orders of elements since

LCM(a, b) =
ab

GCD(a, b)

and the greatest common divisor may be computed using the Eu-
clidean algorithm.

It follows from Lagrange’s Theorem that M is divisible by the least
common multiple of the orders of elements. For the elements we listed
above, the least common multiple is

R = 307290396 = 22 × 3× 7× 23× 53× 3001 = LCM(p− 1, q − 1).

In a setting of cryptography, numbers p − 1 and q − 1 will have
large prime factors, otherwise there are known non-quantum methods
for breaking RSA. This implies that LCM(p−1, q−1) will differ from
M by a fairly small factor. Since N/M ≈ 1, we can determine this
factor from N/R = 1843829587

307290396 ≈ 6.00028, hence M = 6R.
This tells us that if we can determine orders of a few elements in

the group Z∗N , we will be able to factor N . For the rest of this chapter
we will focus on the problem of finding the order m of a given element
g in Z∗N .

We begin by setting the number of qubits that will be required
for the quantum algorithm. Choose n such that 2n−1 < N < 2n.
Quantum algorithm that we are going to describe will be operating
with 3n-qubits.

We begin with a 3n-qubit initialized to |00 . . . 0〉.
Step 1. We apply Hadamard’s transformation H to each of the first
2n qubits:

H |0〉 . . . H |0〉 |0 . . . 0〉 =
1√
2

(
|0〉+ |1〉

)
. . .

1√
2

(
|0〉+ |1〉

)
|0 . . . 0〉

=
1

2n

22n−1∑
k=0

|k〉 |0 . . . 0〉 .

118

Step 2. For the given remainder g in Z∗N consider a function

f : B2n −→ Bn,

f(k) = gk mod N, 0 ≤ k < 22n.

Let us point out that function f is periodic with period equal to the
order of element g. Since this order (which we want to determine) does
not exceed 2n, we are computing this function over a large number of
its periods. Classically this computation is not feasible, but can be
done with a quantum computer due to massive parallelism of quantum
computations.

The classical computation f has a quantum implementation Tf ,
which is a linear transformation of the space of 3n-qubits, where the
first 2n bits are interpreted as input bits, and the last n bits as output.
Since N < 2n, we have a sufficient number of bits to record any
remainder mod N .

Apply Tf to the qubit constructed in Step 1:

Tf

 1

2n

22n−1∑
k=0

|k〉 |0 . . . 0〉

 =
1

2n

22n−1∑
k=0

|k〉 | gk mod N 〉 .

Step 3. Perform the measurement of the last n bits. The result of
this measurement is probabilistic. We will observe one of the values
h, which is a power of g mod N . Our 3n-qubit will collapse to a state,
where the last n bits will assume value h mod N . What will happen
with the first 2n bits? All the values of k with gk 6= h mod N will
disappear. Still, the resulting state will involve a sum, since there is
more than one value of k for which gk = h mod N . Denote by s the
smallest such value of k. As m is the order of g, we have

h = gs = gs+m = gs+2m = gs+3m = . . . = gs+(L−1)m mod N,

where L is the smallest integer greater or equal to (22n− s)/m. Then
the quantum state obtained as a result of this measurement can be
written as

1√
L

L−1∑
j=0

|s+ jm〉 |h〉 .

119

We see that the coefficients in this state form a sequence, which is
periodic with period m (which is to be determined):

fk =
1√
L

{
1, if k = s mod m,
0, otherwise.

Step 4. Apply quantum Fourier transform to the first 2n bits. This
will result in the state

22n−1−1∑
r=0

ar |r〉 |0〉 |h〉+ br |r〉 |1〉 |h〉 ,

where the values of ar and br have spikes at integer multiples of the
frequency ω = 22n/m (see the exercise in the chapter on discrete
Fourier transform).

Step 5. Perform the measurement of the values of the first
2n − 1 bits. The outcome of the measurement is probabilistic, with
the probability of observing value r being a2r + b2r . With a high prob-
ability, the observed value of r will correspond to a spike, and hence
r will be close to an integer multiple of ω = 22n/m.

We record the observed value of r and repeat Steps 1–5 several
times, collecting observations r1, r2, . . . , r` (here ` is a small number).
This completes the quantum part of the algorithm.

Let us describe how we can get the value of m from the observed
values r1, r2, . . . , r`. As we pointed out, r1, . . . , r` are close to being
integer multiples of ω = 22n/m. Let us assume that ri ≈ kiω. We are
hoping that GCD(k1, . . . , k`) = 1. This is quite realistic to expect.
Indeed, the probability that two random large integers are relatively
prime is 6/π2 = 0.6079 For ` random large integers this probability
is given by the inverse of the so-called zeta-function: 1/ζ(`). For
example, for ` = 6, the probability that 6 random integers do not
share a common factor is 1/ζ(6) = 945/π6 = 0.9829

Our goal is to determine the value of ω, as we can easily findm from
it: m = 22n/ω. Although r1, . . . , r` are essentially integer multiples of
ω, we cannot use the standard Euclidean algorithm to find the value

120

of ω, after all ω itself is not an integer. Instead, we shall describe a
version of the Euclidean algorithm which finds an approximate GCD,
and can even work for real numbers.

We are going to explain this method through an example. Let
us take N = 989 as the number to be factored. We want to find
the order m of g = 2 in the multiplicative group Z∗989 using Shor’s
algorithm. Since 989 < 210 = 1024, we set n = 10. After Step 2 of
Shor’s algorithm, we get the qubit:

1

210

220−1∑
k=0

|k〉
∣∣∣2k mod 989

〉
.

On Step 3, we measure the value of the last 10 bits, with a random
value being observed. Let us assume that the result of this mea-
surement is h = 250 = 41 mod 989. Then only the terms where
2k = 41 mod 989 will survive in the resulting sum. These values of k
form an arithmetic progression k = 50, 50 + m, 50 + 2m, Hence
the sequence of coefficients in the qubit is now periodic with period
m, and applying quantum Fourier transform on Step 5, we will get
the state

219−1∑
r=0

ar |r〉 |0〉 |h〉+ br |r〉 |1〉 |h〉 ,

with the Fourier coefficients having spikes at values of r which are
close to an integer multiple of ω = 220/m. To illustrate this, we plot

0 0.5 1 1.5 2 2.5 3 3.5 4

104

0

0.002

0.004

0.006

0.008

0.01

0.012

121

the graph of a2r + b2r for r from 0 to 40, 000. We should understand
that the values of the coefficients of the qubit stored on a quantum
computer cannot be directly accessible, and we can plot this graph
only because we use a small value of N , and can compute the Fourier
coefficients with a classical computer. This graph is a plot of prob-
ability of observing each value of r if we perform the measurement
of the first 19 qubits. We clearly see the spikes on this graph, which
means that some values of r are much more likely to be measured than
others. Locations of these spikes do not depend on the observed value
h.

Here we also list probabilities of observing values of r near two of
the peaks:

r a2r + b2r
251926 0.0000071
251927 0.0000124
251928 0.0000271
251929 0.0000991
251930 0.0125868
251931 0.0001465
251932 0.0000329
251933 0.0000141
251934 0.0000078

r a2r + b2r
435767 0.000054
435768 0.000091
435769 0.000186
435770 0.000567
435771 0.008652
435772 0.002382
435773 0.000373
435774 0.000145
435775 0.000076

We can see from these tables that some values of r are much more likely
to be observed. Suppose we run the quantum algorithm twice and get
r1 = 435771 as observed value on the first run, and r2 = 251930 on
the second run. We expect these values to be approximate multiples
of ω = 220/m.

Let us run the Euclidean algorithm for finding the greatest com-
mon factor of r1 and r2. We divide r1 by r2 with a remainder:

r3 = r1 − r2 = 183841.

The remainder r3 is always lower than the divisor r2, however we do
not expect it to be lower by many orders of magnitude. Indeed, for
0 < c < 1 the probability that r3 < cr2 is equal to c.

122

Let us continue with the Euclidean algorithm.

r4 = r2 − r3 = 68089,

r5 = r3 − 2× r4 = 47663,

r6 = r4 − r5 = 20426,

r7 = r5 − 2× r6 = 6811,

r8 = r6 − 3× r7 = 7.

At the last step we notice that the value of the remainder r8 = 7
is several orders of magnitude lower than the order of the divisor
r7 = 6811. We interpret this as r8 ≈ 0, which is the termination
condition for the search of the approximate GCD. Hence r7 is the
approximate GCD of r1 and r2. Let us determine the corresponding
integer multiples:

r1
r7

=
435771

6811
= 63.98 . . . ,

r2
r7

=
251930

6811
= 36.98 . . .

Then we get a more precise value of the base frequency ω:

ω ≈ 435771

64
≈ 6808.921 . . . , ω ≈ 251930

37
≈ 6808.918

Now we can determine the value of the order m of element g = 2 in
Z∗989 from ω = 220/m:

m ≈ 220

ω
≈ 1048576

6808.92
≈ 154.0003 . . .

We conclude that the order of g = 2 is m = 154.
By Lagrange’s Theorem, the size M = (p− 1)(q − 1) of the group

Z∗989 is an integer multiple of the order of any element, M = mK.
Since the magnitude of M = (p−1)(q−1) is comparable to N = pq =
989, we can approximate the unknown factor K as

K =
M

m
<
N

m
=

989

154
≈ 6.42 . . .

Taking K = 6, we obtain the value of M = 6m = 924.

123

Since N = pq and M = (p− 1)(q− 1) = pq− p− q+ 1, we get that

p+ q = N −M + 1 = 989− 924 + 1 = 66.

Finally, we find the prime factors p, q as the roots of the quadratic
equation

X2 − (p+ q)X + pq = 0,

X2 − 66X + 989 = 0,

p =
66 +

√
662 − 4× 989

2
= 43, q =

66−
√

662 − 4× 989

2
= 23,

and we can verify obtained factorization:

43× 23 = 989.

Exercise. Show that in our description of Shor’s algorithm, Step
3 may be skipped.

124

20 Appendix: What is not in this Book?

Complex numbers.

The proper way to describe quantum states is with complex, and not
real numbers. Let us give a brief introduction to complex numbers
here. The starting point to complex numbers is introduction of the
imaginary number i, which is the square root of −1, meaning that we
postulate i2 = −1. Then the general form for a complex number is
a + bi, where a and b are real numbers, called the real part and the
imaginary part of the complex number. Let us give examples how we
can add and multiply complex numbers:

(2 + 5i) + (1− 3i) = (2 + 1) + (5− 3)i = 3 + 2i,

(2 + 5i)× (1− 3i) = 2× 1 + 2× (−3i) + 1× 5i+ 5× (−3)× i2 =

2− 6i+ 5i− 15× (−1) = 17− i.

A new operation with complex numbers is conjugation, which is switch-
ing the sign of the imaginary part. It is denoted with a bar:

2 + 5i = 2− 5i.

Conjugation has the following properties:

z + w = z + w, z × w = z × w,

for any two complex numbers z, w.
There is also an analogue of the absolute value, which is called the

norm of a complex number:

|a+ bi| =
√
a2 + b2.

The norm of a non-zero complex number is a positive real number.
The following relation, which is easy to verify, gives a connection be-
tween conjugation and norm:

z × z = |z|2 .

125

This relation allows us do define division of complex numbers:

1

z
=

z

|z|2
.

Let us give an example:

2 + 5i

1 + 3i
=

(2 + 5i)(1 + 3i)

|1 + 3i|2
=

(2 + 5i)(1− 3i)

|1 + 3i|2
=

17− i
12 + 32

=
17

10
− 1

10
i.

A Hermitian vector space consists of vectors, whose components are
complex numbers. The dot product in a Hermitian space is defined
as follows: 

z1
z2
. . .
zn

 ·

w1

w2

. . .
wn

 = z1w1 + z2w2 + . . .+ znwn.

With this definition, the dot product of a non-zero complex vector
with itself is a positive real number:

u · u = |z1|2 + |z2|2 + . . .+ |zn|2 ,

for

u =


z1
z2
. . .
zn

 .

This allows us to define the length of a complex vector as |u| =
√

u · u.
A qubit is a complex vector:

(a+ bi) |0〉+ (c+ di) |1〉 .

If we take into consideration rotational polarization states of a photon,
together with the linear polarization then quantum states of a photon
are modelled by complex 1-qubits.

126

More generally, an n-qubit is expressed as a complex vector

2n−1∑
k=0

zk |k〉

with the condition that the length of such a vector is equal to 1:

2n−1∑
k=0

|zk|2 = 1.

When we perform a measurement on this n-qubit, the probability of
observing value k is |zk|2, which is a non-negative real number.

When we discuss evolution of quantum states in complex setting,
real orthogonal matrices are replaced with matrices of complex num-
bers, satisfying the condition A−1 = AT . Here conjugation of a matrix
is carried out by taking a conjugate of each entry. A complex matrix
satisfying this condition is called unitary.

Many functions can be extended to complex numbers. A partic-
ularly important example is the complex exponential function. Ex-
ponentials of complex numbers are defined with the following Euler’s
formula:

ea+bi = ea (cos(b) + i sin(b)) .

A complex version of discrete Fourier transform is based on complex
exponentials. It turns out that complex version of DFT is easier to
work with, compared to the real case. Fourier coefficients of a complex
sequence (f0, f1, . . . , fN−1) are computed as follows:

cp =
1√
N

N−1∑
k=0

fke
−2πikp/N .

The inverse Fourier transform reconstructs the original sequence in a
very similar fashion:

fk =
1√
N

N−1∑
p=0

cpe
2πikp/N .

We can use these formulas to build the quantum Fourier transform in
complex setting with unitary quantum gates.

127

Physical realizations of qubits.

In fact, quantum computers may be based not only on photonics, but
may be built with several other physical systems. These include:

• Spins of electrons,

• Nitrogen atoms embedded into a diamond crystal,

• Trapped ions,

• Quantum dots,

• Josephson junctions (superconducting circuits).

Other quantum algorithms.

Quantum algorithms are notoriously difficult to design. To-date, only
a small number of them is known, and of those, nothing is as spectac-
ular as Shor’s algorithm.

Let us list here a few examples of quantum algorithms:

• Grover’s algorithm for solving equations f(x) = a,

• Finding repeated values (solving equations f(x) = f(y)),

• Computing Jones’ polynomial invariants of knots.

Let us outline the idea for the Grover’s algorithm. Suppose f(x)
is a classical computation, f : Bn → Bk. For a given a in Bk we
want to solve equation f(x) = a. Let us assume, for simplicity, that
this equation has a unique (unknown) solution x = r in Bn. We set
N = 2n.

We begin with the initial n-qubit

v =
1√
N

N−1∑
k=0

|k〉 .

128

To solve the problem, we need to amplify the coefficient in the
qubit that corresponds to the term that we seek: u = |r〉.

Let us find the angle β between vectors v and u. Using dot product
we determine that cosβ = 1√

N
. This value is close to zero, thus

β is close to π/2. Writing β = π/2 − α, and using the fact that
cos(π/2− α) = sinα, we determine that α = arcsin(1/

√
N) ≈ 1/

√
N .

Grover was able to construct a rotation transformation R2α in
angle 2α of a plane spanned by vectors u and v. It turns out that we
do not need to know u = |r〉 to construct R2α, it is enough to know
that f(r) = a. Every time we apply this rotation, the angle between
the current quantum state and u gets reduced by 2α. If k is an integer
satisfying 2k + 1 ≈ π

√
N/2, then after k rotations, we get a vector,

which is close to u = |r〉. Performing the measurement, we will obtain
r with a high probability.

Grover’s algorithm requires a multiple of
√
N steps. This is an

improvement over the classical situation, where on average N/2 steps
are required to find the solution of equation f(x) = a by a direct
search. If f does not have any nice properties which could give us a
better method for solving this equation, it is clear that classically this
problem cannot be solved in

√
N steps. Thus in case of the Grover’s

algorithm, we can prove that quantum methods are more effective
than classical.

Still, the speed-up to
√
N from N is not as impressive as in the

case of Shor’s algorithm, where the speed-up is logarithmic.

Alternative quantum computational schemes.

In addition to quantum circuits considered in this book, there exist
quantum computational schemes based on different principles.

In adiabatic quantum computers, quantum states are implemented
with Josephson junctions, a collection of superconducting circuits
cooled to a fraction of 1 Kelvin above absolute zero. These circuits
are controlled by a magnetic field.

For each magnetic field configuration, there exist many possible
quantum states of superconducting circuits, corresponding to different

129

energy levels of the system. We are interested in finding the ground
state, i.e. the state with the lowest energy. If we use an analogy with a
vibrating string, the ground vibrational state corresponds to the base
frequency mode. Let us emphasize that the “particle” we consider
here is not the string, but rather its vibration. Thus a non-vibrating
string represents absence of the particle, and the particle in its lowest
energy state is the base mode. Here we study the smile separately
from the Cheshire Cat.

One has to design a magnetic field configuration for which the
ground state gives a solution to a problem we wish to solve. The
difficulty is that if we just create this configuration of the magnetic
field, there is no guarantee, that our quantum processor will be in the
ground state. The strategy is then the following: we first create a
very simple magnetic field configuration, for which the ground state
is known (and corresponds to the zero value of the n-qubit). We
initialize the quantum processor to the zero ground state. Then we
begin to gradually change the magnetic field configuration, morphing
it into the final configuration which should produce the solution to our
problem. While we are changing the magnetic field, the quantum state
of the processor remains in the ground energy state, which evolves in
response to the changing magnetic field. The final ground state yields
the solution of the problem.

Yet another model for quantum computations is given by topolog-
ical quantum computers. In this model quantum computations are
done by braiding the trajectories of anyons. Anyons are not actual
particles, but rather excitations in a system of electrons. Such a sys-
tem changes its state when two anyons circle each other. There is
hope that topological quantum computers will be more stable since
the result of the computation depends only on the configuration of
anyon trajectories and is tolerant to small perturbations.

	cover_web
	QC-High-version-2e

